Skip to main content
Log in

Pharmacological therapies for Angelman syndrome

Pharmakologische Therapien bei Angelman-Syndrom

  • main topic
  • Published:
Wiener Medizinische Wochenschrift Aims and scope Submit manuscript

Summary

Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by a loss of the maternally inherited UBE3A; the paternal UBE3A is silenced in neurons by a mechanism involving an antisense transcript (UBE3A-AS). We reviewed the published information on clinical trials that have been completed as well as the publicly available information on ongoing trials of therapies for AS. Attempts at hypermethylating the maternal locus through dietary compounds were ineffective. The results of a clinical trial using minocycline as a matrix metalloproteinase-9 inhibitor were inconclusive; another clinical trial is underway. Findings from a clinical trial using L-dopa to alter phosphorylation of calcium/calmodulin-dependent kinase II are awaited. Topoisomerase inhibitors and antisense oligonucleotides are being developed to directly inhibit UBE3A-AS. Other strategies targeting specific pathways are briefly discussed. We also reviewed the medications that are currently used to treat seizures and sleep disturbances, which are two of the more debilitating manifestations of AS.

Zusammenfassung

Das Angelman-Syndrom (AS) ist eine schwerwiegende neurologische Entwicklungsstörung, die durch die fehlende Expression des maternal vererbten UBE3A-Gens verursacht wird; das paternale UBE3A wird in Neuronen durch einen Mechanismus stillgelegt, der ein Antisense-Transkript (UBE3A-AS) involviert. Publizierte Daten zu abgeschlossenen klinischen Studien sowie vorliegende Informationen aus laufenden Studien zur AS-Therapie wurden überprüft. Versuche, den maternalen Genort mittels diätetischer Präparate zu hypermethylieren, sind wirkungslos geblieben. Als inkonklusiv erwiesen sich die Ergebnisse einer klinischen Studie, die Minocyclin zur Hemmung der Matrix-Metalloprotease-9 einsetzte; eine weitere klinische Studie ist in Ausarbeitung. Die Ergebnisse einer klinischen Untersuchung zur Änderung der Phosphorylierung der Calcium/Calmodulin-abhängigen Kinase II durch Levodopa werden erwartet. Topoisomerasehemmer und Antisense-Oligonukleotide werden zur direkten UBE3A-AS-Hemmung entwickelt. Andere Strategien zur Targetierung spezifischer Leitungsbahnen werden kurz besprochen. Die heute eingesetzten medikamentösen Therapien bei einigen der schwerwiegendsten AS-Manifestationen – Insulten und Dyssomnien – wurden gesichtet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Thibert RL, Larson AM, Hsieh DT, et al. Neurologic manifestations of Angelman syndrome. Pediatr Neurol. 2013;48:271–9.

    Article  PubMed  Google Scholar 

  2. Bird LM. Angelman syndrome: review of clinical and molecular aspects. Appl Clin Genet. 2014;7:93–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Larson AM, Shinnick JE, Shaaya EA, et al. Angelman syndrome in adulthood. Am J Med Genet A. 2015;167 A:331–44.

    Article  Google Scholar 

  4. Williams CA, Beaudet AL, Clayton-Smith J, et al. Angelman syndrome 2005: updated consensus for diagnostic criteria. Am J Med Genet A. 2006;140:413–8.

    Article  PubMed  Google Scholar 

  5. Dagli A, Buiting K, Williams CA. Molecular and clinical aspects of Angelman syndrome. Mol Syndromol. 2012;2:100–12.

    CAS  PubMed  Google Scholar 

  6. Low D, Chen KS. Genome-wide gene expression profiling of the Angelman syndrome mice with Ube3a mutation. Eur J Hum Genet. 2010;18:1228–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jensen L, Farook MF, Reiter LT. Proteomic profiling in Drosophila reveals potential Dube3a regulation of the actin cytoskeleton and neuronal homeostasis. PLoS One. 2013;8:e61952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Buiting K, Lich C, Cottrell S, et al. A 5-kb imprinting center deletion in a family with Angelman syndrome reduces the shortest region of deletion overlap to 880 bp. Hum Genet. 1999;105:665–6.

