Skip to main content

Advertisement

Log in

Arctic rhodolith beds and their environmental controls (Spitsbergen, Norway)

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

Coralline algae (Corallinales, Rhodophyta) that form rhodoliths are important ecosystem engineers and carbonate producers in many polar coastal habitats. This study deals with rhodolith communities from Floskjeret (78°18′N), Krossfjorden (79°08′N), and Mosselbukta (79°53′N), off Spitsbergen Island, Svalbard Archipelago, Norway. Strong seasonal variations in temperature, salinity, light regime, sea-ice coverage, and turbidity characterize these localities. The coralline algal flora consists of Lithothamnion glaciale and Phymatolithon tenue. Well-developed rhodoliths were recorded between 27 and 47 m water depth, while coralline algal encrustations on lithoclastic cobbles were detected down to 77 m water depth. At all sites, ambient waters were saturated with respect to both aragonite and calcite, and the rhodolith beds were located predominately at dysphotic water depths. The rhodolith-associated macrobenthic fauna included grazing organisms such as chitons and echinoids. With decreasing water depth, the rhodolith pavements were regularly overgrown by non-calcareous Polysiphonia-like red algae. The corallines are thriving and are highly specialized in their adaptations to the physical environment as well as in their interaction with the associated benthic fauna, which is similar to other polar rhodolith communities. The marine environment of Spitsbergen is already affected by a climate-driven ecological regime shift and will lead to an increased borealization in the near future, with presently unpredictable consequences for coralline red algal communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Phymatolithon tenue has incorrectly been associated with the name Leptophytum laeve, a heterotypic synonym of Phymatolithon lenormandii. Complex nomenclatural issues are involved. Düwel and Wegeberg (1996) concluded from a study of relevant type specimens and other material that P. tenue was a distinct species, that the designated epitype of L. laeve Adey (1966a) was conspecific with the type of P. lenormandii, and that Adey’s (1966a) concept of L. laeve was in full accord with P. tenue (see also Woelkerling et al. 2002). The holotype of L. laeve, a Strömfelt specimen originally described as L. laeve (Strömfelt 1886), was considered by Düwel and Wegeberg (1996) to be demonstrably ambiguous and not critically identifiable for purposes of the precise application of a name to a taxon, necessitating designation of an epitype. The interpretation (Athanasiadis 2007, p. 485) that P. tenue is a heterotypic synonym of L. laeve stems from the arguments (Adey et al. 2001) that the designated epitype and the holotype of L. laeve differ taxonomically and that the designated epitype is in serious conflict with the protologue. Based on these arguments, Athanasiadis and Adey (2003) proposed the formal conservation of the name L. laeve Strömfelt with a conserved type. The nomenclatural Committee for Algae (Compère 2004), however, concluded that the arguments mentioned above were not substantiated, and the proposal was unanimously rejected. The Committee for Algae (Prud'homme van Reine 2011) also noted that subsequent arguments (Athanasiadis and Adey 2006, p. 72; Athanasiadis 2007, p. 485) that the epitypification of Düwel and Wegeberg was “non-effective” involve incorrect, unacceptable interpretations of the International Code of Nomenclature. The above statement is reproduced with the permission of Prof. M.D. Guiry from AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org, searched on April 4, 2013.

  2. Figures 2–4 in Konar et al. (2006) clearly show that the Alaskan thalli belong to Lithothamnion, which is characterized by flared epithallial cells and subepithelial initials as long as or longer than subtending cells, and not Phymatolithon, which is characterized by rounded epithallial cells and subepithelial cells as short or shorter than subtending cells. The Alaskan thalli also have multiporate tetrasporangial conceptacles with protruding roofs and no surrounding rim, which is characteristic of some species of Lithothamnion. Phymatolithon calcareum, by contrast, has multiporate conceptacles in which the roofs are surrounded by a rim or are sunken below the surrounding thallus surface. Further comparisons and synoptic descriptions of Lithothamnion and Phymatolithon are found in Woelkerling (1988) and Harvey et al. (2003); Woelkerling and Irvine (1986) provide a detailed account of P. calcareum.

