Skip to main content
Log in

Endocytosis in enterocytes

Endozytose in Enterozyten

  • main topic
  • Published:
Wiener Medizinische Wochenschrift Aims and scope Submit manuscript

Summary

Endocytosis is a fundamental cell biological process, which carries out essential functions in a polarized epithelial cell such as enterocytes provided with a huge surface area of the brush border membrane. Major tasks of enterocytes, which are regulated by endocytic signals, are digestion and absorption of nutrients and drugs/pharmacological agents, barrier permeability to microorganism, toxins and antigens, and transcytotic crosstalk between intestinal lumen and lamina propria cells with access to the circulation.

Investigations on inflammatory bowel diseases such as food allergy, celiac disease, Crohn’s disease, and ulcerative colitis focus on immune processes originating within enterocytes as antigen presenting cells. Thus the initiation of oral tolerance, that is, the binding of food antigens to MHC class II proteins, might be localized within late endosomes of enterocytes. Furthermore, the late endosomal compartment of enterocytes seems to be involved in the processing of luminal antigens during the pathogenesis of celiac disease and inflammatory bowel diseases. Investigations of inherited diseases such as microvillus inclusion disease have revealed a pathogenetic defect in the autophagocytotic and/or recycling pathway of enterocytes.

Our progress in the cell and molecular biological understanding of the endocytosis and the methodical opportunities of translational research offer now new therapeutic options for patients suffering from endocytosis-related diseases of enterocytes.

Zusammenfassung

Endozytose ist ein fundamentaler zellbiologischer Prozess mit essentiellen Funktionen für polarisierte Epithelzellen wie Enterozyten, die mit einer Bürstensaummembran ausgestattet sind. Wichtige Aufgaben der Enterozyten, die durch endozytische Signale gesteuert werden, sind Verdauung und Resorption von Nährstoffen und (pharmakologischen) Wirkstoffen, Barrierefunktion und Permeabilitätssteuerung gegenüber Mikroorganismen, Toxinen und Antigenen sowie transzytotischer "crosstalk" zwischen Darmlumen und Zellen der Lamina propria.

Die Erforschung entzündlicher Darmerkrankungen wie Nahrungsmittelallergien, Zöliakie, Morbus Crohn und Colitis ulcerosa schließt Immunprozesse ein, die ihren Ursprung in Enterozyten als antigenpräsentierenden Zellen nehmen. So könnte die Initiierung oraler Toleranz, d.h. die Bindung von Nahrungsmittelantigenen an MHC II Proteine, in späten Endosomen von Enterozyten lokalisiert sein. Weiterhin scheint in Enterozyten das späte endosomale Kompartiment durch Prozessierung luminaler Antigene in der Pathogenese der Zöliakie und chronisch-entzündlicher Darmerkrankungen (M. Crohn, Colitis ulzerosa) eine Rolle zu spielen. Pathogenetische Defekte der Autophagozytose und/oder endosomalen Recyclings von Enterozyten wurden auch in angeborenen Erkrankungen wie der Microvillus-Inklusion-Erkrankung gefunden.

Das verbesserte zell- und molekularbiologische Verständnis der Endozytose und die methodischen Möglichkeiten der translationalen Forschung geben Patienten mit Endozytose-assoziierten Erkrankungen Hoffnung auf neue therapeutische Optionen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Metschnikow E. Über Geodesmus bilineatus Nob. (Fasciola terrestris O. Fr. Müller?), eine europäische Landplanarie. Mélanges Biol Bull Acad Imp Sci St Pétersbg; 1866;5:544–65.

    Google Scholar 

  2. Helenius A, Mellman I, Wall D, Hubbard A. Endosomes. Trends Biochem Science. 1983;8:245–50.

    Article  CAS  Google Scholar 

  3. Huotari J, Helenius A. Endosome maturation. EMBO J. 2011;30(17):3481–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Griffiths G, Simons K. The trans Golgi network: sorting at the exit site of the Golgi complex. Science. 1986;234(4775):438–43.

    Article  CAS  PubMed  Google Scholar 

  5. Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol homeostasis. Science. 1986;232(4746):34–47.

    Article  CAS  PubMed  Google Scholar 

  6. Reggio H, Bainton D, Harms E, Coudrier E, Louvard D. Antibodies against lysosomal membranes reveal a 100,000-mol-wt protein that cross-reacts with purified H+,K + ATPase from gastric mucosa. J Cell Biol. 1984;99(4 Pt 1):1511–26.

    Article  CAS  PubMed  Google Scholar 

  7. Green SA, Zimmer KP, Griffiths G, Mellman I. Kinetics of intracellular transport and sorting of lysosomal membrane and plasma membrane proteins. J Cell Biol. 1987;105(3):1227–40.