    CAS  PubMed  Google Scholar 

  9. Dubose AJ, Smith EY, Yang TP, et al. A new deletion refines the boundaries of the murine Prader–Willi syndrome imprinting center. Hum Mol Genet. 2011;20:3461–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dittrich B, Buiting K, Korn B, et al. Imprint switching on human chromosome 15 may involve alternative transcripts of the SNRPN gene. Nat Genet. 1996;14:163–70.

    Article  CAS  PubMed  Google Scholar 

  11. Farber C, Dittrich B, Buiting K, et al. The chromosome 15 imprinting centre (IC) region has undergone multiple duplication events and contains an upstream exon of SNRPN that is deleted in all Angelman syndrome patients with an IC microdeletion. Hum Mol Genet. 1999;8:337–43.

    Article  CAS  PubMed  Google Scholar 

  12. Lewis MW, Brant JO, Kramer JM, et al. Angelman syndrome imprinting center encodes a transcriptional promoter. Proc Natl Acad Sci USA. 2015;112:6871–5.

    Article  CAS  PubMed  Google Scholar 

  13. Chamberlain SJ. RNAs of the human chromosome 15q11-q13 imprinted region. Wiley Interdiscip Rev RNA. 2013;4:155–66.

    Article  CAS  PubMed  Google Scholar 

  14. Chamberlain SJ, Brannan CI. The Prader–Willi syndrome imprinting center activates the paternally expressed murine Ube3a antisense transcript but represses paternal Ube3a. Genomics. 2001;73:316–22.

    Article  CAS  PubMed  Google Scholar 

  15. Dindot SV, Antalffy BA, Bhattacharjee MB, et al. The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morphology. Hum Mol Genet. 2008;17:111–8.

    Article  CAS  PubMed  Google Scholar 

  16. Jiang YH, Armstrong D, Albrecht U, et al. Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron. 1998;21:799–811.

    Article  CAS  PubMed  Google Scholar 

  17. Yashiro K, Riday TT, Condon KH, et al. Ube3a is required for experience-dependent maturation of the neocortex. Nat Neurosci. 2009;12:777–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dizik M, Christman JK, Wainfan E. Alterations in expression and methylation of specific genes in livers of rats fed a cancer promoting methyl-deficient diet. Carcinogenesis. 1991;12:1307–12.

    Article  CAS  PubMed  Google Scholar 

  19. Van den Veyver IB. Genetic effects of methylation diets. Annu Rev Nutr. 2002;22:255–82.

    Article  PubMed  CAS  Google Scholar 

  20. Peters SU, Bird LM, Kimonis V, et al. Double-blind therapeutic trial in Angelman syndrome using betaine and folic acid. Am J Med Genet A. 2010;152 A:1994–2001.

    Article  CAS  Google Scholar 

  21. Bird LM, Tan WH, Bacino CA, et al. A therapeutic trial of pro-methylation dietary supplements in Angelman syndrome. Am J Med Genet A. 2011;155 A:2956–63.

    Article  CAS  Google Scholar 

  22. Huang HS, Allen JA, Mabb AM, et al. Topoisomerase inhibitors unsilence the dormant allele of Ube3a in neurons. Nature. 2012;481:185–9.

    Article  CAS  Google Scholar 

  23. Powell WT, Coulson RL, Gonzales ML, et al. R-loop formation at Snord116 mediates topotecan inhibition of Ube3a-antisense and allele-specific chromatin decondensation. Proc Natl Acad Sci U S A. 2013;110:13938–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Skourti-Stathaki K, Proudfoot NJ. A double-edged sword: r loops as threats to genome integrity and powerful regulators of gene expression. Genes Dev. 2014;28:1384–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. King IF, Yandava CN, Mabb AM, et al. Topoisomerases facilitate transcription of long genes linked to autism. Nature. 2013;501:58–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Plasschaert RN, Bartolomei MS. Autism: a long genetic explanation. Nature. 2013;501:36–7.

