Skip to main content
Log in

A record of global change: OAE 1a in Dariyan shallow-water platform carbonates, southern Tethys, Persian Gulf, Iran

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

Early Aptian LithocodiumBacinella floatstone facies from the central Persian Gulf were a response of the Dariyan platform to a global disturbance. Carbon- and strontium-isotope data combined with facies analysis for the Late Barremian–Early Aptian Dariyan Formation record the timing of OAE1a and provide evidence for a causal relationship between OAE1a and Lithocodium–Bacinella occurrence. Carbon isotope stratigraphy allows the correlation of OAE1a-related segments in the Dariyan carbonates with other Tethyan shallow-water platform and pelagic reference sections. Strontium-isotope stratigraphy provides a numerical age of 124.3 ± 0.1 to 124.8 ± 0.1 Ma for OAE1a, indicating earliest Aptian, in the central Persian Gulf. Correlation of carbon isotope stratigraphy and LithocodiumBacinella-bearing facies shows that the Dariyan L–B occurrence post-dated OAE1a. The delay in the development of the Dariyan L–B facies is ascribed to the physiographic setting and a set of regional parameters including nutrient levels, alkalinity, and tolerance of dominant carbonate producers to OAE1a. Lithocodium–Bacinella floatstone facies of the Dariyan Formation is characterized by patchy-cloudy to columnar and oncoidal morphotypes. These growth patterns reflect the environmental conditions of probable high sedimentation rate, low alkalinity, low trophic level, and high oxygenation. Lithocodium–Bacinella facies and associated foraminifera and algae suggest peritidal to lagoonal (inner ramp) conditions for the upper Dariyan interval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Al-Husseini MI (2000) Origin of the Arabian Plate structures: Amar collision and Najd rift. GeoArabia 5:527–542

    Google Scholar 

  • Arthur MA, Schlanger SO (1979) Cretaceous ‘oceanic anoxic events’ as causal factors in development of reef-reservoired giant oil fields. Am Assoc Pet Geol Bull 63:870–885

    Google Scholar 

  • Arthur MA, Jenkyns HC, Brumsack HJ, Schlanger SO (1990) Stratigraphy, geochemistry, and paleoceanography of organic carbon-rich Cretaceous sequences. In: Ginsburg RN, Beaudoin B (eds) Cretaceous resources, events and rhythms—background and plans for research NATO ASI series C. Mathematical and physical sciences, vol 304. Kluwer Academic Publishers, Dordrecht, pp 75–119

  • Barnes CR (1999) Paleoceanography and paleoclimatology: an Earth system perspective. Chem Geol 161:17–35

    Article  Google Scholar 

  • Barron EJ, Washington WM (1982) Cretaceous climate: a comparison of atmospheric simulations with the geologic record. Palaeogeogr Palaeoclimatol Palaeoecol 40:103–133

    Article  Google Scholar 

  • Bellanca A, Erba E, Neri R, Premoli Silva I, Sprovieri M, Tremolada F, Verga D (2002) Paleoceanographic significance of the Tethyan Livello Selli (early Aptian) from the Hybla Formation, northwestern Sicily: biostratigraphy and high-resolution chemostratigraphic records. Palaeogeogr Palaeoclimatol Palaeoecol 185:175–196

    Article  Google Scholar 

  • Boggs SJR, Krinsley D (2006) Application of cathodoluminescence imaging to the study of sedimentary rocks. Cambridge University Press, New York, p 165

    Book  Google Scholar 

  • Bottini C, Mutterlose J (2012) Integrated stratigraphy of Early Aptian black shales in the Boreal Realm: calcareous nannofossil and stable isotope evidence for global and regional processes. Newslett Stratigr. doi:10.1127/0078e0421/2012/0017

    Google Scholar 

  • Bover-Arnal T, Salas R, Martín-Closas C, Schlagintweit F, Moreno Bedmar JA (2011) Expression of an oceanic anoxic event in a neritic setting: lower Aptian coral rubble deposits from the western Maestrat Basin (Iberian Chain, Spain). Palaios 26:18–32

