Skip to main content

Advertisement

Log in

A facies model for an Early Aptian carbonate platform (Zamaia, Spain)

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

The Cretaceous (Early Aptian, uppermost Bedoulian, Dufrenoyia furcata Zone) Zamaia Formation is a carbonate unit, up to 224 m thick and 1.5 km wide, which formed on a regional coastal sea bordering the continental Iberian craton. A high-resolution, facies-based, stratigraphic framework is presented using facies mapping and vertical-log characterization. The depositional succession consists of a shallow estuarine facies of the Ereza Fm overlain by shallow-water rudist limestones (Zamaia Fm) building relief over positive tectonic blocks and separated by an intraplatform depression. The margins of these shallow-water rudist buildups record low-angle transitional slopes toward the adjacent surrounding basins. Syn-depositional faulting is responsible for differential subsidence and creation of highs and lows, and local emplacement of limestone olistoliths and slope breccias. Two main carbonate phases are separated by an intervening siliciclastic-carbonate estuarine episode. The platform carbonates are composed of repetitive swallowing-upward cycles, commonly ending with a paleokarstic surface. Depositional systems tracts within sequences are recognized on the basis of facies patterns and are interpreted in terms of variations of relative sea level. Both Zamaia carbonate platform phases were terminated by a relative sea-level fall and karstification, immediately followed by a relative sea-level rise. This study refines our understanding of the paleogeography and sea-level history in the Early Cretaceous Aptian of the Basque-Cantabrian Basin. The detailed information on biostratigraphy and lithostratigraphy provides a foundation for regional to global correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Aguado R, Company M, Sandoval J, Tavera JM (1997) Biostratigraphic events at the Barremian/Aptian boundary in the Betic Cordillera, southern Spain. Cret Res 18:309–329

    Article  Google Scholar 

  • Al-Ghamdi N, Read FJ (2010) Facies-based sequence-stratigraphic framework of the lower Cretaceous rudist platform, Shu’aiba Formation, Saudi Arabia. GeoArabia Spec Publ 4:367–410

    Google Scholar 

  • Alley NF, Frakes LA (2003) First known Cretaceous glaciation: Livingston Tillite Member of the Cadnaowie Formation, south Australia. Aust J Earth Sci 50:139–144

    Article  Google Scholar 

  • Anderson EJ, Goodwin PW (1980) Application of the PAC hypothesis to limestones of the Helderberg Group. SEPM, Eastern Section Guidebook, pp 32

  • Ando A, Kaiho K, Kawahata H, Kakegawa T (2008) Timing and magnitude of Early Aptian extreme warming: unravelling primary δ18O variation in indurated pelagic carbonates at Deep Sea Drilling Project Site 463, central Pacific Ocean. Palaeogeogr Palaeoclimatol Palaeoecol 260:463–476

    Article  Google Scholar 

  • Arnaud-Vanneau A, Bernaus JM, Raddaddi MC, Arnaud H (2008) Registration of the first global Lower Aptian transgression (Orbitolina marl level) in the paleotropics: role of tectonics, climate and eustasy. In: 33rd international geological congress, Oslo, 6–14 August 2008. GEP-10 Global controls on sequence stratigraphy

  • Arthur MA, Brumsack HJ, Jenkyns HC, Schlanger SO (1990) Stratigraphy, geochemistry and paleoceanography of organic carbon-rich Cretaceous sequences. In: Ginsburg RN, Beaudoin B (eds) Cretaceous resources, events and rhythms. Kluwer, Dordrecht, pp 75–119

    Google Scholar 

  • Barragán R (2001) Sedimentological and paleoecological aspects of the Aptian transgressive event of Sierra del Rosario, Durango, northeast Mexico. J S Am Earth Sci 14:189–202

    Article  Google Scholar 

  • Beerling DJ, Lomas MR, Gröcke DR (2002) On the nature of methane gas hydrate dissociation during the Toarcian and Aptian Oceanic anoxic events. Am J Sci 302:28–49

    Article  Google Scholar 

  • Berner RA (1991) A model for atmospheric CO2 over Phanerozoic time. Am J Sci 291:339–376

    Article  Google Scholar 

  • Bischoff G, Mutterlose J (1998) Calcareous nannofossils of the Barremian/Aptian boundary interval in NW Europe: biostratigraphic and palaeoecologic implications of a high-resolution study. Cret Res 19:635–661