    Article  CAS  PubMed  Google Scholar 

  27. Meng L, Person RE, Huang W, et al. Truncation of Ube3a-ATS unsilences paternal Ube3a and ameliorates behavioral defects in the Angelman syndrome mouse model. PLoS Genet. 2013;9:e1004039.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Santos RD, Raal FJ, Catapano AL, et al. Mipomersen, an antisense oligonucleotide to apolipoprotein B-100, reduces lipoprotein(a) in various populations with hypercholesterolemia: results of 4 phase III trials. Arterioscler Thromb Vasc Biol. 2015;35:689–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Marafini I, Di Fusco D, Calabrese E, et al. Antisense approach to inflammatory bowel disease: prospects and challenges. Drugs. 2015;75:723–30.

    Article  CAS  PubMed  Google Scholar 

  30. Voit T, Topaloglu H, Straub V, et al. Safety and efficacy of drisapersen for the treatment of Duchenne muscular dystrophy (DEMAND II): an exploratory, randomised, placebo-controlled phase 2 study. Lancet Neurol. 2014;13:987–96.

    Article  CAS  PubMed  Google Scholar 

  31. Evers MM, Toonen LJ, van Roon-Mom WM. Antisense oligonucleotides in therapy for neurodegenerative disorders. Adv Drug Deliv Rev. 2015.

  32. Meng L, Ward AJ, Chun S, et al. Towards a therapy for Angelman syndrome by targeting a long non-coding RNA. Nature. 2015;518:409–12.

    Article  CAS  PubMed  Google Scholar 

  33. Daily JL, Nash K, Jinwal U, et al. Adeno-associated virus-mediated rescue of the cognitive defects in a mouse model for Angelman syndrome. PLoS One. 2011;6:e27221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lisman J, Schulman H, Cline H. The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci. 2002;3:175–90.

    Article  CAS  PubMed  Google Scholar 

  35. Blitzer RD, Iyengar R, Landau EM. Postsynaptic signaling networks: cellular cogwheels underlying long-term plasticity. Biol Psychiatry. 2005;57:113–9.

    Article  CAS  PubMed  Google Scholar 

  36. Giese KP, Fedorov NB, Filipkowski RK, et al. Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Science. 1998;279:870–3.

    Article  CAS  PubMed  Google Scholar 

  37. Elgersma Y, Fedorov NB, Ikonen S, et al. Inhibitory autophosphorylation of CaMKII controls PSD association, plasticity, and learning. Neuron. 2002;36:493–505.

    Article  CAS  PubMed  Google Scholar 

  38. Weeber EJ, Jiang YH, Elgersma Y, et al. Derangements of hippocampal calcium/calmodulin-dependent protein kinase II in a mouse model for Angelman mental retardation syndrome. J Neurosci. 2003;23:2634–44.

    CAS  PubMed  Google Scholar 

  39. van Woerden GM, Harris KD, Hojjati MR, et al. Rescue of neurological deficits in a mouse model for Angelman syndrome by reduction of alphaCaMKII inhibitory phosphorylation. Nat Neurosci. 2007;10:280–2.

    Article  PubMed  CAS  Google Scholar 

  40. Brown AM, Deutch AY, Colbran RJ. Dopamine depletion alters phosphorylation of striatal proteins in a model of Parkinsonism. Eur J Neurosci. 2005;22:247–56.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mulherkar SA, Jana NR. Loss of dopaminergic neurons and resulting behavioural deficits in mouse model of Angelman syndrome. Neurobiol Dis. 2010;40:586–92.

    Article  CAS  PubMed  Google Scholar 

  42. Riday TT, Dankoski EC, Krouse MC, et al. Pathway-specific dopaminergic deficits in a mouse model of Angelman syndrome. J Clin Invest. 2012;122:4544–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Huntley GW. Synaptic circuit remodelling by matrix metalloproteinases in health and disease. Nat Rev Neurosci. 2012;13:743–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dziembowska M, Wlodarczyk J. MMP9: a novel function in synaptic plasticity. Int J Biochem Cell Biol. 2012;44:709–13.

    Article  CAS  PubMed  Google Scholar 

  45. Fragkouli A, Papatheodoropoulos C, Georgopoulos S, et al. Enhanced neuronal plasticity and elevated endogenous sAPPalpha levels in mice over-expressing MMP9. J Neurochem. 2012;121:239–51.