References

  • Adey WH (1964) The genus Phymatolithon in the Gulf of Maine. Hydrobiologia 24:377–420

    Article  Google Scholar 

  • Adey WH (1966a) The genera Lithothamnium, Leptophytum (nov. gen.) and Phymatolithon in the Gulf of Maine. Hydrobiologia 28:321–370

    Article  Google Scholar 

  • Adey WH (1966b) Distribution of saxicolous crustose corallines in the northwestern North Atlantic. J Phycol 2:49–54

    Article  Google Scholar 

  • Adey WH (1970a) Some relationships between crustose corallines and their substrate. Sci Isl 2:21–25

    Google Scholar 

  • Adey WH (1970b) The effects of light and temperature on growth rates in boreal-subarctic crustose corallines. J Phycol 6:269–276

    Google Scholar 

  • Adey WH, Adey P (1973) Studies on the biosystematics and ecology of the epilithic crustose Corallinaceae of the British Isles. Br Phycol J 8:1–60

    Article  Google Scholar 

  • Adey WH, Macintyre IG (1973) Crustose coralline algae: a re-evaluation in the geological sciences. Geol Soc Am Bull 84:883–904

    Article  Google Scholar 

  • Adey WH, McKibbin DL (1970) Studies on the maerl species Phymatolithon calcareum (Pallas) nov. comb. and Lithothamnion corallioides Crouan in the Ria de Vigo. Bot Mar 13:100–106

    Article  Google Scholar 

  • Adey WH, Athanasiadis A, Lebednik PA (2001) Re-instatement of Leptophytum and its type Leptophytum laeve: taxonomy and biogeography of the genera Leptophytum and Phymatolithon (Corallinales, Rhodophyta). Eur J Phycol 36:191–203

    Google Scholar 

  • Adey WH, Chamberlain YM, Irvine LM (2005) An SEM-based analysis of the morphology, anatomy, and reproduction of Lithothamnion tophiforme (Esper) Unger (Corallinales, Rhodophyta), with a comparative study of associated North Atlantic arctic/subarctic Melobesioideae. J Phycol 41:1010–1024

    Article  Google Scholar 

  • Athanasiadis A (2007) The genus Leptophytum (Melobesioideae, Corallinales, Rhodophyta) in NW Spitsbergen. Nord J Bot 24:469–499

    Article  Google Scholar 

  • Athanasiadis A, Adey WH (2003) Proposal to conserve the name Lithophyllum laeve Strömfelt against L. laeve Kützing (Corallinales, Rhodophyta) with a conserved type. Taxon 52:342–350

    Article  Google Scholar 

  • Athanasiadis A, Adey WH (2006) The genus Leptophytum (Melobesioideae, Corallinales, Rhodophyta) on the Pacific coast of North America. Phycologia 45:71–115

    Article  Google Scholar 

  • Bosence DWJ (1976) Ecological studies on two carbonate sediment producing coralline algae from western Ireland. Palaeontology 19:365–395

    Google Scholar 

  • Bosence DWJ (1983a) Description and classification of rhodoliths (rhodoids, rhodolites). In: Peryt TM (ed) Coated grains. Springer, Berlin Heidelberg New York, pp 217–224

    Chapter  Google Scholar 

  • Bosence DWJ (1983b) The occurrence and ecology of recent rhodoliths—a review. In: Peryt TM (ed) Coated grains. Springer, Berlin Heidelberg New York, pp 225–242

    Chapter  Google Scholar 

  • Bosence DWJ (1991) Coralline algae: mineralization, taxonomy, and palaeoecology. In: Riding R (ed) Calcareous algae and stromatolites. Springer, Berlin Heidelberg New York, pp 98–113

    Chapter  Google Scholar 

  • Clarke A, Harris CM (2003) Polar marine ecosystems: major threats and future change. Environ Conserv 30:1–25

    Article  Google Scholar 

  • Compère P (2004) Report of the Committee for Algae: 8. Taxon 53:1065–1067

    Article  Google Scholar 

  • Coutinho R, Seelinger U (1984) The horizontal distribution of the benthic algal flora in the Patos Lagoon estuary, Brazil, in relation to salinity, substratum and wave exposure. J Exp Mar Biol Ecol 80:247–257