    Article  Google Scholar 

  • Blakey R (2004) Global plate tectonics and paleogeography. http://jan.ucc.nau.edu/~rcb7/120moll.jpg

  • Bosence D, Procter E, Aurell M, Belkahla A, Boudagher-Fadel M, Casaglia F, Cirilli S, Mehdie M, Nieto L, Rey J, Scherreiks R, Soussi M, Waltham D (2009) A dominant tectonic signal in high-frequency, peritidal carbonate cycles? A regional analysis of Liassic platforms from western Tethys. J Sediment Res 79:389–415

    Article  Google Scholar 

  • Bover-Arnal T, Moreno-Bedmar JA, Salas R, Skelton PW, Bitzer K, Gili E (2010) Sedimentary evolution of an Aptian syn-rift carbonate system (Maestrat Basin, E Spain): effects of accommodation and environmental change. Geol Acta 8:249–280

    Google Scholar 

  • Braga JC, Martín JM, Alcala B (1990) Coral reefs in coarse-terrigenous sedimentary environments (Upper Tortonian, Granada Basin, southern Spain). Sediment Geol 66:135–150

    Article  Google Scholar 

  • Burchette TP (1988) Tectonic control on carbonate platform facies distribution and sequence development: Miocene, Gulf of Suez. Sediment Geol 59:179–204

    Article  Google Scholar 

  • Burla S, Heimhofer U, Hochuli PA, Weissert H, Skelton PW (2008) Changes in sedimentary patterns of coastal and deep-sea successions from the North Atlantic (Portugal) linked to Early Cretaceous environmental change. Palaeogeogr Palaeoclimatol Palaeoecol 257:38–57

    Article  Google Scholar 

  • Cámara P (1997) The Basque-Cantabrian Basin: Mesozoic tectono-sedimentary evolution. Mem Soc Géol Fr 171:187–192

    Google Scholar 

  • Caron M (1985) Cretaceous planktic Foraminifera. In: Bolli HM, Saunders JB, Perch-Nielsen K (eds) Plankton stratigraphy. Cambridge Earth Science Series. Cambridge University Press, Cambridge, pp 17–86

    Google Scholar 

  • Catuneanu O, Abreu V, Bhattacharya JP, Blum MD, Darymple RW, Eriksson PG, Fielding CR, Fisher WL, Galloway WE, Gibling MR, Giles KA, Holbrook JM, Jordan R, Kendall CGStC, Macurda B, Martinsen OJ, Miall AD, Neal JE, Nummedal D, Pomar L, Posamentier HW, Pratt BR, Sarg JF, Shanley KW, Steel RJ, Strasser RJ, Tucker ME, Winker C (2009) Towards the standardization of sequence stratigraphy. Earth Sci Rev 92:1–33

    Article  Google Scholar 

  • Catuneanu O, Galloway WE, Kendall CGStC, Miall AD, Posamentier HW, Strasser A, Tucker ME (2011) Sequence stratigraphy: methodology and nomenclature. Newsl Stratigr 44(3):173–245

    Article  Google Scholar 

  • Chen D, Tucker ME, Jiang M, Zhu J (2001) Long-distance correlation between tectonic-controlled, isolated carbonate platforms by cyclostratigraphy and sequence stratigraphy in the Devonian of South China. Sedimentology 48:57–78

    Article  Google Scholar 

  • Coccioni R, Erba E, Premoli Silva I (1992) Barremian-Aptian calcareous plankton biostratigraphy from the Gorgo a Cerbara section (Marche, Central Italy) and implications for plankton evolution. Cret Res 13:517–537

    Article  Google Scholar 

  • De Lurio JL, Frakes LA (1999) Glendonites as a paleoenvironmental tool: implications for Early Cretaceous high-latitude climates in Australia. Geochim Cosmochim Acta 63:1039–1048

    Article  Google Scholar 

  • Dercourt J, Ricou LE, Vrielynck B (eds) (1993) Atlas Tethys, paleoenvironmental maps. Gauthier-Villars, Paris

    Google Scholar 

  • Dercourt J, Gaetani M, Vrielynck B, Barrier E, Biju-Duval B, Brunet MF, Cadet JP, Crasquin S, Sandulescu M (eds) (2000) Atlas PeriTethys, palaeogeographical maps. CCGM/CGMW, Paris

