Skip to main content

Advertisement

Log in

Variations in primary aragonite, calcite, and clay in fine-grained calcareous rhythmites of Cambrian to Jurassic age— an environmental archive?

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

Limestone-marl alternations represent a common type of fine-grained calcareous rhythmites during the entire Phanerozoic. Their diagenetic overprint, however, obliterates their value for palaeoenvironmental interpretations. The original mineralogical composition of the carbonate fraction (aragonite, high-Mg calcite, low-Mg calcite) would potentially yield important information on palaeoenvironmental conditions: for example shallow-water carbonate factories are usually characterised by extensive aragonite production, whereas pelagic carbonate production is dominated by calcitic organisms. Therefore, a reconstruction of the pre-diagenetic mineralogical composition of limestone-marl precursors would be desirable.

A particularly conspicuous attribute of fine-grained calcareous rhythmites is the intercalation of two rock types that have undergone two entirely different diagenetic pathways (“differential diagenesis”). As indicated by earlier petrography work, in the interlayers selective aragonite dissolution has taken place, and the dissolved aragonite provided the cement for the limestones. Primary aragonite usually is not preserved in diagenetically mature fine-grained limestones. However, in a recently published paper a method is proposed to quantify the primary mineralogical composition of the precursor sediments of a fine-grained calcareous rhythmite. Here we apply this method to several published data sets from sections of Cambrian to Jurassic age. We try to answer the following questions: Where does the aragonite come from, especially during times of “calcite seas”? What is the impact of the enhanced pelagic carbonate production since the Late Jurassic on the formation of limestone-marl alternations? How much dissolved aragonite is lost to sea water during early marine burial diagenesis, i.e. how closed is the diagenetic system? As demonstrated for the five examples shown here, the new method for reconstructing primary mineralogy potentially provides insight into ancient depositional environments, surface productivity, and ocean chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. For automated computer programme (Java applet): http://www.pal.uni-erlangen.de/lma/; programme code available from the authors.

References

  • Arthur MA, Dean WE, Bottjer DJ, Scholle PA (1984) Rhythmic bedding in Mesozoic-Cenozoic pelagic carbonate sequences: the primary and diagenetic origin of Milankovitch-like cycles. In: Berger A, Imbrie J, Hays J, Kukla G, Saltzman B (eds) Milankovitch and Climate. Hingham, Riedel, pp 191–222

    Google Scholar 

  • Bathurst RGC (1970) Problems of lithification in carbonate muds. Geol Assoc Proc 81:429–440

    Google Scholar 

  • Bathurst RGC (1980) Lithification of carbonate sediments. Sci Progr 66:451–471

    CAS  Google Scholar 

  • Bausch WM (1965) Strontiumgehalte in süddeutschen Malmkalken. Geol Rdschau 55:86–96

    Google Scholar 

  • Bellanca A, Claps M, Erba E, Masetti D, Neri R, Premoli Silva I, Venezia F (1996) Orbitally induced limestone/marlstone rhythms in the Albian-Cenomanian Cismon section (Venetian region, northern Italy): sedimentology, calcareous and siliceous plankton distribution, elemental and isotope geochemistry. Palaeogeogr Palaeoclimatol Palaeoecol 126:227–260

    Google Scholar 

  • Bennett RH, Bryant WR, Hulbert MH (1991) Microstructure of fine-grained sediments— from mud to shale. Springer, New York, 582 pp

    Google Scholar 

  • Bickert T, Pätzold J, Samtleben C, Munnecke A (1997) Paleoenvironmental changes in the Silurian indicated by stable isotopes in brachiopod shells from Gotland, Sweden. Geochim Cosmochim Acta 61:2717–2730

    CAS  Google Scholar 

  • Blair NE, Aller RC (1995) Anaerobic methane oxidation on the Amazon Shelf. Geochim Cosmochim Acta 59:3707–3715