    Article  Google Scholar 

  • Dickson AG, Afghan JD, Anderson GC (2003) Reference materials for oceanic CO2 analysis: a method for the certification of total alkalinity. Mar Chem 80:185–197

    Article  Google Scholar 

  • Düwel L, Wegeberg S (1996) The typification and status of Leptophytum (Corallinaceae, Rhodophyta). Phycologia 35:470–483

    Article  Google Scholar 

  • Fleischer D, Schaber M, Piepenburg D (2007) Atlantic snake pipefish (Entelurus aequoreus) extends its northward distribution range to Svalbard. Polar Biol 30:1359–1362

    Article  Google Scholar 

  • Fortunato H, Schäfer P (2009) Coralline algae as carbonate producers and habitat providers on the Eastern Pacific coast of Panamá: preliminary assessment. N Jb Geol Paläont Abh 253:145–161

    Article  Google Scholar 

  • Forwick M, Vorren TO (2009) Late Weichselian and Holocene sedimentary environments and ice rafting in Isfjorden, Spitsbergen. Palaeogeogr Palaeoclimatol Palaeoecol 280:258–274

    Article  Google Scholar 

  • Foster MS (2001) Rhodoliths: between rocks and soft places. J Phycol 37:659–667

    Article  Google Scholar 

  • Freiwald A (1993) Subarktische Kalkalgenriffe im Spiegel hochfrequenter Meeresspiegelschwankungen und interner biologischer Steuerungsprozesse. PhD Thesis, University of Kiel, Kiel

  • Freiwald A (1995) Sedimentological and biological aspects in the formation of branched rhodoliths in northern Norway. Beitr Paläont 20:7–19

    Google Scholar 

  • Freiwald A, Henrich R (1994) Reefal coralline algal build-ups within the Arctic Circle: morphology and sedimentary dynamics under extreme environmental seasonality. Sedimentology 41:963–984

    Article  Google Scholar 

  • Graham DJ, Midgley NG (2000) Graphical representation of particle shape using triangular diagrams: an Excel spreadsheet method. Earth Surf Proc Land 25:1473–1477

    Article  Google Scholar 

  • Gran G (1952) Determination of the equivalence point in potentiometric titrations of seawater with hydrochloric acid. Oceanol Acta 5:209–218

    Google Scholar 

  • Hall-Spencer JM (1994) Biological studies on non-geniculate Corallinaceae. PhD Thesis, University of London, London

  • Hall-Spencer JM, Atkinson RJA (1999) Upogebia deltaura (Crustacea: Thalassinidea) in Clyde Sea maerl beds, Scotland. J Mar Biol Assoc UK 79:871–880

    Article  Google Scholar 

  • Hall-Spencer J, Rodolfo-Metalpa R, Martin S, Ransome E, Fine M, Turner SM, Rowley S, Tedesco D, Buia M-C (2008) Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454:96–99

    Article  Google Scholar 

  • Harland WB (1997) The geology of Svalbard. The Geological Society, London 521 p

    Google Scholar 

  • Harvey A, Woelkerling WJ, Millar AJK (2003) An account of the Hapalidiaceae (Corallinales, Rhodophyta) in south-eastern Australia. Aust Syst Bot 16:647–698

    Article  Google Scholar 

  • Henriques MC, Villas-Boas A, Riosmena-Rodriguez R, Figueiredo MAO (2012) New records of rhodolith-forming species (Corallinales, Rhodophyta) from deep water Espírito State, Brazil. Helgol Mar Res 66:219–231

    Article  Google Scholar 

  • IPCC (2007) The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Irvine LM, Chamberlain YM (1994) Rhodophyta Part 2B Corallinales, Hildenbrandiales. The Natural History Museum, London

    Google Scholar 

  • Jackson A (2003) Lithothamnion glaciale. Maerl. Marine Life Information Network: Biology and Sensitivity Key Information Sub-programme (online). Marine Biological Association of the United Kingdom, Plymouth. http://www.marlin.ac.uk/reproduction.php?speciesID=3711 (Accessed 15 May 2011)

  • Johnson CR, Mann KH (1986a) The crustose coralline alga Phymatolithon Foslie inhibits the overgrowth of seaweeds without relying on herbivores. J Exp Mar Biol Ecol 96:127–146