    Google Scholar 

  • Dorobek SL (1995), Tectonic controls on carbonate platform evolution; selected examples from the South China Sea region. In: Ross GM (ed) Lithoprobe; Alberta basement transects. Lithoprobe Report, vol 47, pp 165–180

  • Dorobek SL (2008) Tectonic and depositional controls on syn-rift carbonate platform sedimentation. In: Lukasik J, Simo JA (eds) Controls on carbonate platform and reef development. SEPM Special Publications, pp 57–81

  • Doyle LJ, Roberts HH (1988) Carbonate-clastic transitions (developments in sedimentology). Elsevier, Amsterdam, p 304

    Google Scholar 

  • Dumitrescu M, Brassell SC, Schouten S, Hopmans EC, Sinninghe Damsté JS (2006) Instability in tropical Pacific sea-surface temperatures during the Early Aptian. Geology 34:833–836

    Article  Google Scholar 

  • Erba E (1994) Nannofossils and superplumes: the Early Aptian “nannoconid crisis”. Paleoceanography 9:483–501

    Article  Google Scholar 

  • Erba E, Bottini C, Weissert HJ, Keller CE (2010) Calcareous nannoplankton response to surface-water acidification around Oceanic Anoxic Event 1a. Science 329:428–432

    Article  Google Scholar 

  • Erbacher J, Thurow J, Littke R (1996) Evolution patterns of radiolaria and organic matter variations: a new approach to identify sea-level changes in mid-Cretaceous pelagic environments. Geology 24:499–502

    Article  Google Scholar 

  • EVE (1995) Minihidráulica en el País Vasco. Ente Vasco de Energía (EVE), Bilbao, pp 71

  • EVE, Garrote Ruiz A, García Portero J, Muñoz Jiménez L, Arriola Garrido A, Eguiguren Altuna E, García Pascual I, Garrote Ruiz R (1990) Mapa geológico del País Vasco a escala 1:25.000, Hoja 61-IV (Basauri). Ente Vasco de la Energía (EVE), Bilbao

  • Fernández-Mendiola PA, García-Mondéjar J, Millán MI, Owen HG (2010) Three carbonate platform episodes in the Early Aptian of N. Spain. In: 18th international sedimentological congress. Sedimentology at the Foot of the Andes, oral communication

  • Flügel E (2010) Microfacies of carbonate rocks (analysis, interpretation and application). Springer, Berlin, p 924

    Book  Google Scholar 

  • Föllmi KB (2012) Early Cretaceous life, climate and anoxia. Cret Res 35:230–257

    Article  Google Scholar 

  • Föllmi KB, Weissert H, Bisping M, Funk H (1994) Phosphogenesis, carbon-isotope stratigraphy, and carbonate-platform evolution along the Lower Cretaceous northern Tethyan margin. Geol Soc Am Bull 106:729–746

    Article  Google Scholar 

  • Föllmi K, Bodin S, Godet A, Linder P, van de Schootbrugge B (2007) Unlocking paleo-environmental information from Early Cretaceous shelf sediments in the Helvetic Alps: stratigraphy is the key. Swiss J Geosci 100:359–369

    Article  Google Scholar 

  • Frakes LA (1999) Estimating the global thermal state from Cretaceous sea surface and continental temperature data. In: Barrera E, Johnson CC (eds) Evolution of the Cretaceous ocean-climate system. Geol Soc Am Spec Publ 332. Boulder, Colorado, pp 49–57

  • Frakes L, Alley N, Deynoux M (1995) Early Cretaceous ice rafting and climate zonation in Australia. Int Geol Rev 37:567–583

    Article  Google Scholar 

  • García-Mondéjar J (1990) The Aptian-Albian carbonate episode of the Basque-Cantabrian Basin (northern Spain): general characteristics, controls and evolution. Spec Publ Int Ass Sediment 9:257–290

    Google Scholar 

  • García-Mondéjar J, Fernández-Mendiola PA (1993) Sequences stratigraphy and systems tracts of a mixed carbonate and siliciclastic platform-basin model: the Albian of Lunada and Soba, Northern Spain. Am Assoc Pet Geol Bull 77:245–275

    Google Scholar 

  • García-Mondéjar J, García-Pascual I (1982) Estudio Geológico del Anticlinorio de Bilbao entre los ríos Nervión y Cadagua. Kobie 12:101–137