    CAS  Google Scholar 

  • Boardman MR, Carney C (1991) Origin and accumulation of lime mud in ooid tidal channels, Bahamas. J Sediment Petrol 61:661–680

    Google Scholar 

  • Boardman MR, Neumann AC (1984) Sources of periplatform carbonates: Northwest Providence Channel, Bahamas. J Sediment Petrol 54:1110–1123

    CAS  Google Scholar 

  • Bown PR (1987) Taxonomy, evolution, and biostratigraphy of late Triassic-early Jurassic calcareous nannofossils. Spec Pap Palaeont 38:1–118

    Google Scholar 

  • Canfield DE, Raiswell R (1991) Carbonate precipitation and dissolution—its relevance to fossil preservation. In: Allison PA, Briggs DEG (eds) Taphonomy: releasing the data locked in the fossil record. Plenum, New York, pp 411–453

    Google Scholar 

  • Cherns L, Wright P (2000) Missing molluscs as evidence of large-scale, early skeletal aragonite dissolution in a Silurian sea. Geology 28:791–794

    Article  Google Scholar 

  • Chlupác I, Kukal Z (1977) The boundary stratotype at Klonk. In: Martinsson A (ed) The Silurian-Devonian boundary. IUGS Ser A 5, Stuttgart, pp 96–109

    Google Scholar 

  • Christensen AM (1999) Brachiopod paleontology and paleoecology of the Lower Mississippian Lodgepole Limestone in Southeastern Idaho. In: Hughes SS, Thackray GD (eds) Guidebook to the geology of Eastern Idaho. Idaho Museum of Natural History, Pocatello, pp 57–67

    Google Scholar 

  • Einsele G, Ricken W, Seilacher A (1991) Cycles and events in stratigraphy. Springer, Berlin, 955 pp

    Google Scholar 

  • Elrick M (1995) Cyclostratigraphy of middle Devonian carbonates of the eastern Great Basin. J Sediment Res 65:61–79

    Google Scholar 

  • Elrick M (1996) Sequence stratigraphy and platform evolution of Lower-Middle Devonian carbonates, eastern Great Basin. Geology 108:392–416

    Google Scholar 

  • Elrick M, Hinnov LA (1996) Millennial-scale climate origins for stratification in Cambrian and Devonian deep-water rhythmites, western USA. Palaeogeogr Palaeoclimatol Palaeoecol 123:353–372

    Google Scholar 

  • Elrick M, Snider AS (2002) Deep-water stratigraphic cyclicity and carbonate mud mound development in the Middle Marjum Formation, House Range, Utah, USA. Sedimentology 49:1021–1047

    Google Scholar 

  • Elrick M, Read JF, Coruh C (1991) Short-term paleoclimatic fluctuations expressed in lower Mississippian ramp-slope deposits, southwestern Montana. Geology 19:799–802

    Google Scholar 

  • Enos P, Sawatsky LH (1981) Pore networks in Holocene carbonate sediments. J Sediment Petrol 51:961–985

    Google Scholar 

  • Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, Taylor FJR (2004) The evolution of modern eukaryotic phytoplankton. Science 305:354–360

    CAS  PubMed  Google Scholar 

  • Flügel E, Franz HE (1967) Elektronenmikroskopischer Nachweis von Coccolithen im Solnhofener Plattenkalk (Ober-Jura). N Jb Geol Paläont Abh 127:245–262

    Google Scholar 

  • Frank TD, Arthur MA, Dean WE (1999) Diagenesis of Lower Cretaceous pelagic carbonates, North Atlantic: Paleoceanographic signals obscured. J Foram Res 29:340–351

    Google Scholar 

  • Frimmel A (2003) Hochauflösende Untersuchungen von Biomarkern an epikontinentalen Schwarzschiefern des Unteren Toarciums (Posidonienschiefer, Lias ɛ) von SW-Deutschland. PhD thesis, University of Tübingen, 108 pp, http://w210.ub.uni-tuebingen.de/dbt/volltexte/2003/708/