    Article  CAS  PubMed  Google Scholar 

  46. Bilousova TV, Dansie L, Ngo M, et al. Minocycline promotes dendritic spine maturation and improves behavioural performance in the fragile X mouse model. J Med Genet. 2009;46:94–102.

    Article  CAS  PubMed  Google Scholar 

  47. Iulita MF, Do Carmo S, Ower AK, et al. Nerve growth factor metabolic dysfunction in Down̕s syndrome brains. Brain. 2014;137:860–72.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sidhu H, Dansie LE, Hickmott PW, et al. Genetic removal of matrix metalloproteinase 9 rescues the symptoms of fragile X syndrome in a mouse model. J Neurosci. 2014;34:9867–79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Cullen SI, Cohan RH. Minocycline therapy in acne vulgaris. Cutis. 1976;17:1208–10, 1214.

    CAS  PubMed  Google Scholar 

  50. Jonas M, Cunha BA. Minocycline. Ther Drug Monit. 1982;4:137–45.

    Article  CAS  PubMed  Google Scholar 

  51. Griffin MO, Fricovsky E, Ceballos G, et al. Tetracyclines: a pleitropic family of compounds with promising therapeutic properties. Review of the literature. Am J Physiol Cell Physiol. 2010;299:C539–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Busner J, Targum SD. The clinical global impressions scale: applying a research tool in clinical practice. Psychiatry (Edgmont). 2007;4:28–37.

    Google Scholar 

  53. Leigh MJ, Nguyen DV, Mu Y, et al. A randomized double-blind, placebo-controlled trial of minocycline in children and adolescents with fragile X syndrome. J Dev Behav Pediatr. 2013;34:147–55.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Dziembowska M, Pretto DI, Janusz A, et al. High MMP-9 activity levels in fragile X syndrome are lowered by minocycline. Am J Med Genet A. 2013;161 A:1897–903.

    Article  CAS  Google Scholar 

  55. Grieco JC, Ciarlone SL, Gieron-Korthals M, et al. An open-label pilot trial of minocycline in children as a treatment for Angelman syndrome. BMC Neurol. 2014;14:232.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Greer PL, Hanayama R, Bloodgood BL, et al. The Angelman Syndrome protein Ube3A regulates synapse development by ubiquitinating arc. Cell. 2010;140:704–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Margolis SS, Salogiannis J, Lipton DM, et al. EphB-mediated degradation of the RhoA GEF Ephexin5 relieves a developmental brake on excitatory synapse formation. Cell. 2010;143:442–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kuhnle S, Mothes B, Matentzoglu K, et al. Role of the ubiquitin ligase E6AP/UBE3A in controlling levels of the synaptic protein Arc. Proc Natl Acad Sci U S A. 2013;110:8888–93.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Mandel-Brehm C, Salogiannis J, Dhamne SC, et al. Seizure-like activity in a juvenile Angelman syndrome mouse model is attenuated by reducing Arc expression. Proc Natl Acad Sci USA. 2015;112:5129–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Roden WH, Peugh LD, Jansen LA. Altered GABA(A) receptor subunit expression and pharmacology in human Angelman syndrome cortex. Neurosci Lett. 2010;483:167–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Egawa K, Kitagawa K, Inoue K, et al. Decreased tonic inhibition in cerebellar granule cells causes motor dysfunction in a mouse model of Angelman syndrome. Sci Transl Med. 2012;4:163ra57.

    Article  CAS  Google Scholar 

  62. Baudry M, Bi X, Gall C, et al. The biochemistry of memory: the 26 year journey of a ‘new and specific hypothesis̕’. Neurobiol Learn Mem. 2011;95:125–33.

    Article  CAS  PubMed  Google Scholar 

  63. Lynch G, Rex CS, Chen LY, et al. The substrates of memory: defects, treatments, and enhancement. Eur J Pharmacol. 2008;585:2–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Simmons DA, Rex CS, Palmer L, et al. Up-regulating BDNF with an ampakine rescues synaptic plasticity and memory in Huntington̕s disease knockin mice. Proc Natl Acad Sci USA. 2009;106:4906–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Baudry M, Kramar E, Xu X, et al. Ampakines promote spine actin polymerization, long-term potentiation, and learning in a mouse model of Angelman syndrome. Neurobiol Dis. 2012;47:210–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chang PK, Verbich D, McKinney RA. AMPA receptors as drug targets in neurological disease–advantages, caveats, and future outlook. Eur J Neurosci. 2012;35:1908–16.