    Google Scholar 

  • García-Mondéjar J, Fernández-Mendiola PA, Millán MI, Mendicoa J (2009a) La plataforma urgoniana aptiense del sur de Bilbao (valle de Bolintxu): organización estratigráfica y evolución. Geogaceta 47:77–80

    Google Scholar 

  • García-Mondéjar J, Owen HG, Raisossadat N, Millán MI, Fernández-Mendiola PA (2009b) The Early Aptian of Aralar (Northern Spain): stratigraphy, sedimentology, ammonite biozonation and OAE1. Cret Res 30:434–464

    Article  Google Scholar 

  • Gerdes KD, Winefield P, Simmons MD, van Oosterhout C (2010) The influence of basin architecture and eustacy on the evolution of Tethyan Mesozoic and Cenozoic carbonate sequences. In: van Buchem FSP, Gerdes KD, Esteban M (eds) Mesozoic and Cenozoic carbonate systems of the Mediterranean and the Middle East: stratigraphic and diagenetic reference models. Geological Society, London, Special Publication, vol 329, pp 9–41

  • Gili E, Masse J, Skelton PW (1995) Rudists as gregarious sediment-dwellers, not reef-builders, on Cretaceous carbonate platforms. Palaeogeogr Palaeoclimatol Palaeoecol 118:245–267

    Article  Google Scholar 

  • Gómez-Pérez I, Fernández-Mendiola PA, García-Mondéjar J (1998) Constructional dynamics for a Lower Cretaceous carbonate ramp (Corbea Massif, north Iberia). In: Wright VP, Burchette TP (eds) Carbonate ramps, vol 149. Geological Society (Special Publication), London, pp 229–252

    Google Scholar 

  • Granier B, Busnardo R (2012) New stratigraphic data on the Aptian of the Persian Gulf. Cretac Res. doi:10.1016/j.cretres.2012.02.011

    Google Scholar 

  • Granier B, Busnardo R, Pittet B (2011) New data on the Hawar, Shu’aiba, Bab and Sabsab regional stages of the Lower Cretaceous in the United Arab Emirates and in Oman. Boletín del Instituo de Fisiografía y Geología 79–81:11–13

    Google Scholar 

  • Gréselle B, Pittet B (2005) Fringing carbonate platforms at the Arabian Plate margin in northern Oman during the Late Aptian-Middle Albian: evidence for high-amplitude sea-level changes. Sediment Geol 175:367–390

    Article  Google Scholar 

  • Hallam A (1992) Phanerozoic Sea-level changes. Columbia University Press, New York, p 266

    Google Scholar 

  • Hancock JM (1991) Ammonite scales for the Cretaceous system. Cret Res 12:259–291

    Article  Google Scholar 

  • Haq BU, Hardenbol J, Vail PR (1988) Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change. In: Wilgus CK (ed) Sea-level changes: an integrated approach. SEPM Spec Publ, vol 42, pp 71–108

  • Hardenbol J, Thierry J, Farley MB, Jacquin T, de Graciansky PC, Vail PR (1998) Mesozoic and Cenozoic sequence chronostratigraphic framework of Europeau basins. In: de Graciansky PC, Hardenbol J, Jaquin T, Vail PR (eds) Mesozoic and Cenozoic sequence stratigraphy of European basins. SEPM Spec Publ, vol 60, pp 3–13

  • Hartshorne PM (1989) Facies architecture of a Lower Cretaceous coral-rudist patch reef, Arizona. Cret Res 10:311–336

    Article  Google Scholar 

  • Hay WW (1995) Paleoceanography of marine organic-carbon-rich sediments. In: Huc AY (ed) Paleogeography, paleoclimate, and source rocks. Am Assoc Petrol Geol, Stud, Geol. vol 40, pp 21–59

  • Hesselbo SP, Gröcke DR, Jenkyns HC, Bjerrum CJ, Farrimond PL, Morgans-Bell HS, Green OR (2000) Massive dissociation of gas hydrates during a Jurassic Oceanic anoxic event. Nature 406:392–395

    Article  Google Scholar 

  • Hudson JD (1963) The recognition of salinity-controlled mollusc assemblages in the Great Estuarine Series (Middle Jurassic) of the Inner Hebrides. Palaeontology 6:318–326