    Article  Google Scholar 

  • Bover-Arnal T, Pascual-Cebrian E, Skelton PW, Gili E, Salas R (2015) Patterns in the distribution of Aptian rudists and corals within a sequence-stratigraphic framework (Maestrat Basin, E Spain). Sedment Geol 321:86–104

    Article  Google Scholar 

  • Bralower TJ, Cobabe E, Clement B, Sliter WV, Osburne C, Longoria J (1999) The record of global change in mid-Cretaceous, Barremian-Albian sections from the Sierra Madre, northeastern Mexico. J Foraminifer Res 29:418–437

    Google Scholar 

  • Coccioni R, Luciani V, Marsili A (2006) Cretaceous oceanic anoxic events and radially elongated chambered planktonic foraminifera: paleoecological and paleoceanographic implications. Palaeogeogr Palaeoclimatol Palaeoecol 235:66–92

    Article  Google Scholar 

  • Di Lucia M, Trecalli A, Mutti M, Parente M (2012) Bio-chemostratigraphy of the Barremian-Aptian shallow-water carbonates of the southern Apennines (Italy): pinpointing the OAE1a in a Tethyan carbonate platform. Solid Earth 3:1–28

    Article  Google Scholar 

  • Dunham RJ (1962) Classification of carbonate rocks according to their depositional texture. In: Ham WE (ed) Classification of carbonate rocks, a symposium, vol 1. American Association of Petroleum Geologists, pp 108–121

  • Dupraz C, Strasser A (1999) Microbialites and micro-encrusters in shallow coral bioherms (Middle to Late Oxfordian, Swiss Jura Mountains). Facies 40:101–130

    Article  Google Scholar 

  • Elliott GF (1956) Further records of fossil calcareous algae from the Middle East. Micropaleontology 2:327–334

    Article  Google Scholar 

  • Embry AF, Klovan JE (1971) A late Devonian reef tract on northeastern banks island NWT. Bull Can Pet Geol 19:730–781

    Google Scholar 

  • Erba E (1994) Nannofossils and superplumes: the early Aptian ‘‘nannoconid crisis’’. Paleoceanography 9:483–501

    Article  Google Scholar 

  • Erba E, Bartolini A, Larson RL (2004) Valanginian Weissert oceanic anoxic event. Geology 32:149–152

    Article  Google Scholar 

  • Flügel E (2010) Microfacies of carbonate rocks. Analysis, interpretation and application. Springer, Berlin, p 976

    Google Scholar 

  • Föllmi KB (1995) 160 m.y. record of marine sedimentary phosphorus burial: coupling of climate and continental weathering under greenhouse and icehouse conditions. Geology 23:859–862

    Article  Google Scholar 

  • Föllmi KB, Weissert H, Bisping M, Funk H (1994) Phosphogenesis, carbon-isotope stratigraphy, and carbonate-platform evolution along the Lower Cretaceous northern Tethyan margin. Geol Soc Am Bull 106:729–746

    Article  Google Scholar 

  • Friedrich O, Norris RD, Erbacher J (2012) Evolution of middle to late Cretaceous oceans—A 55 m.y. record of Earth’s temperature and carbon cycle. Geology 40:107–110

    Article  Google Scholar 

  • Ghasemi-Nejad E, Head MJ, Naderi M (2009) Palynology and petroleum potential of the Kazhdumi Formation (Cretaceous: Albian–Cenomanian) in the South Pars field, northern Persian Gulf. Mar Pet Geol 26:805–816

    Article  Google Scholar 

  • Gili E, Masse J-P, Skelton PW (1995) Rudists as gregarious sediment-dwellers, not reef-builders, on Cretaceous carbonate platforms. Palaeogeogr Palaeoclimatol Palaeoecol 118:245–267

    Article  Google Scholar 

  • Gradstein FM, Ogg JG, Smith AG, Bleeker W, Lourens LJ (2004) A new geologic time scale, with special reference to Precambrian and Neogene. Episodes 27:83–100