    Article  PubMed  Google Scholar 

  67. Panja D, Bramham CR. BDNF mechanisms in late LTP formation: a synthesis and breakdown. Neuropharmacology. 2014;76 Pt C:664–76.

    Article  PubMed  CAS  Google Scholar 

  68. Cao C, Rioult-Pedotti MS, Migani P, et al. Impairment of TrkB-PSD-95 signaling in Angelman syndrome. PLoS Biol. 2013;11:e1001478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yoshii A, Constantine-Paton M. BDNF induces transport of PSD-95 to dendrites through PI3K-AKT signaling after NMDA receptor activation. Nat Neurosci. 2007;10:702–11.

    Article  CAS  PubMed  Google Scholar 

  70. Yoshii A, Murata Y, Kim J, et al. TrkB and protein kinase Mzeta regulate synaptic localization of PSD-95 in developing cortex. J Neurosci. 2011;31:11894–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kaphzan H, Hernandez P, Jung JI, et al. Reversal of impaired hippocampal long-term potentiation and contextual fear memory deficits in Angelman syndrome model mice by ErbB inhibitors. Biol Psychiatry. 2012;72:182–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kwon OB, Longart M, Vullhorst D, et al. Neuregulin-1 reverses long-term potentiation at CA1 hippocampal synapses. J Neurosci. 2005;25:9378–83.

    Article  CAS  PubMed  Google Scholar 

  73. Pitcher GM, Beggs S, Woo RS, et al. ErbB4 is a suppressor of long-term potentiation in the adult hippocampus. Neuroreport. 2008;19:139–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sun J, Liu Y, Moreno S, et al. Imbalanced mechanistic target of rapamycin C1 and C2 activity in the cerebellum of Angelman syndrome mice impairs motor function. J Neurosci. 2015;35:4706–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rogers JT, Rusiana I, Trotter J, et al. Reelin supplementation enhances cognitive ability, synaptic plasticity, and dendritic spine density. Learn Mem. 2011;18:558–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hethorn WR, Ciarlone SL, Filonova I, et al. Reelin supplementation recovers synaptic plasticity and cognitive deficits in a mouse model for Angelman syndrome. Eur J Neurosci. 2015;41:1372–80.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Su H, Fan W, Coskun PE, et al. Mitochondrial dysfunction in CA1 hippocampal neurons of the UBE3A deficient mouse model for Angelman syndrome. Neurosci Lett. 2011;487:129–33.

    Article  CAS  PubMed  Google Scholar 

  78. Llewellyn KJ, Nalbandian A, Gomez A, et al. Administration of CoQ10 analogue ameliorates dysfunction of the mitochondrial respiratory chain in a mouse model of Angelman syndrome. Neurobiol Dis. 2015;76:77–86.

    Article  CAS  PubMed  Google Scholar 

  79. Pelc K, Boyd SG, Cheron G, et al. Epilepsy in Angelman syndrome. Seizure. 2008;17:211–7.

    Article  PubMed  Google Scholar 

  80. Thibert RL, Conant KD, Braun EK, et al. Epilepsy in Angelman syndrome: a questionnaire-based assessment of the natural history and current treatment options. Epilepsia. 2009;50:2369–76.

    Article  PubMed  Google Scholar 

  81. Valente KD, Varela MC, Koiffmann CP, et al. Angelman syndrome caused by deletion: a genotype-phenotype correlation determined by breakpoint. Epilepsy Res. 2013;105:234–9.

    Article  CAS  PubMed  Google Scholar 

  82. Dion MH, Novotny EJ Jr, Carmant L, et al. Lamotrigine therapy of epilepsy with Angelman̕s syndrome. Epilepsia. 2007;48:593–6.

    Article  CAS  PubMed  Google Scholar 

  83. Franz DN, Glauser TA, Tudor C, et al. Topiramate therapy of epilepsy associated with Angelman̕s syndrome. Neurology. 2000;54:1185–8.