    Google Scholar 

  • Hunt D, Tucker ME (1992) Stranded parasequences and the forced regressive wedge systems tract: deposition during base-level fall. Sediment Geol 81:1–9

    Article  Google Scholar 

  • Husinec A, Velic I, Fucek L, Vlahovic I, Maticec D, Ostric N, Korbar T (2000) Mid-Cretaceous orbitolinid (Foraminiferida) record from the islands of Cres and Lošinj (Croatia) and its regional stratigraphic correlation. Cret Res 21:155–171

    Article  Google Scholar 

  • Immenhauser A, Van Der Kooij B, Van Vliet A, Schlager W, Scott RW (2001) An ocean-facing Aptian–Albian carbonate margin, Oman. Sedimentology 48:1187–1207

    Article  Google Scholar 

  • Jahren AH, Arens NC, Sarmiento G, Guerrero J, Amundson R (2001) Terrestrial record of methane hydrate dissociation in the Early Cretaceous. Geology 29:159–162

    Article  Google Scholar 

  • James NP (1979) Facies model 11: Reefs. In: Walker EG (ed) Facies models, Geoscience Canada Reprint Series 1, Canada, pp 121–132

  • Jenkyns HC (2003) Evidence for rapid climate change in the Mesozoic–Palaeogene greenhouse world. Phil Trans Roy Soc Lond A 361:1885–1916

    Article  Google Scholar 

  • Johnson CC, Kaufman EG (1996) Maastrichtian extinction patterns of Caribbean province rudistids. In: MacLeod N, Keller G (eds) Cretaceous-tertiary mass extinctions: biotic and environmental changes. Norton and Co, New York, pp 231–273

    Google Scholar 

  • Johnson CC, Kaufman EG (2001) Cretaceous evolution of reef ecosystems; A regional synthesis of the Caribbean tropics. In: Stanley GD Jr (ed) The history and sedimentology of ancient reef ecosystems, topics in geobiology series. Kluwer/Plenum Publishers, New York, pp 311–349

    Chapter  Google Scholar 

  • Kemper E (1987) Das Klima der Kreide-Zeit. Geol Jb 96(A):5–185

    Google Scholar 

  • Kemper E (1995) The causes of the carbonate and colour changes in the Aptian of NW Germany. Neues Jb Geol Paläontol Abh 196:275–289

    Google Scholar 

  • Kuhnt W, Moullade M, Masse JP, Erlankeuser H (1998) Carbon isotope stratigraphy of the lower Aptian historical stratotype at Cassis-La Bédoule (SE France). Géol Mediterr 25:63–79

    Google Scholar 

  • Larson RL (1991) Latest pulse of the Herat: evidence for a mid-Cretaceous super plume. Geology 19:547–550

    Article  Google Scholar 

  • Larson RL, Erba E (1999) Onset of the mid-Cretaceous greenhouse in the Barremian-Aptian: igneous events and the biological, sedimentary, and geochemical response. Paleoceanography 14:663–678

    Article  Google Scholar 

  • Le Pichon X, Bonin J, Francheteau J, Sibuet JC (1971) Une hypothèse d’evolution tectonique du Golfe de Gascogne. In: Debyser J, Le Pichon X, Montadert L (eds) Histoire Structurale du Golfe de Gascogne, vol 2. Technip, Paris, pp VI(11.1)–VI(11-44)

  • Longoria J, Monreal R (1991) Lithostratigraphy, microfacies, and depositional environments of Sierra La Nieve, Coahuila, Northeast, México. Rev Soc Geol Esp 4:7–31

    Google Scholar 

  • Martin-Closas C, Wang Q (2008) Historical biogeography of the lineage Atopochara trivolvis PECK 1941 (Cretaceous Charophyta). Palaeogeogr Palaeoclimatol Palaeoecol 260:435–451

    Article  Google Scholar 

  • Masse JP (1989) Relations entre modifications biologiques et phénomènes géologiques sur les plates-formes carbonatées du domaine périméditerranéen au passage Bédoulien-Gargasien. Geobios Mém Spéc 11:279–294

    Article  Google Scholar 

  • Masse JP (1992) Les rudistes de l’Aptien inférieur d’Italie continentale; aspects systématique, stratigraphiques et paléobiogéographiques. Geol Romana 28:243–260