    Google Scholar 

  • Granier B, Busnardo R (2012) New stratigraphic data on the Aptian of the Persian Gulf. Cretac Res 39:1–13

    Google Scholar 

  • Graziano R (1999) The Early Cretaceous drowning unconformities of the Apulia carbonate platform (Gargano Promontory, southern Italy): local fingerprints of global palaeoceanographic events. Terra Nova 11:245–250

    Article  Google Scholar 

  • Graziano R (2013) Sedimentology, biostratigraphy and event stratigraphy of the Early Aptian Oceanic Anoxic Event (OAE1A) in the Apulia Carbonate Platform Margin—Ionian basin system (Gargano Promontory, southern Italy). Cretac Res 39:78–111

    Article  Google Scholar 

  • He Z, Berkman TA (2003) Interactive charge modeling of the Qatar Arch petroleum systems. In: Duppenbecker S, Marzi R (ed), Multidimensional basin modeling. AAPG/Data pages Discovery Series pp 57–70

  • Heldt M, Bachmann M, Lehmann J (2008) Microfacies, biostratigraphy, and geochemistry of the hemipelagic Barremian-Aptian in north central Tunisia: influence of the OAE 1a on the southern Tethys margin. Palaeogeogr Palaeoclimatol Palaeoecol 261:246–260

    Article  Google Scholar 

  • Herrle JO, Pross J, Friedrich O, Kößler P, Hemleben C (2003) Forcing mechanisms for mid-Cretaceous black shale formation: evidence from the Upper Aptian and Lower Albian of the Vocontian Basin (SE France). Palaeogeogr Palaeoclimatol Palaeoecol 190:399–426

    Article  Google Scholar 

  • Hillgärtner H (1999) The evolution of the French Jura platform during the Late Berriasian to Early Valanginian: controlling factors and timing. GeoFocus 1:203

    Google Scholar 

  • Hillgärtner H, van Buchem FSP, Gaumet F, Razin P, Pittet B, Grötsch J, Droste H (2003) The Barremian/Aptian evolution of the eastern Arabian carbonate platform margin (northern Oman): sedimentology, sequence stratigraphy, and environmental change. J Sediment Res 73:756–773

    Article  Google Scholar 

  • Howarth RJ, McArthur JM (1997) Statistics for strontium isotope stratigraphy: a robust LOWESS fit to the marine Sr-isotope curve for 0 to 206 Ma, with look-up table for derivation of numeric age. J Geol 105:441–456

    Article  Google Scholar 

  • Huck S, Rameil N, Korbar T, Heimhofer U, Wieczorek TD, Immenhauser A (2010) Latitudinally different responses of Tethyan shoal-water carbonate systems to the early Aptian oceanic anoxic event (OAE1a). Sedimentology 57:1585–1614

    Article  Google Scholar 

  • Huck S, Heimhofer U, Rameil N, Bodin S, Immenhauser A (2011) Strontium and carbon-isotope chronostratigraphy of Barremian-Aptian shoal-water carbonates: Northern Tethyan platform drowning predates OAE 1a. Earth Planet Sci Lett 304:547–558

    Article  Google Scholar 

  • Hughes GW (2000) Bioecostratigraphy of the Shu’aiba Formation, Shaybah field Saudi Arabia. GeoArabia 5(4):545–578

    Google Scholar 

  • Husinec A, Velić I, Fuček L, Vlahović I, Matičec D, Oštrić N, Korbar T (2000) Mid Cretaceous orbitolinid (Foraminiferida) record from the islands of Cres and Losinj (Croatia) and its regional stratigraphic correlation. Cretac Res 21:155–171

    Article  Google Scholar 

  • Immenhauser A, Hillgärtner H, van Bentum E (2005) Microbial-foraminiferal episodes in the Early Aptian of the southern Tethyan margin, ecological significance and possible relation to oceanic anoxic event 1a. Sedimentology 52:77–99

    Article  Google Scholar 

  • Jahren AH, Arens NC, Sarmiento G, Guerrero J, Amundson R (2001) Terrestrial record of methane hydrate dissociation in the Early Cretaceous. Geology 29:159–162

