Skip to main content
Log in

Numerical modeling of subaerial and submarine landslide-generated tsunami waves—recent advances and future challenges

  • Review Article
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Landslide-generated waves (LGWs) are among natural hazards that have stimulated attentions and concerns of engineers and researchers during the past decades. At the same period, the application of numerical modeling has been progressively increased to assess, control, and manage the risks of such hazards. This paper represents an overview of numerical studies on LGWs to explore associated recent advances and future challenges. In this review, the main landslide events followed by an LGW hazard are scrutinized. The uncertainty regarding landslide characteristics and the lack of data concerning generated tsunami properties highlights the necessity of probabilistic analysis and numerical modeling. More than 53 % of landslides show the slide length larger than about 20 times of the slide thickness. This fact justifies the popular application of depth-averaged equations (DAEs) for landslides’ motion simulations. Such models are reviewed and tabulated based on their mathematical, numerical, and conceptual approaches. A landslide is generally treated as a homogeneous, mixture, or a multi-phase fluid with different rheologies. The Coulomb type rheology is the most-used rheology applied in more than 70 % of landslide models. Some of the recent studies are considering the effects of multi-phase nature, dynamic changes of rheological parameters, and grain-size segregation of the landslide on its deformations. The numerical tools that model LGWs are also reviewed, categorized, and examined. These models conceptualize a landslide as a general rigid LGW (R-LGW) or deformable LGW (D-LGW) mass. The rigid slide assumption is mainly applied in the LGW models with a focus on the accurate simulation of the wave propagation stage, particularly by means of higher order Boussinesq-type wave equations (BWEs). The majority of D-LGW models solve either the Navier–Stokes equations (NSEs) for a multi-phase (landslide material, water, and air) flow or the shallow water equations (SWEs) for a two-layer (a layer of granular material moving beneath a layer of water) flow. NSEs are more comprehensive models but less robust than DAEs. The key effect of dispersion in LGWs, which are typically important in intermediate and even deep water wave domains, challenges researchers to apply higher order BWEs instead of SWEs in two-layer models. Regarding numerical approaches, Lagrangian’s are more robust than Eulerian’s, but they have been rarely applied due to their high computational demands for real cases. The remaining challenges are reviewed as the necessity of probabilistic analysis to assess the risk of the related hazards more accurately for both past and potential LGW hazards; further thorough laboratory-scale experiments and field data measurements to have accurate and detailed benchmark data; providing RS/GIS-based worldwide hazard map for potential LGWs and compiled database for occurred events; extending BWEs for granular flows and DAEs with non-hydrostatic corrections; and economizing the computational costs of models by advanced techniques like parallel processing and GPU accelerators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

1L:

One layer

2D:

Two-dimensional

2HD:

Two-dimensional in horizontal surface

3DEs:

Three-dimensional equations

ALE:

Arbitrary Lagrangian-Eulerian

ANOVA:

Analysis of variance

BC:

Boundary condition

BEM:

Boundary element method

BM:

Bermudez-Moreno

BTE:

Boussinesq type equation

BWEs:

Boussinesq water wave equations

CAMR:

Continuous adaptive mesh refinement

Const.:

Constant

C-NSE:

Compressible NSE

CP:

Cauchy-Poison

CPU:

Central processing unit

DA:

Depth averaged

DAE:

Depth-averaged equation

Deg:

Degree

DEM:

Discrete element method

DI:

Depth integrated

Dim:

Dimension

D-LGW:

Deformable-LGW

DR:

Deformable rigid

El:

Elliptical-shape

EQ M w :

Earthquake moment magnitude

EE:

Empirical equation

EGW:

Earthquake-generated wave

Eq.:

Equation

FDM:

Finite difference method

FEM:

Finite element method

FVM:

Finite volume method

G:

Gaussian-shaped

Gen.:

Generation

GIS:

Geographical information system

GLOFs:

Glacial lake outburst floods

Gov.:

Governing

GPU:

Graphics processing unit

GRASS:

Geographic resources analysis support system

H:

Hyperbolic-shaped

HLL:

Harten, Lax, and Van Leer

HLLC:

HLL contact

HPC:

High performance computing

Ini.:

Initiation

IPL:

The International Programme on Landslides

ITST:

International Tsunami Survey Team

JAMSTEC:

Japan Marine Science and Technology Center

Kg:

Kilogram

km :

Kilometer

Km3 :

Cubic kilometer

L:

Lagrangian

LS:

Level set

LGW:

Landslide-generated wave

LHLL:

Lateralized HLL

LM:

Lumped mass

m:

Meter

m3 :

Cubic meter

MAC:

Marker and cell

M FV-FE:

Mixed FVM-FEM

MM:

Mixture model

MOST:

Method of splitting tsunami model

MPM:

Multi-phase model

MPS:

Moving particle semi-implicit

MRB:

Moving rigid box

M w :

Moment magnitude

NGDC:

National Geophysical Data Center

NHM:

Non-hydrostatic model

NHWAVE:

Non-hydrostatic WAVE

NOAA:

National Oceanic and Atmospheric Administration

NOC:

Non-oscillatory central

NSEs:

Navier–Stokes equations

Num.:

Numerical

PFEs:

Potential flow equations

PNG:

Papua New Guinea

Prop.:

Propagation

PSFA:

Prandtl’s slender flow approximations

RAMMS:

Rapid mass movements model

RANS:

Reynolds-averaged NSEs

Re.:

Rectangular

R-LGW:

Rigid-LGW

RS:

Remote sensing

SAGE:

SAIC adaptive grid Eulerian code

SAL:

Subaerial landslide

SALGW:

Subaerial landslide-generated wave

SAMOS:

Snow avalanche modeling and simulation

SEM:

Surface elevation method

SML:

Submarine landslide

SMLGW:

Submarine landslide-generated wave

SOPAC:

South Pacific Applied Geoscience Commission

SPH:

Smoothed particle hydrodynamics

SPM:

Single phase model

SWEs:

Shallow water equations

THETIS:

A numerical model

THINC:

Tangent of hyperbola for interface capturing

TIME:

Tsunami inundation modeling exchange model

TUNAMI:

Tohoku University’s numerical analysis model for tsunamis

TVB:

Time variable bottom boundary

V:

Varying geometry

VOF:

Volume of fluid

WA:

Width averaged

WAF:

Weighted average flux method

WS-IC:

Water surface-initial condition

SPH:

Smoothed particle hydrodynamics

a :

Wave amplitude

a max :

Maximum wave amplitude

a nmax :

Maximum negative wave amplitude

a pmax :

Maximum positive wave amplitude

a′:

Constant factor

b :

Bottom topography b(x, y)

b′:

A function of f(u)

c z :

Chezy coefficient

c k :

Mass fraction of k-th phase of a mixture

d :

h + εζ

d 0 :

Particle diameter

f :

A function

F :

Force

h :

Water depth

h 0 :

Still water depth

h 0c :

Landslide initial depth due to water surface

h max :

Maximum wave height

h t :

h/∂t

I :

Inertial number \( I=\left|\dot{\gamma}\right|{d}_0/\sqrt{P/{\rho}_s} \)

k :

Number of landslide phases

K D :

Dilatant consistency index

K HB :

Herschel–Bulkley consistency index

l s :

Landslide length

n :

Constant

P :

Pressure

P S :

Water surface pressure BC

r :

Wave distance from landslide impact area

R :

Wave runup height

S :

Landslide thickness

t :

Time

u :

Wave velocity component in x direction

u′:

Landslide velocity in the bottom direction

U :

Velocity vector U(t) = (u(t), v(t), w(t))

\( \overset{-}{u} \) :

Depth-averaged u

v :

Wave velocity component in y direction

V :

Landslide volume

\( \overset{-}{v} \) :

Depth-averaged v

w :

Wave velocity component in z direction

u m :

Bulk velocity of a mixture

w s :

Landslide width

X :

Landslide distance travelled in a given time in x direction

Y :

Landslide distance travelled in a given time in y direction

z′:

Landslide velocity in the sliding slope direction

\( \overset{\sim }{z} \) :

A weighted-average characteristic variable depth

Z :

Time variable landslide location Z(x, y, t)

Z 0 :

The initial landslide geometry

Z α :

Characteristic water depth

α :

Order of accuracy regarding wave non-linearity

α k :

Volume fraction of k-th phase of a mixture

β :

Order of accuracy regarding wave dispersion

γ slide :

Landslide bulk density

\( \dot{\gamma} \) :

Shear rate

δ :

Basal friction angle

ε :

Wave non-linearity index ε = a/h 0

θ :

Slope angle

λ :

Wavelength

μ :

Wave dispersion index μ = h 0/λ

μ B :

Bingham fluid viscosity

μ d :

Dynamic viscosity

μ eff :

Effective friction coefficient

μ(I):

A rheological model

ξ :

Wave height due to water surface

ρ :

Density

ρ K :

Density of the k-th phase of a mixture

ρ m :

Bulk density of a mixture

σ′:

Normal stress

τ :

Shear stress

τ b :

Bottom shear stress

τ c :

Critical shear stress

τ s :

Flow surface shear stress

φ :

Internal friction angle

ψ 0 :

Landslide porosity

Ο:

Order of accuracy

∇:

Gradient vector

(x, y, z):

Cartesian coordinate

References

  • Abadie S, Grilli S, Glockner S (2006) A coupled numerical model for tsunami generated by subaerial and submarine mass failures. In Proc 30th Intl Coastal Engng Conf, San Diego, California, USA, pp 1420-1431. doi:10.1142/9789812709554_0121

  • Abadie S, Morichon D, Grilli S, Glockner S (2008) VOF/Navier-Stokes numerical modeling of surface waves generated by subaerial landslides. La Houille Blanche 1:21–26. doi:10.1051/lhb:2008001