    Google Scholar 

  • Masse JP (1995) Lower Cretaceous rudist biostratigraphy of southern France—a reference for mesogean correlations. Rev Mexicenc Geol 12:236–256

    Google Scholar 

  • Masse JP, Philip J (1981) Cretaceous coral-rudist buildups of France. In: Toomey DF (ed) European fossil reef models. SEPM Spec Publ, vol 30, pp 399–426

  • Masse JP, Fenerci M, Borgomano J (2001) Levelling pattern in peritidal carbonates, Late Barremian from Cassis (Marseille region SE France). Anatomic implications. Géol Méditerr 28:117–120

    Google Scholar 

  • Mehay S, Keller CE, Bernasconi SM, Weissert H, Erba E, Bottini C, Hochuli PA (2009) A volcanic CO2 pulse triggered the Cretaceous Oceanic Anoxic Event 1a and a biocalcification crisis. Geology 37:819–822

    Article  Google Scholar 

  • Millán MI, Weissert HJ, Fernández-Mendiola PA, García-Mondéjar J (2009) Impact of Early Aptian carbon cycle perturbations on evolution of a marine shelf system in the Basque-Cantabrian Basin (Aralar, N Spain). Earth Planet Sci Lett 287:392–401

    Article  Google Scholar 

  • Millán MI, Weissert HJ, Owen H, Fernández-Mendiola PA, García-Mondéjar J (2011) The Madotz Urgonian platform (Aralar, northern Spain): paleoecological changes in response to Early Aptian global environmental events. Palaeogeogr Palaeoclimatol Palaeoecol 312:167–180

    Article  Google Scholar 

  • Montadert L, Roberts DG, De Charpal O, Guennoc P (1979) Rifting and subsidence of the northern continental margin of the Bay of Biscay. In: Initial Reports of the Deep Sea Drilling Project, 48. US Government Printing Office, Washington, pp 1025–1059

  • Moreno-Bedmar JA, Bover-Arnal T, Barrán R, Salas R (2012) Uppermost Lower Aptian transgressive records in Mexico and Spain: chronostratigraphic implications for the Tethyan sequences. Terranova. doi:10.1111/j.1365-3121.2012.01069.x

  • Mount JF (1984) Mixing of siliciclastic and carbonate sediments in shallow shelf environments. Geology 12:432–435

    Article  Google Scholar 

  • Mutterlose J, Böckel B (1998) The Barremian–Aptian interval in NW Germany: a review. Cret Res 19:539–568

    Article  Google Scholar 

  • Nichols NM, Johnson GH, Peebles PC (1991) Modern sediments and facies model for a microtidal coastal plain estuary, the James estuary, Virginia. J Sediment Petrol 61:883–899

    Article  Google Scholar 

  • Ogg JG, Ogg G (2006) Early Cretaceous (103-138 Ma timeslice). Update to: Gradstein, F.m., Ogg, J.G., Smith, A.G. (2004). A Geologic Time Scale. Cambridge University Press, pp 589

  • Peropadre C, Meléndez MN, Liesa CL (2011) Sequence stratigraphy of the Aptian western Maestrazgo basin: sea-level evolution and onset of cooling around the mid-Aptian event. 28th IAS Meeting of Sedimentology 2011, 5th–8th July, 2011. Zaragoza, Spain

  • Philip J, Masse JP, Camoin G (1995) Tethyan carbonate platforms. In: Nairn AEM et al (eds) The Ocean basins and margins, vol 8., The Tethys OceanPlenum Press, New York, pp 239–265

    Google Scholar 

  • Poulsen CJ, Barron EJ, Johnson CC, Fawcett PJ (1999) Links between the major climatic factors and regional oceanography in the mid-Cretaceous. In: Barrera E, Johnson CC (eds) Evolution of the Cretaceous ocean-climate system, GSA Special Paper, vol 332, pp 73–90

  • Premoli Silva I, Sliter WV (1999) Cretaceous paleoceanography: evidence from planktonic foraminiferal evolution. In: Barrera E, Johnson C (eds) Evolution of the Cretaceous ocean-climate system. Boulder Colorado, GSA, Spec Publ, vol 332, pp 301–328

  • Price GD, Nunn EV (2010) Valanginian isotope variation in glendonites and belemnites from Arctic Svalbard: transient glacial temperatures during the Cretaceous greenhouse. Geology 38:251–254