    Article  Google Scholar 

  • Johnson CR, Mann KH (1986b) The importance of plant defence abilities to the structure of subtidal seaweed communities: the kelp Laminaria longicruris de la Pylaie survives grazing by the snail Lacuna vincta (Montagu) at high population densities. J Exp Mar Biol 97:231–267

    Article  Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386

    Article  Google Scholar 

  • Kain JM, Norton TA (1990) Marine ecology. In: Cole KM, Sheath RG (eds) Biology of the red algae. Cambridge University Press, New York, pp 377–422

    Google Scholar 

  • Kamenos NA, Moore PG, Hall-Spencer JM (2004a) Attachment of the juvenile queen scallop (Aequipecten opercularis (L.)) to maerl in mesocosm conditions; juvenile habitat selection. J Exp Mar Biol Ecol 306:139–155

    Article  Google Scholar 

  • Kamenos NA, Moore PG, Hall-Spencer JM (2004b) Small-scale distribution of juvenile gadoids in shallow inshore waters; what role does maerl play? ICES J Mar Sci 61:422–429

    Article  Google Scholar 

  • Kamenos NA, Cusack M, Huthwelker T, Lagarde P, Scheibling RE (2009) Mg-lattice associations in red coralline algae. Geochim Cosmochim Acta 73:1901–1907

    Article  Google Scholar 

  • King RJ, Schramm W (1982) Calcification in the maerl coralline alga Phymatolithon calcareum, effects of salinity and temperature. Mar Biol 70:197–204

    Article  Google Scholar 

  • Kjellman FR (1875a) Förberedande anmárkningar om algvegetationen i Mosselbay enligt iakttagelser under vinterdragningar anställda af Svenska palarexpeditionen 1872–1873. Öfvers Kong Vetensk-Akad Förhandl 1875:59–68

    Google Scholar 

  • Kjellman FR (1875b) Om Spetsbergens marina, klorofullförande thallophyter I. Bih Till Kung Svenska Vetensk Handl 3:1–34

    Google Scholar 

  • Kjellman FR (1883) Norra Ishafvets Algflora. Vega-expeditionens Vetensk Iakt 3:1–431 [Note: subsequently published in English (Kjellman 1885)]

  • Kjellman FR (1885) The algae of the Arctic Sea. Kong Svenska Vetensk Akad Handl 20:1–350 [Note: dated 1885 but first published in 1883. The original version (Kjellman 1883) is written in Swedish]

  • Konar B, Iken K (2005) Competitive dominance among sessile marine organisms in a high Arctic boulder community. Polar Biol 29:61–64

    Article  Google Scholar 

  • Konar B, Riosmena-Rodriguez R, Iken K (2006) Rhodolith bed: a newly discovered habitat in the North Pacific Ocean. Bot Mar 49:355–359

    Article  Google Scholar 

  • Lherminier P, Meincke J, Freiwald A, Schauer J (2009) Circulation and ecosystems in the Subpolar and Polar North Atlantic, Cruise No. 2, May 23–September 16, 2006. MARIA S. MERIAN-Berichte 9(1), Universität Hamburg

  • Littler MM, Kauker BJ (1984) Heterotrichy and survival strategies in the red alga Corallina officinalis. Bot Mar 27:37–44

    Article  Google Scholar 

  • Littler MM, Littler DS, Taylor PR (1983) Evolutionary strategies in a tropical barrier reef system: functional-form groups of marine macroalgae. J Phycol 19:229–237

    Article  Google Scholar 

  • Lüder UH, Wiencke C, Knoetzel J (2002) Acclimation of photosynthesis and pigments during and after six months of darkness in Palmaria decipiens (Rhodophyta): a study to simulate Antarctic winter sea ice cover. J Phycol 38:904–913

    Article  Google Scholar 

  • Lüning K (1990) Seaweeds. Their environment, biogeography and ecophysiology. Wiley Interscience, New York

    Google Scholar 

  • Martin S, Rodolfo-Metalpa R, Ransome E, Rowley S, Buia MC, Gattuso JP, Hall-Spencer J (2008) Effects of naturally acidified seawater on seagrass calcareous epibionts. Biol Lett 4:689–692