    Article  CAS  PubMed  Google Scholar 

  84. Ostergaard JR, Balslev T. Efficacy of different antiepileptic drugs in children with Angelman syndrome associated with 15q11-13 deletion: the Danish experience. Dev Med Child Neurol. 2001;43:718–9.

    Article  CAS  PubMed  Google Scholar 

  85. Valente KD, Koiffmann CP, Fridman C, et al. Epilepsy in patients with Angelman syndrome caused by deletion of the chromosome 15q11-13. Arch Neurol. 2006;63:122–8.

    Article  PubMed  Google Scholar 

  86. Neal EG, Chaffe H, Schwartz RH, et al. A randomized trial of classical and medium-chain triglyceride ketogenic diets in the treatment of childhood epilepsy. Epilepsia. 2009;50:1109–17.

    Article  PubMed  Google Scholar 

  87. Neal EG, Chaffe H, Schwartz RH, et al. The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial. Lancet Neurol. 2008;7:500–6.

    Article  PubMed  Google Scholar 

  88. Levy RG, Cooper PN, Giri P. Ketogenic diet and other dietary treatments for epilepsy. Cochrane Database Syst Rev. 2012;3:CD001903.

    Google Scholar 

  89. Evangeliou A, Doulioglou V, Haidopoulou K, et al. Ketogenic diet in a patient with Angelman syndrome. Pediatr Int. 2010;52:831–4.

    Article  PubMed  Google Scholar 

  90. Stein D, Chetty M, Rho JM. A “happy” toddler presenting with sudden, life-threatening seizures. Semin Pediatr Neurol. 2010;17:35–8.

    Article  PubMed  Google Scholar 

  91. Kossoff EH, Zupec-Kania BA, Amark PE, et al. Optimal clinical management of children receiving the ketogenic diet: recommendations of the International Ketogenic Diet Study Group. Epilepsia. 2009;50:304–17.

    Article  PubMed  Google Scholar 

  92. Bergqvist AG. Long-term monitoring of the ketogenic diet: do’s and Don’ts. Epilepsy Res. 2012;100:261–6.

    Article  PubMed  Google Scholar 

  93. Hemingway C, Freeman JM, Pillas DJ, et al. The ketogenic diet: a 3- to 6-year follow-up of 150 children enrolled prospectively. Pediatrics. 2001;108:898–905.

    Article  CAS  PubMed  Google Scholar 

  94. Thibert RL, Pfeifer HH, Larson AM, et al. Low glycemic index treatment for seizures in Angelman syndrome. Epilepsia. 2012;53:1498–502.

    Article  CAS  PubMed  Google Scholar 

  95. Forrest KM, Young H, Dale RC, et al. Benefit of corticosteroid therapy in Angelman syndrome. J Child Neurol. 2009;24:952–8.

    Article  PubMed  Google Scholar 

  96. dos Santos RG, Hallak JE, Leite JP, et al. Phytocannabinoids and epilepsy. J Clin Pharm Ther. 2015;40:135–43.

    Article  PubMed  CAS  Google Scholar 

  97. Didden R, Sigafoos J. A review of the nature and treatment of sleep disorders in individuals with developmental disabilities. Res Dev Disabil. 2001;22:255–72.

    Article  CAS  PubMed  Google Scholar 

  98. Goldman SE, Bichell TJ, Surdyka K, et al. Sleep in children and adolescents with Angelman syndrome: association with parent sleep and stress. J Intellect Disabil Res. 2012;56:600–8.

    Article  CAS  PubMed  Google Scholar 

  99. Bruni O, Ferri R, D’Agostino G, et al. Sleep disturbances in Angelman syndrome: a questionnaire study. Brain Dev. 2004;26:233–40.

    Article  PubMed  Google Scholar 

  100. Didden R, Korzilius H, Smits MG, et al. Sleep problems in individuals with Angelman syndrome. Am J Ment Retard. 2004;109:275–84.

    Article  PubMed  Google Scholar 

  101. Walz NC, Beebe D, Byars K. Sleep in individuals with Angelman syndrome: parent perceptions of patterns and problems. Am J Ment Retard. 2005;110:243–52.