    Article  Google Scholar 

  • Pufahl PK, James NP (2006) Monospecific Pliocene oyster buildups, Murray Basin South Australia: brackish water end member of the reef spectrum. Palaeogeogr Palaeoclimatol Palaeoecol 233:11–33

    Article  Google Scholar 

  • Rameil N, Immenhauser A, Csoma AÉ, Warrlich G (2012) Surfaces with a long history: the Aptian top Shu’aiba Formation unconformity, Sultanate of Oman. Sedimentology 59:212–248

    Article  Google Scholar 

  • Rat P (1959) Les Pays crétacés basco-cantabriques (Espagne). Thèse Publications de l’Université de Dijon, Dijon, p 525

    Google Scholar 

  • Read JF (1998) Phanerozoic carbonate ramps from greenhouse, transitional and ice-house worlds: clues from field and modelling studies. In: Wright VP, Burchette TP (eds) Carbonate Ramps, Geological Society of London, Spec Publ, vol 149, pp 107–135

  • Renard M, de Rafélis M, Emmanuel L, Moullade M, Masse JP, Kühnt W, Bergen JA, Tronchetti G (2009) Early Aptian δ13C and manganese anomalies from the historical Cassis-La Bédoule stratotype sections (SE France): relationship with a methane hydrate dissociation event and stratigraphic implications. Ann Mus Hist Nat Nice 24:199–220

    Google Scholar 

  • Röhl U, Ogg JG (1998) Aptian-Albian eustatic sea levels. In: Camoin GF, Bergersen DD, Davies PJ (eds) Reefs and Carbonate Platforms in the Pacific and Indian Oceans. Spec Publ Int Assoc Sediment, vol 25, pp 95–136

  • Ross DJ, Skelton PW (1993) Rudist formations of the Cretaceous: a palaeoecological, sedimentological and stratigraphic review. In: Wright VP (ed) Sedimentology review 1. Blackwell Scientific Publications, Oxford, pp 73–91

    Chapter  Google Scholar 

  • Ruffell A, Worden R (2000) Palaeoclimate analysis using spectral gamma-ray data from the Aptian (Cretaceous) of southern England and southern France. Palaeogeogr Palaeoclimatol Palaeoecol 155:265–283

    Article  Google Scholar 

  • Ruiz-Ortiz PA, Bosence DWJ, Rey J, Nieto LM, Castro JM, Molina JM (2004) Tectonic control of facies architecture, sequence stratigraphy and drowning of a Liassic carbonate platform (Betic Cordillera, Southern Spain). Basin Res 16:235–257

    Article  Google Scholar 

  • Santisteban C, Taberner C (1988) Sedimentary models of siliciclastic deposits and coral reefs interrelation. In: Doyle LJ, Roberts HH (eds) Carbonate-clastic transitions. Elsevier, Amsterdam, pp 35–76

    Chapter  Google Scholar 

  • Schlager W (1989) Drowning unconformities on carbonate platforms. In: Crevello PD et al (eds) Controls on carbonate platform and basin development. SEPM, Spec Publ, vol 44, Tulsa, pp 15–25

  • Schlanger SO, Jenkyns HC (1976) Cretaceous oceanic anoxic events: causes and consequences. Geol Mijnb 55:179–194

    Google Scholar 

  • Scott RW (1981) Biotic relations in Early Cretaceous coral-algal-rudist reefs, Arizona. J Palaeontolog 55:463–478

    Google Scholar 

  • Scott RW (1990) Models and stratigraphy of mid-Cretaceous reef comminities, Gulf of Mexico. In: Lidtz BH (ed) Concepts in sedimentology and paleontology, SEPM Spec Publ, vol 2, pp 102

  • Scott RW (1995) Global environmental controls on Cretaceous reefal ecosystems. Palaeogeogr Palaeoclimatol Palaeoecol 119:187–199

    Article  Google Scholar 

  • Skelton PW (ed) (2003a) The Cretaceous world. Cambridge University Press and The Open University, Cambridge, p 360

    Google Scholar 

  • Skelton PW (2003b) Rudist evolution and extinction—a North African perspective. In: Gili E, Negra H, Skelton PW (eds) North African Cretaceous carbonate platform systems. NATO Science Series IV, Earth and Environmental Sciences 28. Kluwer, Dordrecht, pp 215–227