  • Gartner S (1977) Nannofossils and biostratigraphy: an overview. Earth Sci Rev 13:227–250

    Google Scholar 

  • Hallam A (1986) Origin of minor limestone-shale cycles: climatically induced or diagenetic? Geology 14:609–612

    Google Scholar 

  • Hallock P, Schlager W (1986) Nutrient excess and the demise of coral reefs and carbonate platforms. Palaios 1:389–398

    Google Scholar 

  • Herten U (2000) Petrographische und geochemische Charakterisierung der Pelit-Lagen aus der Forschungsbohrung Klonk-1 (Suchomasty/Tschechische Republik). Ber Forschzent Jülich 3751:1–83

    Google Scholar 

  • Kranendonck O (2000) Petrographische und geochemische Charakterisierung der Karbonatbänke aus der Forschungsbohrung Klonk-1 (Suchomasty/Tschechische Republik). Ber Forschzent Jülich 3750:1–115

    Google Scholar 

  • Lasemi Z, Sandberg PA (1993) Microfabric and compositional clues to dominant mud mineralogy of micrite precursors. In: Rezak R, Lavoie DL (eds) Carbonate microfabrics. Springer, New York, pp 173–185

    Google Scholar 

  • Lowenstam HA (1955) Aragonite needles secreted by algae and some sedimentary implications. J Sediment Petrol 25:270–272

    CAS  Google Scholar 

  • Lowenstam HA (1961) Mineralogy, O18/O16 ratios, and strontium and magnesium contents of recent and fossil brachiopods and their bearing on the history of the oceans. J Geol 69:241–260

    CAS  Google Scholar 

  • Melim LA, Westphal H, Swart PK, Eberli GP, Munnecke A (2002) Questioning carbonate diagenetic paradigms: evidence from the Neogene of the Bahamas. Marine Geol 185:27–53

    CAS  Google Scholar 

  • Milliman JD, Freile D, Steinen RP, Wilber RJ (1993) Great Bahama Bank aragonitic muds: mostly inorganically precipitated, mostly exported. J Sediment Petrol 63:589–595

    Google Scholar 

  • Munnecke A (1997) Bildung mikritischer Kalke im Silur auf Gotland. Courier Forschinst Senckenberg 198:1–71

    Google Scholar 

  • Munnecke A, Samtleben C (1996) The formation of micritic limestones and the development of limestone-marl alternations in the Silurian of Gotland, Sweden. Facies 34:159–176

    Google Scholar 

  • Munnecke A, Westphal H (2004) Shallow-water aragonite recorded in bundles of limestone-marl alternations—the Upper Jurassic of SW Germany. Sediment Geol 164:191–202

    Article  CAS  Google Scholar 

  • Munnecke A, Westphal H, Reijmer JJG, Samtleben C (1997) Microspar development during early marine burial diagenesis: a comparison of Pliocene carbonates from the Bahamas with Silurian limestones from Gotland (Sweden). Sedimentology 44:977–990

    Google Scholar 

  • Munnecke A, Westphal H, Elrick M, Reijmer JJG (2001) The mineralogical composition of precursor sediments of calcareous rhythmites: a new approach. Int J Earth Sci 90:795–812

    Article  CAS  Google Scholar 

  • Munnecke A, Samtleben C, Bickert T (2003) The Ireviken Event in the lower Silurian of Gotland, Sweden—relation to similar Palaeozoic and Proterozoic events. Palaeogeogr Palaeoclimatol Palaeoecol 195(1–2):99–124

    Google Scholar 

  • Neumann AC, Land LS (1975) Lime mud deposition and calcareous algae in the Bight of Abaco, Bahamas: a budget. J Sediment Petrol 45:763–786

    CAS  Google Scholar 

  • O’Brian NR, Slatt RM (1990) Argillaceous Rock Atlas. Springer, New York, 141 pp