    Article  Google Scholar 

  • Abadie S, Morichon D, Grilli S, Glockner S (2010) Numerical simulation of waves generated by landslide using a multiple-fluid Navier-Stokes model. Coast Eng 57:779–794. doi:10.1016/j.coastaleng.2010.03.003

    Article  Google Scholar 

  • Abadie S, Harris J, Grilli S, Fabre R (2012) Numerical modeling of tsunami waves generated by the flank collapse of the Cumbre Volcano (La Palma, Canary Islands): tsunami source and near field effects. J Geophys Res 117(C05030). doi:10.1029/2011JC007646

  • Abbot MB, McCowan AD, Warren IR (1978) Accuracy of short wave numerical model. J Hydraul Eng 110(10):1287–1301. doi:10.1061/(ASCE)0733-9429(1984)110:10(1287)

    Article  Google Scholar 

  • Abele G (1972) Kinematik und Morphologie spät- und postglazialer Bergst¨urze in den Alpen. Z Geomorph NF Suppl Bd 14:138–149

    Google Scholar 

  • Ahmadi A, Badiei P, Namin M (2007) An implicit two-dimensional non-hydrostatic model for free-surface flows. Int J Numer Methods Fluids 54(9):1055–1074. doi:10.1002/fld.1414

    Article  Google Scholar 

  • Amundson JM, Truffer M, Lüthi MP, Fahnestock M, West M, Motyka RJ (2008) Glacier, fjord, and seismic response to recent large calving events, Jakobshavn Isbræ, Greenland. Geophys Res Lett 35:L22501. doi:10.1029/2008GL035281

    Article  Google Scholar 

  • Ancey C (2007) Plasticity and geophysical flows: a review. J Newtonian Fluid Mech 142:4–35. doi:10.1016/j.jnnfm.2006.05.005

    Article  Google Scholar 

  • Annaka T, Satake K, Sakakiyama T, Yanagisawa K, Shuto N (2007) Logic-tree approach for probabilistic tsunami hazard analysis and it applications to the Japanese Coasts. Pure Appl Geophys 164:577–592. doi:10.1007/978-3-7643-8364-0_17

    Article  Google Scholar 

  • Antobreh AA, Krastel S (2007) Mauritania slide complex: morphology, seismic characterisation and processes of formation. Int J Earth Sci (Geol Rundsch) 96:451–472. doi:10.1007/s00531-006-0112-8

    Article  Google Scholar 

  • Aranson IS, Tsimring S (2002) Continuum theory of partially fluidized granular flows. Phys Rev E 65(061303):1–20. doi:10.1103/physRevE.65.061303

    Google Scholar 

  • Arattano M, Franzi L, Marchi L (2006) Influence of rheology on debris flow simulation. Nat Hazards Earth Syst Sci 6(4):519–528

    Article  Google Scholar 

  • Armanini A, Fraccarollo L, Rosatti G (2009) Two-dimensional simulation of debris flows in erodible channels. Comput Geosci 35:993–1006. doi:10.1016/j.cageo.2007.11.008

    Article  Google Scholar 

  • Armanini A, Larcher M, Nucci E, Dumbser M (2014) Submerged granular channel flows driven by gravity. Adv Water Resour 63:1–10. doi:10.1016/j.advwatres.2013.10.007

    Article  Google Scholar 

  • Assier Rzadkiewicz S, Mariotti C, Heinrich P (1997) Numerical simulation of submarine landslides and their hydraulic effects. J Waterw Port Coast Ocean Eng 123(4):149–157. doi:10.1061/(ASCE)0733-950X(1997)123:4(149)

    Article  Google Scholar 

  • Ataie-Ashtiani B, Farhadi L (2006) A stable moving-particle semi-implicit method for free surface flows. Fluid Dyn Res 38(4):241–256. doi:10.1016/j.fluiddyn.2005.12.002

    Article  Google Scholar 

  • Ataie-Ashtiani B, Najafi-Jilani A (2006) Prediction of submerged landslide generated waves in dam reservoirs: an applied approach. Dam Eng 17(3):135–155

    Google Scholar 

  • Ataie-Ashtiani B, Jalali-Farahani R (2007) Improvement and application of I-SPH method in the simulation of impulsive waves. Proc int conf violent flows, Fukuoka, Japan, pp. 116–121

    Google Scholar 

  • Ataie-Ashtiani B, Najafi-Jilani A (2007) A higher-order Boussinesq-type model with moving bottom boundary: applications to submarine landslide tsunami waves. Int J Numer Methods Fluids 53(6):1019–1048. doi:10.1002/fld.1354

    Article  Google Scholar 

  • Ataie-Ashtiani B, Malek-Mohammadi S (2007) Near field amplitude of sub-aerial landslide generated waves in dam reservoirs. Dam Eng XVII 4:197–222