    Article  CAS  PubMed  Google Scholar 

  8. Doms RW, Helenius A, White J. Membrane fusion activity of the influenza virus hemagglutinin. The low pH-induced conformational change. J Biol Chem. 1985;260(5):2973–81.

    CAS  PubMed  Google Scholar 

  9. Schmid SL, Sorkin A, Zerial M. Endocytosis: past, present, and future. Cold Spring Harb Perspect Biol. 2014;6(12):a022509.

    Article  PubMed  Google Scholar 

  10. Choi AM, Ryter SW, Levine B. Autophagy in human health and disease. N Engl J Med. 2013;368(7):651–62.

    Article  CAS  PubMed  Google Scholar 

  11. Christiansen K, Carlsen J. Microvillus membrane vesicles from pig small intestine. Purity and lipid composition. Biochim Biophys Acta. 1981;647(2):188–95.

    Article  CAS  PubMed  Google Scholar 

  12. Steed E, Balda MS, Matter K Dynamics and functions of tight junctions. Trends Cell Biol. 2010;20(3):142–9.

    Article  CAS  PubMed  Google Scholar 

  13. Kaser A, Niederreiter L, Blumberg RS. Genetically determined epithelial dysfunction and its consequences for microflora-host interactions. Cell Mol Life Sci. 2011;68(22):3643–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rodewald R, Kraehenbuhl JP, Receptor-mediated transport of IgG. J Cell Biol. 1984;99(1 Pt 2):159s–64s.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Leitner K, Ellinger A, Zimmer KP, Ellinger I, Fuchs R, Localization of beta 2-microglobulin in the term villous syncytiotrophoblast. Histochem Cell Biol. 2002;117(2):187–93.

    Article  CAS  PubMed  Google Scholar 

  16. Liao Y, Jiang R, Lonnerdal B. Biochemical and molecular impacts of lactoferrin on small intestinal growth and development during early life. Biochem Cell Biol. 2012;90(3):476–84.

    Article  CAS  PubMed  Google Scholar 

  17. Strobel S, Mowat AM. Immune responses to dietary antigens: oral tolerance. Immunol Today. 1998;19(4):173–81.

    Article  CAS  PubMed  Google Scholar 

  18. Zimmer KP, Buning J, Weber P, Kaiserlian D, Strobel S. Modulation of antigen trafficking to MHC class II-positive late endosomes of enterocytes. Gastroenterology. 2000;118(1):128–37.

    Article  CAS  PubMed  Google Scholar 

  19. Buning J, Schmitz M, Repenning B, Ludwig D, Schmidt MA, Strobel S, et al. Interferon-gamma mediates antigen trafficking to MHC class II-positive late endosomes of enterocytes. Eur Immunol. 2005;35(3):831–42.

    Article  Google Scholar 

  20. Buning J, Smolinski D von, Tafazzoli K, Zimmer KP, Strobel S, Apostolaki M, et al. Multivesicular bodies in intestinal epithelial cells: responsible for MHC class II-restricted antigen processing and origin of exosomes. Immunology. 2008;125(4):510–21.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Telega GW, Baumgart DC, Carding SR. Uptake and presentation of antigen to T cells by primary colonic epithelial cells in normal and diseased states. Gastroenterology. 2000;119(6):1548–59.

    Article  CAS  PubMed  Google Scholar 

  22. Kersting S, Bruewer M, Schuermann G, Klotz A, Utech M, Hansmerten M, et al. Antigen transport and cytoskeletal characteristics of a distinct enterocyte population in inflammatory bowel diseases. Am J Pathol. 2004;165(2):425–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Buning J, Hundorfean G, Schmitz M, Zimmer KP, Strobel S, Gebert A, et al. Antigen targeting to MHC class II-enriched late endosomes in colonic epithelial cells: trafficking of luminal antigens studied in vivo in Crohn’s colitis patients. FASEB J. 2006;20(2):359–61.

    PubMed  Google Scholar 

  24. Hundorfean G, Zimmer KP, Strobel S, Gebert A, Ludwig D, Buning J. Luminal antigens access late endosomes of intestinal epithelial cells enriched in MHC, I and MHC II molecules: in vivo study in Crohn’s ileitis. Am J Physiol Gastrointest Liver Physiol. 2007;293(4):G798–808.