    Google Scholar 

  • Palmer TJ, Wilson MA (2004) Calcite precipitation and dissolution of biogenic aragonite in shallow Ordovician calcite seas. Lethaia 37:417–427

    Google Scholar 

  • Pittet B, Mattioli E (2002) The carbonate signal and calcareous nannofossil distribution in an Upper Jurassic section (Balingen-Tieringen, Late Oxfordian, southern Germany). Palaeogeogr Palaeoclimatol Palaeoecol 179:73–98

    Google Scholar 

  • Pittet B, Strasser A (1998) Depositional sequences in deep-shelf environments formed through carbonate-mud import from the shallow platform (Late Oxfordian, German Swabian Alb and eastern Swiss Jura). Eclogae Geol Helv 91:149–169

    Google Scholar 

  • Pittet B, Strasser A, Mattioli E (2000) Depositional sequences in deep-shelf environments: a response to sea-level changes and shallow-platform carbonate productivity (Oxfordian, Germany and Spain). J Sediment Res 70:392–407

    Google Scholar 

  • Pomar L, Brandano M, Westphal H (2004) Environmental factors influencing skeletal grain sediment associations: a critical review of Miocene examples from the western Mediterranean. Sedimentology 51:627–651

    Article  CAS  Google Scholar 

  • Raiswell R (1988) Chemical model for the origin of minor limestone-shale cycles by anaerobic methane oxidation. Geology 16:641–644

    CAS  Google Scholar 

  • Reinhardt EG, Cavazza W, Patterson RT, Blenkinsop J (2000) Differential diagenesis of sedimentary components and the implication for strontium isotope analysis of carbonate rocks. Chem Geol 164:331–343

    CAS  Google Scholar 

  • Ricken W (1986) Diagenetic bedding: a model for limestone-marl alternations. Lecture Notes on Earth Science, Vol. 6, Springer, Berlin, 210 pp

    Google Scholar 

  • Ricken W (1987) The carbonate compaction law: a new tool. Sedimentology 34:571–584

    CAS  Google Scholar 

  • Ricken W, Eder W (1991) Diagenetic modification of calcareous beds—an overview. In: Einsele G, Ricken W, Seilacher A (eds) Cycles and events in stratigraphy. Springer, Berlin, pp 430–449

    Google Scholar 

  • Rullkötter J (2000) Organic matter: the driving force for early diagenesis. In: Schulz HD, Zabel M (eds) Marine geochemistry. Springer, Berlin, pp 129–172

    Google Scholar 

  • Saltzman MR (2002) Carbon isotope (δ13C) stratigraphy across the Silurian-Devonian transition in North America: evidence for a perturbation of the global carbon cycle. Palaeogeogr Palaeoclimatol Palaeoecol 187:83–100

    Google Scholar 

  • Sandberg PA (1983) An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. Nature 305:19–22

    Article  CAS  Google Scholar 

  • Schlager W (2003) Benthic carbonate factories of the Phanerozoic. Int J Earth Sci 92:445–464

    Article  CAS  Google Scholar 

  • Schulz HD (2000) Quantification of early diagenesis: dissolved constituents in marine pore water. In: Schulz HD, Zabel M (eds) Marine geochemistry. Springer, Berlin, pp 87–128

    Google Scholar 

  • Schulz HD, Zabel M (2000) Marine geochemistry. Springer, Berlin, 455 pp

    Google Scholar 

  • Schwarzacher W (2000) Repititions and cycles in stratigraphy. Earth Sci Rev 50:51–75

    Google Scholar 

  • Scotese CR (2001) Paleomap Project: http:// www.scotese.com/ (July 2001)

  • Seibold E (1952) Chemische Untersuchungen zur Bankung im unteren Malm Schwabens. N Jb Geol Paläont Abh 95:337–370