    Article  PubMed  Google Scholar 

  102. Miano S, Bruni O, Leuzzi V, et al. Sleep polygraphy in Angelman syndrome. Clin Neurophysiol. 2004;115:938–45.

    Article  PubMed  Google Scholar 

  103. Miano S, Bruni O, Elia M, et al. Sleep breathing and periodic leg movement pattern in Angelman Syndrome: a polysomnographic study. Clin Neurophysiol. 2005;116:2685–92.

    PubMed  Google Scholar 

  104. Pelc K, Cheron G, Boyd SG, et al. Are there distinctive sleep problems in Angelman syndrome? Sleep Med. 2008;9:434–41.

    Article  PubMed  Google Scholar 

  105. Takaesu Y, Komada Y, Inoue Y. Melatonin profile and its relation to circadian rhythm sleep disorders in Angelman syndrome patients. Sleep Med. 2012;13:1164–70.

    Article  PubMed  Google Scholar 

  106. Zhdanova IV, Wurtman RJ, Wagstaff J. Effects of a low dose of melatonin on sleep in children with Angelman syndrome. J Pediatr Endocrinol Metab. 1999;12:57–67.

    Article  CAS  PubMed  Google Scholar 

  107. Braam W, Didden R, Smits MG, et al. Melatonin for chronic insomnia in Angelman syndrome: a randomized placebo-controlled trial. J Child Neurol. 2008;23:649–54.

    Article  PubMed  Google Scholar 

  108. Braam W, Smits MG, Didden R, et al. Exogenous melatonin for sleep problems in individuals with intellectual disability: a meta-analysis. Dev Med Child Neurol. 2009;51:340–9.

    Article  PubMed  Google Scholar 

  109. Schwichtenberg AJ, Malow BA. Melatonin treatment in children with developmental disabilities. Sleep Med Clin. 2015;10:181–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ingrassia A, Turk J. The use of clonidine for severe and intractable sleep problems in children with neurodevelopmental disorders–a case series. Eur Child Adolesc Psychiatry. 2005;14:34–40.

    Article  PubMed  Google Scholar 

  111. Allen KD, Kuhn BR, DeHaai KA, et al. Evaluation of a behavioral treatment package to reduce sleep problems in children with Angelman Syndrome. Res Dev Disabil. 2013;34:676–86.

    Article  PubMed  Google Scholar 

  112. Grigg-Damberger M, Ralls F. Treatment strategies for complex behavioral insomnia in children with neurodevelopmental disorders. Curr Opin Pulm Med. 2013;19:616–25.

    Article  CAS  PubMed  Google Scholar 

  113. Conant KD, Thibert RL, Thiele EA. Epilepsy and the sleep-wake patterns found in Angelman syndrome. Epilepsia. 2009;50:2497–500.

    Article  PubMed  Google Scholar 

  114. Jana NR. Understanding the pathogenesis of Angelman syndrome through animal models. Neural Plast. 2012;2012:710943.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Miura K, Kishino T, Li E, et al. Neurobehavioral and electroencephalographic abnormalities in Ube3a maternal-deficient mice. Neurobiol Dis. 2002;9:149–59.

    Article  CAS  PubMed  Google Scholar 

  116. Gatto CL, Broadie K. Drosophila modeling of heritable neurodevelopmental disorders. Curr Opin Neurobiol. 2011;21:834–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Huang HS, Burns AJ, Nonneman RJ, et al. Behavioral deficits in an Angelman syndrome model: effects of genetic background and age. Behav Brain Res. 2013;243:79–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Stormy J. Chamberlain, Ph.D. (University of Connecticut Health Center) for reviewing and revising the sections in this manuscript that describe imprinting in Angelman syndrome.

Conflict of interest

Wen-Hann Tan and Lynne Bird declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynne M. Bird MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, WH., Bird, L.M. Pharmacological therapies for Angelman syndrome. Wien Med Wochenschr 167, 205–218 (2017). https://doi.org/10.1007/s10354-015-0408-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10354-015-0408-z

Keywords

Schlüsselwörter

Navigation