    Article  CAS  PubMed  Google Scholar 

  25. Schuppan D, Zimmer KP. The diagnosis and treatment of celiac disease. Dtsch Arztebl Int. 2013;110(49):835–46.

    PubMed  PubMed Central  Google Scholar 

  26. Zimmer KP, Poremba C, Weber P, Ciclitira PJ, Harms E. Translocation of gliadin into HLA-DR antigen containing lysosomes in coeliac disease enterocytes. Gut. 1995;36(5):703–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zimmer KP, Naim H, Weber P, Ellis HJ, Ciclitira PJ. Targeting of gliadin peptides, CD8, alpha/beta-TCR, and gamma/delta-TCR to Golgi complexes and vacuoles within celiac disease enterocytes. FASEB J. 1998;12(13):1349–57.

    CAS  PubMed  Google Scholar 

  28. Zimmer KP, Fischer I, Mothes T, Weissen-Plenz G, Schmitz M, Wieser H, et al. Endocytotic segregation of gliadin peptide 31–49 in enterocytes. Gut. 2010;59(3):300–10.

    Article  CAS  PubMed  Google Scholar 

  29. Lubbing N, Barone MV, Rudloff S, Troncone R, Auricchio S, Zimmer KP. Correction of gliadin transport within enterocytes through celiac disease serum. Pediatr Res. 2011;70(4):357–62.

    Article  PubMed  Google Scholar 

  30. Barone MV, Nanayakkara M, Paolella G, Maglio M, Vitale V, Troiano R, et al. Gliadin peptide P31-43 localises to endocytic vesicles and interferes with their maturation. PLoS One. 2010;5(8):e12246.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Reinke Y, Behrendt M, Schmidt S, Zimmer KP, Naim HY. Impairment of protein trafficking by direct interaction of gliadin peptides with actin. Exp Cell Res. 2011;317(15):2124–35.

    Article  CAS  PubMed  Google Scholar 

  32. Reinke Y, Zimmer KP, Naim HY, Toxic peptides in Frazer’s fraction interact with the actin cytoskeleton and affect the targeting and function of intestinal proteins. Exp Cell Res. 2009;315(19):3442–52.

    Article  CAS  PubMed  Google Scholar 

  33. Zimmermann C, Rudloff S, Lochnit G, Arampatzi S, Maison W, Zimmer KP. Epithelial transport of immunogenic and toxic gliadin peptides in vitro. PLoS One. 2014;9(11):e113932.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Matysiak-Budnik T, Candalh C, Dugave C, Namane A, Cellier C, Cerf-Bensussan N, et al. Alterations of the intestinal transport and processing of gliadin peptides in celiac disease. Gastroenterology. 2003;125(3):696–707.

    Article  CAS  PubMed  Google Scholar 

  35. Reinshagen K, Naim HY, Zimmer KP. Autophagocytosis of the apical membrane in microvillus inclusion disease. Gut. 2002;51(4):514–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Muller T, Hess MW, Schiefermeier N, Pfaller K, Ebner HL, Heinz-Erian P, et al. MYO5B mutations cause microvillus inclusion disease and disrupt epithelial cell polarity. Nat Genet. 2008;40(10):1163–5.

    Article  PubMed  Google Scholar 

  37. Wiegerinck CL, Janecke AR, Schneeberger K, Vogel GF, Haaften-Visser DY van, Escher JC, et al. Loss of syntaxin 3 causes variant microvillus inclusion disease. Gastroenterology. 2014;147(1):65–8 e10.

    Article  CAS  PubMed  Google Scholar 

  38. Knowles BC, Roland JT, Krishnan M, Tyska MJ, Lapierre LA, Dickman PS, et al. Myosin Vb uncoupling from RAB8A and RAB11A elicits microvillus inclusion disease. J Clin Invest. 2014;124(7):2947–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chauhan S, Ahmed Z, Bradfute SB, Arko-Mensah J, Mandell MA, Won Choi S, et al. Pharmaceutical screen identifies novel target processes for activation of autophagy with a broad translational potential. Nat Comm. 2015;6:8620.

    Article  CAS  Google Scholar 

  40. Helenius A. Membranes, viruses, detergents, and endosomes. Mol Biol Cell. 2012;23(21):4157–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zimmer KP, Branski D. Rare Inborn Defects Causing Malabsorption. In: Kliegman RM, Stanton BF, St Geme JW, Schor NF, Behrman RE, editors. Nelson textbook of pediatrics. 20 ed. Philadelphia: Elsevier; 2016. p. 1847–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus-Peter Zimmer.

Ethics declarations

Conflict of interest

K.-P. Zimmer, J. de Laffolie, M. V. Barone, and H. Y. Naim declare that there are no actual or potential conflicts of interest in relation to this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zimmer, KP., de Laffolie, J., Barone, M. et al. Endocytosis in enterocytes. Wien Med Wochenschr 166, 205–210 (2016). https://doi.org/10.1007/s10354-016-0448-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10354-016-0448-z

Keywords

Schlüsselwörter

Navigation