    CAS  Google Scholar 

  • Seibold E, Seibold I (1953) Foraminiferenfauna und Kalkgehalt eines Profils im gebankten unteren Malm Schwabens. N Jb Geol Paläont Abh 98:28–86

    Google Scholar 

  • Stanley MS, Hardie LA (1999) Hypercalcification: paleontology links plate tectonics and geochemistry to sedimentology. GSA Today 9:2–7

    Google Scholar 

  • Swart PK (2000) The oxygen isotopic composition of interstitial waters: evidence for fluid flow and recrystallization in the margin of Great Bahama Bank. Ocean Drill Progr Sci Res 166:91–98

    CAS  Google Scholar 

  • Towe KM, Hemleben C (1976) Diagenesis of magnesian calcite: evidence from miliolacean foraminifera. Geology 4:337–339

    CAS  Google Scholar 

  • Westphal H (1998) Carbonate platform slopes—A record of changing conditions. Lecture Notes on Earth Science, Vol. 75. Springer, Berlin, 179 pp

    Google Scholar 

  • Westphal H, Munnecke A (1997) Mechanical compaction versus early cementation in fine-grained limestones: differentiation by the preservation of organic microfossils. Sediment Geol 112:33–42

    CAS  Google Scholar 

  • Westphal H, Munnecke A (2003) Limestone-marl alternations—a warm-water phenomenon? Geology 31:263–266

    Google Scholar 

  • Westphal H, Head MJ, Munnecke A (2000) Differential diagenesis of rhythmic limestone alternations supported by palynological evidence. J Sediment Res 70:715–725

    CAS  Google Scholar 

  • Westphal H, Böhm F, Bornholdt S (2004a) Orbital frequencies in the sedimentary record: distorted by diagenesis? Facies 50:3–11

    Google Scholar 

  • Westphal H, Munnecke A, Pross J, Herrle JO (2004b) Multiproxy approach to understanding the origin of Cretaceous pelagic limestone-marl alternations (DSDP Site 391, Blake-Bahama Basin). Sedimentology 51:109–126

    CAS  Google Scholar 

  • Winland HD (1968) The role of high Mg calcite in the preservation of micrite envelopes and textural features of aragonite sediments. J Sediment Petrol 38:1320–1325

    CAS  Google Scholar 

  • Wood R (1993) Nutrients, predation and the history of reef-building. Palaios 8:526–543

    Google Scholar 

  • Wright P, Cherns L (2004) Are there “black holes” in carbonate deposystems? Geol Acta 2:285–290

    Google Scholar 

  • Wright P, Cherns L, Hodges P (2003) Missing molluscs: Field testing taphonomic loss in the Mesozoic through early large-scale aragonite dissolution. Geology 31:211–214

    Article  Google Scholar 

  • Zabel M, Hensen C, Schlüter M (2000) Back to the ocean cycles: benthic fluxes and their distribution patterns. In: Schulz HD, Zabel M (eds) Marine geochemistry. Springer, Berlin, pp 373–395

    Google Scholar 

Download references

Acknowledgements

The authors are indebted to Maya Elrick for providing the data on the three North American sections, and to Ulrich Herten and Oliver Kranendonck for sending us the data on Klonk-1. Reviews by David Osleger, Tracy Frank, John Reijmer, and an anonymous referee considerably improved this contribution. For editorial handling of our manuscript we would like to thank André Freiwald and Sonja-B. Löffler. This study was supported by the Deutsche Forschungsgemeinschaft (DFG) (We 2492/1; Fr 1134/4), and the HWP grant of the University of Erlangen-Nuremberg to HW

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Munnecke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Munnecke, A., Westphal, H. Variations in primary aragonite, calcite, and clay in fine-grained calcareous rhythmites of Cambrian to Jurassic age— an environmental archive?. Facies 51, 592–607 (2005). https://doi.org/10.1007/s10347-005-0053-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10347-005-0053-x

Keywords

Navigation