    Google Scholar 

  • Ataie-Ashtiani B, Malek-Mohammadi S (2008) Mapping impulsive waves due to subaerial landslides into a dam reservoir: case study of Shafa-Roud dam. Dam Eng XVIII 3:1–25

    Google Scholar 

  • Ataie-Ashtiani B, Najafi-Jilani A (2008) Laboratory investigations on impulsive waves caused by underwater landslide. Coast Eng 55(12):989–1004. doi:10.1016/j.coastaleng.2008.03.003

    Article  Google Scholar 

  • Ataie-Ashtiani B, Nik-khah A (2008) Impulsive waves caused by subaerial landslides. Environ Fluid Mech 8(3):263–280. doi:10.1007/s10652-008-9074-7

    Article  Google Scholar 

  • Ataie-Ashtiani B, Shobeyri G (2008) Numerical simulation of landslide impulsive waves by incompressible smoothed particle hydrodynamics. Int J Numer Methods Fluids 56(2):20932. doi:10.1002/fld.1526

    Article  Google Scholar 

  • Ataie-Ashtiani B, Shobeiry G, Farhadi L (2008) Modified incompressible SPH method for simulating free surface problems. Fluid Dyn Res 40(9):637–661. doi:10.1016/j.fluiddyn.2007.12.001

    Article  Google Scholar 

  • Ataie-Ashtiani B, Mansour-Rezaei S (2009) Modification of weakly compressible smoothed particle hydrodynamics for preservation of angular momentum in simulation of impulsive wave problems. Coast Eng J 51(4):363–386. doi:10.1142/S0578563409002077

    Article  Google Scholar 

  • Ataie-Ashtiani B, Yavari-Ramshe S (2011) Numerical simulation of wave generated by landslide incidents in dam reservoirs. Landslides 8:417–432. doi:10.1007/s10346-011-0258-8

    Article  Google Scholar 

  • Auker MR, Sparks RSJ, Siebert L, Crosweller HS, Ewert J (2013) A statistical analysis of the global historical volcanic fatalities record. J Appl Volcanol 2:1–24. doi:10.1186/2191-5040-2-2

    Article  Google Scholar 

  • Baba T, Matsumoto H, Kashiwase K, Hyakudome T, Kaneda Y, Sano M (2011) Micro-bathymetric evidence for the effect of submarine mass movement on tsunami generation during the 2009 Suruga bay earthquake, Japan. In Yamada et al. (eds), Submarine mass movements and their consequences, Advances in Natural and Technological Hazards Research 31, Springer, NY. pp 485-494.

  • Bagnold R (1954) Experiments on a gravity-free dispersion of large solid particles in a Newtonian fluid under shear. Proc R Soc Lond A225:49–63. doi:10.1098/rspa.1954.0186

    Article  Google Scholar 

  • Bardet JP, Synolakis CE, Davies HL, Imamura F, Okal EA (2003) Landslide tsunamis: recent findings and research directions. Pure Appl Geophys 160:1793–1809. doi:10.1007/s00024-003-2406-0

    Article  Google Scholar 

  • Barker GC (1994) Computer simulations of granular materials. In Granular matter: an interdisciplinary approach, pp 35-83, Mehta A (ed.), Springer. doi:10.1007/978-1-4612-4290-1_2

  • Basu D, Green S, Das K, Janetzke R, Stamatakos J (2009) Navier-Stokes simulations of surface waves generated by submarine landslides: Effects of slide geometry and turbulence. SPE Americas E&P Environmental % Safety Conf, San Antonia, Texas, USA, 23-25 March.doi 10.2118/121097-MS

  • Behrens J, Dias F (2015) New computational methods in tsunami science. Phil Trans R Soc A 373:20140382. doi:10.1098/rsta.2014.0382

    Article  Google Scholar 

  • Beji S, Nadaoka K (1996) A formal derivation and numerical modeling of the improved Boussinesq equations for varying depth. J Ocean Eng 23:691–704. doi:10.1016/0029-8018(96)84408-8

    Article  Google Scholar 

  • Bingham EC (1922) Fluidity and plasticity. McGraw-Hill, NY

    Google Scholar 

  • Biscarini C (2010) Computational fluid dynamics modeling of landslide generated water waves. Landslides 7:117–124. doi:10.1007/s10346-009-0194-z

    Article  Google Scholar 

  • Bosa S, Petti M (2011) Shallow water numerical model of the wave generated by the Vajont landslide. Environ Model Softw 26:406–418. doi:10.1016/j.envsoft.2010.10.001

    Article  Google Scholar 

  • Bowen RM (1976) Theory of mixtures, part I. In: Eringen AC (ed) Continuum physics III. Academic, New York

    Google Scholar 

  • Bradford SF (2011) Nonhydrostatic model for surf zone simulation. J Waterw Port Coast Ocean Eng 137(4):163–174. doi:10.1061/(ASCE)WW.1943-5460.0000079