    Article  Google Scholar 

  • Jenkyns HC (1995) Carbon-isotope stratigraphy and palaeoceanographic significance of the Lower Cretaceous shallow water carbonates of Resolution Guyot, Mid-Pacific mountains. Proc ODP Sci Result 143:99–104

    Google Scholar 

  • Jenkyns HC, Wilson PA (1999) Stratigraphy, paleoceanography, and evolution of Cretaceous Pacific guyots: relics from a greenhouse Earth. Am J Sci 299:341–392

    Article  Google Scholar 

  • Konyuhov AI, Maleki B (2006) The Persian Gulf Basin: Geological history, sedimentary formations, and petroleum potential. Lithol Miner Resour 41:344–361

    Article  Google Scholar 

  • Leinfelder RR, Nose M, Schmid DU, Werner W (1993) Microbial crusts of the Late Jurassic: composition, palaeoecological significance and importance in reef construction. Facies 29:195–230

    Article  Google Scholar 

  • Li YX, Bralower TJ, Montanez IP, Osleger DA, Arthur MA, Bice DM, Herbert TD, Erba E, Premoli Silva I (2008) Toward an orbital chronology for the early Aptian Oceanic Anoxic Event (OAE1a, w120 Ma). Earth Planet Sci Lett 271:88–100

    Article  Google Scholar 

  • Luciani V, Cobianchi M, Jenkyns HC (2001) Biotic and geochemical response to anoxic events: the Aptian pelagic succession of the Gargano Promontory (southern Italy). Geol Mag 138:277–298

    Article  Google Scholar 

  • Luciani V, Cobianchi M, Lupi C (2006) Regional record of a global oceanic anoxic event: OAE1a on the Apulia Platform margin, Gargano Promontory, southern Italy. Cretac Res 27:754–772

    Article  Google Scholar 

  • Marsaglia KM (2005) Sedimentology, petrology, and volcanology of the Lower Aptian Anoxic Event (OAE 1a), Shatsky Rise, north-central Pacific Ocean. Proc Ocean Drill Progr Sci Result 198:1–31

    Google Scholar 

  • McArthur JM, Howarth RJ, Bailey TR (2001) Strontium isotope stratigraphy: LOWESS Version 3: best fit to the marine Sr-Isotope Curve for 0–509 Ma and accompanying look-up table for deriving numerical age. J Geol 109:155–170

    Article  Google Scholar 

  • Méhay S, Keller CE, Bernasconi SM, Weissert H, Erba E, Bottini C, Hochuli PA (2009) A volcanic CO2 pulse triggered the Cretaceous Oceanic Anoxic Event 1a and a biocalcification crisis. Geology 37:819–822

    Article  Google Scholar 

  • Menegatti AP, Weissert H, Brown RS, Tyson RV, Farrimond P, Strasser A, Caron M (1998) High-resolution δ13C stratigraphy through the early Aptian “Livello Selli” of the Alpine Tethys. Paleoceanography 13:530–545

    Article  Google Scholar 

  • Moosavizadeh MA, Mahboubi A, Moussavi-Harami R, Kavoosi MA (2014) Early Aptian oceanic anoxic event (OAE 1a) in Northeastern Arabian Plate setting: an example from Dariyan Formation in Zagros fold–thrust belt, SE Iran. Arab J Geosci 7:4745–4756

    Article  Google Scholar 

  • Moullade M, Tronchetti G, Kuhnt W, Masse JP (1998) Les Foraminifères benthiques et planctoniques de la série du stratotype historique de l’Aptien inférieur dans la région de Cassis-La Bédoule (SE France). Géolo Méditerr 25:187–225

    Google Scholar 

  • Murris RJ (1980) Middle East: stratigraphic evolution and oil habitat. AAPG Bull 64:597–618

    Google Scholar 

  • Mutterlose J, Bockel B (1998) The Barremian–Aptian interval in NW Germany: a review. Cretac Res 19:539–568

    Article  Google Scholar 

  • Najarro M, Rosales I, Martín-Chivelet J (2011) Major palaeoenvironmental perturbation in an Early Aptian carbonate platform: prelude of the Oceanic Anoxic Event 1a? Sedment Geol 235:50–71