    Article  Google Scholar 

  • Milliken B, Steneck RS (1981) The branching morphology of crustose corallines as a structural defence against herbivores and a refuge for filamentous algae. In: Abstracts of papers and posters to be presented at the 20th Northeast Algal Symposium April 11–12, 1981. Marine Biological Laboratory, Woods Hole, p 16

  • Nelson WA (2009) Calcified macroalgae—critical to coastal ecosystems and vulnerable to change: a review. Mar Freshw Res 60:787–801

    Article  Google Scholar 

  • Nilsen F, Cottier F, Skogseth R, Mattsson S (2008) Fjord-shelf exchanges controlled by ice and brine production: the interannual variation of Atlantic Waters in Isfjorden, Svalbard. Cont Shelf Res 28:1838–1853

    Article  Google Scholar 

  • Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RM, Gnanadesikan A, Gruber N, Ishida A, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner GK, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig MF, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686

    Article  Google Scholar 

  • Orvik KA, Niiler P (2002) Major pathways of Atlantic water in the northern North Atlantic and Nordic Seas towards Arctic. Geophys Res Lett 29:1896–1899

    Article  Google Scholar 

  • Ottesen D, Dowdeswell JA, Landvik JY, Mienert J (2007) Dynamics of the Late Weichselian ice sheet on Svalbard inferred from high-resolution sea-floor morphology. Boreas 36:286–306

    Article  Google Scholar 

  • Prud’homme van Reine WF (2011) Report of the Nomenclature Committee for Algae: 10. Taxon 60:585–587

    Google Scholar 

  • Roberts RD, Kühl M, Glud RN, Rysgaard S (2002) Primary production of crustose coralline algae in a high Arctic fjord. J Phycol 38:273–283

    Article  Google Scholar 

  • Rosenvinge LK (1893) Grønlands Havalger. Med Grønland 3:765–981

    Google Scholar 

  • Sapota G, Wojtasik B, Burska D, Nowiński K (2009) Persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons (PAHs) in surface sediments from selected fjords, tidal plains and lakes of the north Spitsbergen. Polar Res 30:59–76

    Google Scholar 

  • Schlitzer R (2012) Ocean data view. http://odv.awi.de

  • Sexton DJ, Dowdeswell JA, Solheim A, Elverhøi A (1992) Seismic architecture and sedimentation in north-west Spitsbergen fjords. Mar Geol 103:53–68

    Article  Google Scholar 

  • Sneed ED, Folk RL (1958) Pebbles in the lower Colorado River, Texas. A study in particle morphogenesis. J Geol 66:114–150

    Article  Google Scholar 

  • Spreen G, Kaleschke L, Heygster G (2008) AMSR-E ASI 6.25 km Sea ice concentration data, V5.4. Institute of Oceanography, University of Hamburg, Germany, digital media. ftp://ftp-projects.zmaw.de/seaice/ (Accessed 21 April 2011)

  • Steinacher M, Joos F, Frölicher TL, Plattner G-K, Doney SC (2009) Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model. Biogeosciences 6:515–533

    Article  Google Scholar 

  • Steller DL, Riosmena-Rodriguez R, Foster MS, Roberts CA (2003) Rhodolith bed diversity in the Gulf of California: the importance of rhodolith structure and consequences of disturbance. Aquat Conserv 13:5–20

    Article  Google Scholar 

  • Steneck RS (1983) Escalating herbivory and resulting adaptive trends in calcareous algal crusts. Paleobiology 9:44–61

    Google Scholar 

  • Steneck RS (1985) Adaptations of crustose coralline algae to herbivory: Patterns in space and time. In: Toomey DF, Nitecki MH (eds) Paleoalgology. Springer, Berlin Heidelberg New York, pp 352–366

    Chapter  Google Scholar 

  • Steneck RS (1986) The ecology of coralline algal crusts: convergent patterns and adaptive strategies. Annu Rev Ecol Syst 17:273–303

    Article  Google Scholar 

  • Steneck RS (1990) Herbivory and the evolution of nongeniculate coralline algae (Rhodophyta, Corallinales) in the North Atlantic and North Pacific. In: Garbary DJ, South GR (eds) Evolutionary biogeography of the marine algae of the North Atlantic. Springer, Berlin Heidelberg New York, pp 107–129