    Article  Google Scholar 

  • Briganti R, Musumeci RE, Bellotti G, Brocchini M, Foti E (2004) Boussinesq modelling of breaking waves: description of turbulence. J Geophys Res Oceans 109:7015. doi:10.1029/2003JC002065

    Article  Google Scholar 

  • Brune S, Babeyko AY, Ladage S, Sobolev SV (2010) Landslide tsunami hazard in the Indonesian Sunda Arc. Nat Hazards Earth Syst Sci 10:589–604. doi:10.5194/nhess-10-589-2010

    Article  Google Scholar 

  • Brocchini M (2013) A reasoned overview on Boussinesq-type models: the interplay between physics, mathematics and numeric. Proc Math Phys Eng Sci 469(2160):20130496. doi:10.1098/rspa.2013.0496

    Article  Google Scholar 

  • Brufau P, Garcia-Navarro P, Ghilardi P, Natale L, Savi F (2000) 1D mathematical modelling of debris flow. J Hydraul Res 38:435. doi:10.1080/00221680009498297

    Article  Google Scholar 

  • Campbell CS (1990) Rapid granular flows. Annu Rev Fluid Mech 22:57. doi:10.1146/annurev.fl.22.010190.000421

    Article  Google Scholar 

  • Cannata M, Marzocchi R, Molinari ME (2012) Modeling of landslide-generated tsunamis with GRASS. Trans GIS 16(2):191–214. doi:10.1111/j.1467-9671.2012.01315.x

    Article  Google Scholar 

  • Capone T (2009) SPH numerical modeling of impulse water waves generated by landslides. PhD thesis, Hydraulic, Transportation, and Roads Department, Sapienza University of Rome

  • Capone T, Panizzo A, Monaghan JJ (2010) SPH modeling of water waves generated by submarine landslides. J Hydraul Res 48:80–84. doi:10.3826/jhr.2010.0006

    Article  Google Scholar 

  • Carracedo J, Day S, Guillou H, Gravestock P (1999) Later stage of volcanic evolution of La Palma, Canary Islands: Rift evolution, giant landslides, and the genesis of the Caldera de Taburiente. Geol Soc Am Bull 111:755–768. doi:10.1130/0016-7606(1999)111<0755:LSOVEO>2.3.CO;2

  • Carvalho RF, Carmo JSA (2007) Landslides into reservoirs and their impacts on banks. Environ Fluid Mech 7:481–493. doi:10.1007/s10652-007-9039-2

    Article  Google Scholar 

  • Castro MJ, González-Vida JM, Macías J, Ortega S, de la Asunción M (2015) Tsunami-HySEA: a GPU-based model for tsunami early warning systems. Proc XXIV Congress on Differential Equations and Applications, Cádiz, June 8-12, pp 1-6.

  • Castro-Orgaz O, Hutter K, Giraldez JV, Hager WH (2014) Nonhydrostatic granular flow over 3D terrain: new Boussinesq-type gravity waves? J Geophys Res Earth Surf 120(1):1–28. doi:10.1002/2014JF003279

    Article  Google Scholar 

  • Cecioni C, Bellotti G (2010) Modeling tsunamis generated by submerged landslides using depth integrated equations. Appl Ocean Res 32:343–350. doi:10.1016/j.apor.2009.12.002

    Article  Google Scholar 

  • Chauchat J, Medale M (2014) A three-dimensional numerical model for dense granular flows based on the μ(1) rheology. J Comput Phys 256:696–712. doi:10.1016/j.jcp.2013.09.004

    Article  Google Scholar 

  • Chen H, Lee CF (2003) A dynamic model for rainfall-induced landslides on natural slopes. Geomorphology 51(4):269–288. doi:10.1016/S0169-555X(02)00224-6

    Article  Google Scholar 

  • Chen NS, Zhou W, Yang CHL, Hu GSH, Gao YC, Han D (2010) The processes and mechanism of failure and debris flow initiation for gravel soil with different clay content. Geomorphology 121(3-4):222–230. doi:10.1016/j.geomorph.2010.04.017

    Article  Google Scholar 

  • Chen Q, Kirby JT, Darlymple RA, Kennedy AB, Cawla A (2000) Boussinesq modeling of wave transformation, breaking, and runup. II: 2D. J Waterway, Port. Coast Ocean Eng 126:48–56. doi:10.1061/(ASCE)0733-950X(2000)126:1(48)

    Google Scholar 

  • Chen X (2003) A fully hydrodynamic model for three-dimensional, free-surface flows. Int J Numer Methods Fluids 42(9):929–952. doi:10.1002/fld.557

    Article  Google Scholar 

  • Christen M, Kowalski J, Bartelt P (2010) Ramms: numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg Sci Technol 63(1-2):1–14. doi:10.1016/j.coldregions.2010.04.005

    Article  Google Scholar 

  • Christensen ED (2006) Large eddy simulation of spilling and plunging breakers. Coast Eng 53:463–485. doi:10.1016/j.coastaleng.2005.11.001

    Article  Google Scholar 

  • Cleary P, Prakash M (2004) Discrete-element modelling and smoothed particle hydrodynamics: potential in the environmental sciences. Philos Trans R Soc Lond 362:2003–2030. doi:10.1098/rsta.2004.1428

    Article  Google Scholar 

  • Coulomb CA (1773) Sur une application des régles de maxima & minima `a quelques problèmes de statique relatifs `a l’architecture. M´emoires de Math´ematique et de Physique, Acad´emie Royale de Sciences, Imprimerie Royale, Paris, pp 343-382.