    Article  Google Scholar 

  • Neuweiler F, Reitner J (1992) Karbonatbänke mit Lithocodium aggregatum Elliott/Bacinella irregularis Radoičić—Paläobathymetrie, Paläoökologie und stratigraphisches Äquivalent zu thrombolithischen Mud Mounds. Berliner Geowiss Abh 3:273–293

    Google Scholar 

  • Norris RD, Wilson PA (1998) Low-latitude sea-surface temperatures for the mid-Cretaceous and the evolution of planktonic foraminifera. Geology 26:823–826

    Article  Google Scholar 

  • Parrish JT, Curtis T (1982) Atmospheric circulation, upwelling and organic-rich rocks in the Mesozoic and Cenozoic eras. Palaeogeogr Palaeoclimatol Palaeoecol 40:31–36

    Article  Google Scholar 

  • Radoičić R (1959) New Dasycladales and microbiota from the lowermost Valanginian of the Mirdita zone. Geol Anal Balk Poluos 66:27–53

    Google Scholar 

  • Rameil N, Immenhauser A, Warrlich GMD, Hillgärtner H, Droste HJ (2010) Morphological patterns of Aptian Lithocodium-Bacinella geobodies relation to environment and scale. Sedimentology 57:883–911

    Article  Google Scholar 

  • Raven MJ, van Buchem FSP, Larsen PH, Surlyk F, Steinhardt H, Cross D, Klem N, Emang M (2010) Late Aptian incised valleys and siliciclastic infill at the top of the Shu’aiba Formation (Block 5, offshore Qatar). In: van Buchem FSP, Al-Husseini MI, Maurer F, Droste HJ (eds) Barremian-Aptian stratigraphy and hydrocarbon habitat of the eastern Arabian Plate. GeoArabia Special Publication 4, 1st edn. Gulf PetroLink, Bahrain, pp 469–502

    Google Scholar 

  • Renard M, de Rafélis M, Emmanuel L, Moullade M, Masse J-P, Kuhnt W, Bergen JA Tronchetti G (2005) Early Aptian δ13C and manganese anomalies from the historical Cassis-La Bédoule stratotype sections (SE France): relationship with a methane hydrate dissociation event and stratigraphic implications. Carnets Géol/Notebooks Geol., Article 2005/04 (CG2005_A04) pp 18

  • Ruf M, Link E, Pross J, Aigner T (2005) Integrated sequence stratigraphy: facies, stable isotope and palynofacies analysis in a deeper epicontinental carbonate ramp (Late Jurassic, SW Germany). Sediment Geol 175:391–414

    Article  Google Scholar 

  • Schlagintweit F, Bover-Arnal T, Salas R (2010) New insights into Lithocodium aggregatum Elliott 1956 and Bacinella irregularis Radoičić 1959 (Late Jurassic-Lower Cretaceous): two ulvophycean green algae (?Order Ulotrichales) with a heteromorphic life cycle (epilithic/euendolithic). Facies 56:635–673

    Article  Google Scholar 

  • Schlanger SO, Jenkyns HC (1976) Cretaceous oceanic anoxic events: causes and consequences. Geol Mijnb 55:179–184

    Google Scholar 

  • Scholle PA, James NP, Read JF (1989) Carbonate sedimentology and petrology. Short course presented at the 28th international geological congress. Short course in geology, vol 4. American Geophysical Union

  • Schroeder R, van Buchem FSP, Cherchi A, Baghbani D, Vincent B, Immenhauser A, Granier B (2010) Revised orbitolinid biostratigraphic zonation for the Barremian–Aptian of the eastern Arabian Plate and implications for regional stratigraphic correlations. In: van Buchem FSP, Al-Husseini MI, Maurer F, Droste HJ (eds) Barremian-Aptian stratigraphy and hydrocarbon habitat of the eastern Arabian Plate. GeoArabia Special Publication 4, 1st edn. Gulf PetroLink, Bahrain, pp 49–96