  • Skelton PW, Gili E (2012) Rudists and carbonate platforms in the Aptian: a case study on biotic interactions with ocean chemistry and climate. Sedimentology 59:81–117

    Article  Google Scholar 

  • Skelton PW, Gil E, Bover-Arnal T, Salas R, Moreno-Bedmar JA (2010) A new species of Polyconites from Lower Aptian of Iberia and the Early Evolution of Polyconitid Rudists. Turk J Earth Sci 19:557–572

    Google Scholar 

  • Soreghan GS, Dickinson WR (1994) Generic types of stratigraphic cycles controlled by eustasy. Geology 22:759–761

    Article  Google Scholar 

  • Spence GH, Tucker ME (2007) A proposed integrated multi-signature model for peritidal cycles in carbonates. J Sediment Res 77:797–808

    Article  Google Scholar 

  • Steuber T, Löser H (2000) Species richness and abundance patterns of Tethyan Cretaceous rudist bivalves (Mollusca: Hippuritacea) in the central-eastern Mediterranean and Middle East, analysed from a palaeontological database. Palaeogeogr Palaeoclimatol Palaeoecol 162:75–104

    Article  Google Scholar 

  • Steuber T, Rauch M (2005) Evolution of the Mg/Ca ratio of Cretaceous seawater: implications from the composition of biological low-Mg calcite. Mar Geol 217:199–213

    Article  Google Scholar 

  • Stoll HM, Schrag DP (2000) High-resolution stable isotope records from the Upper Cretaceous rocks of Italy and Span: glacial episodes in a greenhouse planet? GSA Bul 112:308–319

    Article  Google Scholar 

  • Tejada MLG, Katsuhiko S, Kuroda J, Coccioni R, Mahoney JJ, Ohkouchi N, Sakamoto T, Tatsumi Y (2009) Ontong Java Plateau eruption as a trigger for the Early Aptian oceanic anoxic event. Geology 37:855–858

    Article  Google Scholar 

  • Tucker EM (2003) Mixed clastic-carbonate cycles and sequences: quaternary of Egypt and Carboniferous of England. Geol Croat 56:19–37

    Google Scholar 

  • Tucker ME, Garland J (2010) High-frequency cycles and their sequence stratigraphic context: orbital forcing and tectonic controls on Devonian cyclicity. Geol Belgica 13:213–240

    Google Scholar 

  • van Wagoner JC, Posamentier HW, Mitchum RM, Vail PR, Sarg JF, Loutit TS, Hardenbol J (1988) An overview of the fundamentals of sequence stratigraphy and key definitions. In: Wilgus C, Hastings BS, Kendall CG, Posamentier HW, Ross CA, Van Wagoner JC (eds) Sea level changes: an integrated approach. SEPM Spec Publ 42:39–46

  • Weissert H (2000) Deciphering methane’s fingerprint. Nature 406:356–357

    Article  Google Scholar 

  • Weissert H, Lini A, Föllmi KB, Kuhn O (1998) Correlation of Early Cretaceous isotope stratigraphy and platform drowning events: a possible link? Palaeogeogr Palaeoclimatol Palaeoecol 137:189–203

    Article  Google Scholar 

  • Williams HD, Burgess PM, Wright VP, Della Porta G, Granjeon D (2011) Investigating carbonate platform types; multiple controls and a continuum of geometries. J Sediment Res 81:18–37

    Article  Google Scholar 

  • Wilson JL (1975) Carbonate facies in geologic history. Springer, New York

    Book  Google Scholar 

  • Wilson MEJ, Lokier SW (2002) Siliciclastic and volcaniclastic influences on equatorial carbonates: insights from the Neogene of Indonesia. Sedimentology 49:583–601

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported by the Spanish Science and Innovation Ministry project CGL2009-11308. It was also supported by PhD grant BFI09.122 from the Basque Country Government. We thank M. Tucker and two anonymous reviewers for their constructive criticism and valuable suggestions, which helped us to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jone Mendicoa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández-Mendiola, P.A., Mendicoa, J., Hernandez, S. et al. A facies model for an Early Aptian carbonate platform (Zamaia, Spain). Facies 59, 529–558 (2013). https://doi.org/10.1007/s10347-012-0315-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10347-012-0315-3

Keywords

Navigation