  • Coussot P (1994) Steady, laminar flow of concentrated mud suspensions in open channel. J Hydraul Res 32(4):535–559. doi:10.1080/00221686.1994.9728354

    Article  Google Scholar 

  • Coussot P, Meunier M (1996) Recognition, classification and mechanical description of debris flows. Earth Sci Rev 40(3-4):209–227. doi:10.1016/0012-8252(95)00065-8

    Article  Google Scholar 

  • Coussot P (1997) Mudflow rheology and dynamics. Int Association for Hydraulic Res (IAHR) Monograph, Balkema, Rotterdam, The Netherlands.

  • Couston LA, Mei CC, Alam MR (2015) Landslide tsunamis in lakes. J Fluid Mech 772:784–804. doi:10.1017/jfm.2015.190

    Article  Google Scholar 

  • Cremonesi M, Frangi A, Perego U (2011) A Lagrangian finite element approach for the simulation of water-waves induced by landslides. Comput Struct 89:1086–1093. doi:10.1016/j.compstruc.2010.12.005

    Article  Google Scholar 

  • Crespo AJC, Domínguez JM, Rogers BD, Gómez-Gesteira M, Longshaw S, Canelas R, Vacondio R, Barreiro A, García-Feal O (2015) DualSPHysics: open-source parallel CFD solver based on smoothed particle hydrodynamics (SPH). Comput Phys Commun 187(2):204–216. doi:10.1016/j.cpc.2014.10.004

    Article  Google Scholar 

  • Crosta GB, Imposimato S, Roddeman DG (2006) Continuum numerical modelling of flow-like landslides. In: Evans SG, Scarascia Mugnozza G, Strom A, Hermanns R (eds) NATO ARW, Landslides from massive rock slope failure. NATO Sci Ser Earth Environ Sci 49:211–232

    Article  Google Scholar 

  • Davies DR, Wilson CR, Kramer SC (2011) Fluidity: a fully unstructured anisotropic adaptive mesh computational modeling framework for geodynamics. Geochemistry, Geophysics, Geosystems, AGU and Geomechanical Society 12(6), 20 pp. doi: 10.1029/2011GC003551

  • Day SJ, Watts P, Grilli ST, Kirby JT (2005) Mechanical models of the 1975 Kalapana, Hawaii earthquake and tsunami. Mar Geol 215:59–92. doi:10.1016/j.margeo.2004.11.008

    Article  Google Scholar 

  • Decaulne A, Sæmundsson O, Pétursson HG, Jónsson HP, Sigursson IA (2010) A large rock avalanche onto Morsarjökull glacier, south-east Iceland. Its implications for ice-surface evolution and glacier dynamics. Iceland in the Central Northern Atlantic: hotspot, sea currents and climate change, May 2010, Plouzané, France.

  • Denlinger RP, Iverson RM (2001) Flow of variably fluidized granular masses across three dimensional terrain. 2. Numerical predictions and experimental tests. J Geophys Res 106(B1):537–552. doi:10.1029/2000JB900329

    Article  Google Scholar 

  • Denlinger RP, Iverson RM (2004) Granular avalanches across irregular three-dimensional terrain: 1. theory and computation. J Geophys Res 109(F01014). doi: 10.1029/2003JF000085

  • Di Risio M, Sammarco P (2008) Analytical modeling of landslide-generated waves. J Waterw Port Coast Ocean Eng 134(1):53–60. doi:10.1061/(ASCE)0733-950X(2008)134:1(53)

    Article  Google Scholar 

  • Di Risio M, Bellotti G, Panizzo A, De Girolamo P (2009) Three-dimensional experiments on landslide generated waves at a sloping coast. Coast Eng 56:659–671. doi:10.1016/j.coastaleng.2009.01.009

    Article  Google Scholar 

  • Di Risio M, De Girolamo P, Beltrami G (2011) Forecasting landslide generated tsunamis: a review. The Tsunami Threat - Research and Technology (ed Mörner NA), ISBN 978-953-307-552-5/ISSN, 26 pp.

  • Dingemans M (1997) Water wave propagation over uneven bottoms. Advanced series on ocean engineering 13, World Scientific Singapore.