    Google Scholar 

  • Sharland PR, Archer R, Casey DM, Davies RB, Hall SH, Heward AP, Horbury AD, Simmons MD (2001) Arabian Plate Sequence Stratigraphy. GeoArabia Special Publication 2. Gulf Petro Link, Bahrain, p 371

    Google Scholar 

  • Skelton PW (2003) The Cretaceous World. Cambridge University Press, Cambridge, p 360

    Google Scholar 

  • Takashima R, Nishi H, Huber BT, Leckie RM (2006) Greenhouse world and the Mesozoic ocean. Oceanography 19:64–74

    Article  Google Scholar 

  • van Buchem FSP, Baghbani D, Bulot LG, Caron M, Gaumet F, Hosseini A, Keyvani F, Schroeder R, Swennen R, Vedrenne V, Vincent B (2010) Barremian-Lower Albian sequence stratigraphy of southwest Iran (Gadvan, Dariyan and Kazhdumi formations) and its comparison with Oman, Qatar and the United Arab Emirates. In: van Buchem FSP, Al-Husseini MI, Maurer F, Droste HJ (eds) Barremian—Aptian stratigraphy and hydrocarbon habitat of the eastern Arabian Plate. GeoArabia Special Publication 4, 2nd edn. Gulf PetroLink, Bahrain, pp 503–548

    Google Scholar 

  • Vincent B, van Buchem FSP, Bulot LG, Immenhauser A, Caron M, Baghbani D, Huc AY (2010) Carbon-isotope stratigraphy, biostratigraphy and organic matter distribution in the Aptian-Lower Albian successions of southwest Iran (Dariyan and Kazhdumi formations). GeoArabia Spec Publ 4:139–197

    Google Scholar 

  • Vincent B, van Buchem FSP, Bulot LG, Jalali M, Swennen R, Hosseini AS, Baghbani D (2015) Depositional sequences, diagenesis and structural control of the Albian to Turonian carbonate platform systems in coastal Fars (SW Iran). Mar Pet Geol 63:46–67

    Article  Google Scholar 

  • Wagner T, Wallmann K, Herrle JO, Hofmann P, Stüsser I (2007) Consequences of moderate ~25,000 year lasting emission of light CO2 into the mid-Cretaceous ocean. Earth Planet Sci Lett 259:200–211

    Article  Google Scholar 

  • Wallmann K (2001) Controls on Cretaceous and Cenozoic evolution of seawater composition, atmospheric CO2 and climate. Geochim Cosmochim Acta 65:3005–3025

    Article  Google Scholar 

  • Weissert H, Erba E (2004) Volcanism, CO2 and palaeoclimate: a Late Jurassic–Early Cretaceous carbon and oxygen isotope record. J Geol Soc Lond 161:695–702

    Article  Google Scholar 

  • Weissert H, Lini A, Föllmi KB, Kuhn O (1998) Correlation of Early Cretaceous carbon isotope stratigraphy and platform drowning events: a possible link. Palaeogeogr Palaeoclimatol Palaeoecol 137:189–203

    Article  Google Scholar 

  • Wilson JL (1975) Carbonate facies in geologic history. Springer, New York, p 471

    Book  Google Scholar 

  • Wissler L, Funk H, Weissert H (2003) Response of Early Cretaceous carbonate platforms to changes in atmospheric carbon dioxide levels. Palaeogeogr Palaeoclimatol Palaeoecol 200:187–205

    Article  Google Scholar 

  • Zhicheng Z, Willems H, Binggao Z (1997) Marine Cretaceous-Paleogene biofacies and ichnofacies in southern Tibet, China, and their sedimentary significance. Mar Micropal 32:3–29

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Seyrafian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naderi-Khujin, M., Seyrafian, A., Vaziri-Moghaddam, H. et al. A record of global change: OAE 1a in Dariyan shallow-water platform carbonates, southern Tethys, Persian Gulf, Iran. Facies 62, 25 (2016). https://doi.org/10.1007/s10347-016-0476-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10347-016-0476-6

Keywords

Navigation