    Chapter  Google Scholar 

  • Stoll MHC, Bakker K, Nobbe GH, Haese RR (2001) Continuous-flow analysis of dissolved inorganic carbon content in seawater. Anal Chem 73:4111–4116

    Article  Google Scholar 

  • Strömfelt HFG (1886) Om Algevegetationen vid Islands Kuster. D.F. Bonniers, Göteborg

  • Svendsen H, Beszczynska-Møller A, Hagen JO, Lefauconnier B, Tverberg V, Gerland S, Ørbæk JB, Bischof K, Papucci C, Zajaczkowski M, Azzolini R, Bruland O, Wiencke C, Winther JG, Dallmann W (2002) The physical environment of Kongsfjorden-Krossfjorden, an Arctic fjord system in Svalbard. Polar Res 21:133–166

    Article  Google Scholar 

  • Teichert S, Woelkerling W, Rüggeberg A, Wisshak M, Piepenburg D, Meyerhöfer M, Form A, Büdenbender J, Freiwald A (2012) Rhodolith beds (Corallinales, Rhodophyta) and their physical and biological environment at 80°31′N in Nordkappbukta (Nordaustlandet, Svalbard Archipelago). Phycologia 51:371–390

    Article  Google Scholar 

  • Watson DC, Norton TA (1985) The physical characteristics of seaweed thalli as deterrents to littorine grazers. Bot Mar 28:383–387

    Article  Google Scholar 

  • Węslawski JM, Koszteyn J, Ząjaczkowski M, Wiktor J, Kwaśniewski S (1995) Fresh water in Svalbard fjord ecosystems. In: Skjoldal HR, Hopkins C, Erikstad KE, Leinaa HP (eds) Ecology of fjords and coastal waters. Elsevier Science, Amsterdam, pp 229–241

    Google Scholar 

  • Wilson S, Blake C, Berges JA, Maggs CA (2004) Environmental tolerances of free-living coralline algae (maerl): implications for European marine conservation. Biol Conserv 120:279–289

    Article  Google Scholar 

  • Woelkerling WJ (1988) The Coralline red algae: An analysis of the genera and subfamilies of nongeniculate Corallinaceae. British Museum (Natural History)/Oxford University Press, London/Oxford

    Google Scholar 

  • Woelkerling WJ, Irvine LM (1986) The neotypification and status of Phymatolithon (Corallinaceae, Rhodophyta). Br Phycol J 21:55–80

    Article  Google Scholar 

  • Woelkerling WJ, Furnari G, Cormaci M (2002) Leptophytum (Corallinaceae, Rhodophyta): to be or not to be? That is the question, but what is the answer? Aust Syst Bot 15:597–618

    Article  Google Scholar 

  • Woelkerling WJ, Gustavsen G, Myklebost HE, Prestø T, Såstad S (2005) The Coralline Red Algal Herbarium of Mikael Foslie: revised Catalogue with Analyses. Gunneria 77:1–625

    Google Scholar 

  • Womersley HBS (1979) Southern Australian species of Polysiphonia Greville (Rhodophyta). Aust J Bot 27:459–528

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the Deutsche Forschungsgemeinschaft (FR 1134/18). Mean water temperatures and salinities are based on data from LEVITUS 94, available from: http://iridl.ldeo.columbia.edu/SOURCES/.LEVITUS94/. Annual sea ice formation and breakup data are based on AMSR-E Sea Ice Maps, available from: http://www.iup.uni-bremen.de:8084/amsr/. Polar night duration data are based on USNO Sun Rise Tables, available from: http://aa.usno.navy.mil/data/docs/RS_OneYear.php. The authors would like to thank the captain and the crew of Maria S. Merian, the JAGO operating team (GEOMAR), Dirk Fleischer (Kiel) for helping with benthos sampling, and Ines Pyko for her work as research assistant. We thank both anonymous reviewers for providing helpful comments that resulted in an improved manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Teichert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teichert, S., Woelkerling, W., Rüggeberg, A. et al. Arctic rhodolith beds and their environmental controls (Spitsbergen, Norway). Facies 60, 15–37 (2014). https://doi.org/10.1007/s10347-013-0372-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10347-013-0372-2

Keywords

Navigation