  • Dodd N (1998) Numerical model of wave runup, overtopping, and regeneration. J Waterw Port Coast Ocean Eng 124:73–81. doi:10.1061/(ASCE)0733-950X(1998)124:2(73)

    Article  Google Scholar 

  • Dominey-Howes (2007) Geological and historical records of tsunami in Australia. Mar Geol 239:99–123. doi:10.1016/j.margeo.2007.01.010

    Article  Google Scholar 

  • Domnik B, Pudasaini SP (2012) Full two-dimensional rapid chute flows of simple viscoplastic granular materials with a pressure-dependent dynamic slip-velocity and their numerical simulations. J Non-Newtonian Fluid Mech 173:72–86. doi:10.1016/j.jnnfm.2012.03.001

    Article  Google Scholar 

  • Dutykh D, Kalisch H (2013) Boussinesq modeling of surface waves due to underwater landslides. Nonlinear Process Geophys 20:267–285. doi:10.5194/npg-20-267-2013

    Article  Google Scholar 

  • Egashira S, Ashida K, Tanonaka S, Takahashi T (1991) Bed-load formula derived from constitutive equations of solid particle–water mixture. Bull Disas Prev Res Inst, Kyoto Univ, Japan 34(B):261.

  • Emmer A, Vilímek IV, Huggel IC, Klimeš IJ, Schaub IY (2016) Limits and challenges to compiling and developing a database of glacial lake outburst floods. doi:10.1007/s10346-016-0686-6

  • Enet F, Grilli ST, Watts P (2003) Laboratory experiments for tsunamis generated by underwater landslides: comparison with numerical modeling. Proc 13th Offshore and Polar Engng Conf (ISOPE03), Honolulu, USA, pp 372-379.

  • Enet F, Grilli ST (2005) Tsunami landslide generation: modeling and experiments. Proc 5th Intl on Ocean Wave Measurement and Analysis (WAVES 2005), Madrid, Spain, IAHR Pub, pp 88-98.

  • Enet F, Grilli ST (2007) Experimental study of tsunami generation by three dimensional rigid underwater landslides. J Waterw Port Coast Ocean Eng 133(6):442–454. doi:10.1061/(ASCE)0733-950X(2007)133:6(442)

    Article  Google Scholar 

  • Evers FM, Hager WH (2015) Impulse wave generation: comparison of free granular with mesh-packed slides. J Mar Sci Eng 3:100–110. doi:10.3390/jmse3010100

    Article  Google Scholar 

  • Eymard E, Gallou T, Hilhorst D, Slimane Y (1998) Finite volumes and nonlinear diffusion equations. RAIRO Math Model Num Anal 32(6):747–761

    Google Scholar 

  • Fenton JD (1985) A fifth-order stokes theory for steady waves. J Waterway, Port Coastal and Ocean Engineering (ASCE) 111:216–234. doi:10.1061/(ASCE)0733-950X(1985)111:2(216)

    Article  Google Scholar 

  • Fernández-Nieto ED, Bouchut F, Bresch B, Castro Díaz MJ, Mangeney A (2008) A new Savage–Hutter type model for submarine avalanches and generated tsunami. J Comput Phys 227:7720–7754. doi:10.1016/j.jcp.2008.04.039

    Article  Google Scholar 

  • Fernández-Nieto ED, Gallardo JM, Vigneau P (2014) Efficient numerical schemes for viscoplastic avalanches. Part 1: the 1D case. J Comput Phys 264:55–90. doi:10.1016/j.jcp.2014.01.026

    Article  Google Scholar 

  • Fine IV, Rabinovich AB, Thomson RE, Kulikov EA (2003) Numerical modeling of tsunami generation by submarine and subaerial landslides. Submarine landslides and tsunamis, Yalçıner AC, Pelinovsky E, Okal E, Synolakis CE (eds) Kluwer, Dordrecht/Boston, 21:69-88. doi:10.1007/978-94-010-0205-9_9

  • Fine IV, Rabinovich AB, Bornhold BD, Thomson RE, Kulikov EA (2005) The Grand Banks landslide generated tsunami of November 18, 1929: preliminary analysis and numerical modeling. Mar Geol 215(1-2):45–57. doi:10.1016/j.margeo.2004.11.007

    Article  Google Scholar 

  • Fluidity manual (2013), Version 4.1, Applied Modelling and Computation Group (AMCG), Department of Earth Science and Engineering, South Kensington Campus, Imperial College London, London, SW7 2AZ, UK. http://amcg.ese.ic.ac.uk/Fluidity

  • Förster A, Ellis RG, Henrich R, Krastel S, Kopf AJ (2010) Geotechnical characterization and strain analyses of sediment in the Mauritania Slide Complex, NW-Africa. Mar Pet Geol 27:1175–1189. doi:10.1016/j.marpetgeo.2010.02.013

    Article  Google Scholar 

  • Freilich MH, Goza RT (1984) Nonlinear effects on shoaling surface gravity waves. Philosophical Trans Royal society, London, UK A311:1–41. doi:10.1098/rsta.1984.0019

    Article  Google Scholar 

  • Freilich MH, Goza RT, Elgar DL (1993) Field test of two-dimensional Boussinesq shoaling wave model. Meeting No 93, first joint ASCE/ASME/SES meeting.

  • Frenette R, Zimmermann T, Eyheramendy D (2002) Unified modeling of fluid or granular flows on dam-break case. J Hydraul Eng 128:299–305. doi:10.1061/(ASCE)0733-9429(2002)128:3(299)

    Article  Google Scholar 

  • Fritz HM, Hager WH, Minor HE (2001) Lituya Bay case: rockslide impact and wave run-up. Sci Tsunami Hazards 19(1):3–22

    Google Scholar 

  • Fritz HM (2002a) Initial phase of landslide generated impulse waves. Thesis Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich, Swiss ETH No 14’871, Swiss Federal Inst Techn, Zürich, ISSN 0374-0056.

  • Fritz HM (2002b) PIV applied to landslide generated impulse waves. Laser techniques for fluid mechanics, Adrian RJ et al. (eds.), Springer, NY, pp 305–320. doi: 10.1007/978-3-662-08263-8_18

  • Fritz HM, Hager WH, Minor HE (2003a) Landslide generated impulse waves. 1. Instantaneous flow fields. Exp Fluids 35(6):505–519. doi:10.1007/s00348-003-0659-0

    Article  Google Scholar 

  • Fritz HM, Hager WH, Minor HE (2003b) Landslide generated impulse waves. 2. Hydrodynamic impact craters. Exp Fluids 35(6):520–532. doi:10.1007/s00348-003-0660-7

    Article  Google Scholar 

  • Fritz HM, Hager WH, Minor HE (2004) Near field characteristics of landslide generated impulse waves. J Waterw Port Coast Ocean Eng 130(6):287–302. doi:10.1061/(ASCE)0733-950X(2004)130:6(287)

    Article  Google Scholar 

  • Fructus D, Grue J (2007) An explicit method for the nonlinear interaction between water waves and variable and moving bottom topography. J Comput Phys 222:720–739. doi:10.1016/j.jcp.2006.08.014

    Article  Google Scholar 

  • Fryer GJ, Watts P, Pratson LF (2004) Source of the great tsunami of 1 April 1946: a landslide in the upper Aleutian forearc. Mar Geol 203:201–218. doi:10.1016/S0025-3227(03)00305-0

    Article  Google Scholar 

  • Fu L, Jin YC (2015) Investigation of non-deformable and deformable landslides using meshfree method. Ocean Eng 109:192–206. doi:10.1016/j.oceaneng.2015.08.051

    Article  Google Scholar 

  • Fuhrman DR, Madsen PA (2009) Tsunami generation, propagation, and run-up with a high-order Boussinesq model. Coast Eng 56:747–758. doi:10.1016/j.coastaleng.2009.02.004

    Article  Google Scholar 

  • Gabl R, Seibl J, Gems B, Aufleger M (2015) 3-D-numerical approach to simulate an avalanche impact into a reservoir. Nat Hazards Earth Syst Sci, Discuss 3:4121–4157. doi:10.5194/nhessd-3-4121-2015

    Article  Google Scholar 

  • MiDi GDR (2004) On dense granular flows. Eur Phys J E 14:341–365. doi:10.1140/epje/i2003-10153-0

    Article  Google Scholar 

  • Geersen J, Voelker D, Behrmann JH, Reichert C, Krastel S (2011) Pleistocene giant slope failures offshore Arauco Peninsula. Southern Chile J Geol Soc Lond 168:1–12. doi:10.1144/0016-76492011-027

    Article  Google Scholar 

  • Geist EL (2000) Origin of the 17 July, 1998 Papua New Guinea tsunami: earthquake or landslide? Seismol Res Lett 71:344–351. doi:10.1785/gssrl.71.3.344

    Article  Google Scholar 

  • Geist EL, Parsons T (2006) Probabilistic analysis of tsunami hazards. Nat Hazards 37:277–314. doi:10.1007/s11069-005-4646-z

    Article  Google Scholar 

  • Geist EL, Parsons T (2009) Assessment of source probabilities for potential tsunamis affecting the U.S. Atlantic coast. Mar Geol 264:98–108. doi:10.1016/j.margeo.2008.08.005

    Article  Google Scholar 

  • George DL, Iverson RM (2011) A two-phase debris-flow model that includes coupled evolution of volume fractions, granular dilatancy, and pore-fluid pressure. Italy J Eng Geol Environ. doi:10.4408/IJEGE.2011-03.B-047

    Google Scholar 

  • Georgiopoulou A, Masson DG, Wynn RB, Krastel S (2010) Sahara slide: age, initiation, and processes of a giant submarine slide. Geochem Geophys Geosyst 11:Q07014. doi:10.1029/2010GC003066

    Article  Google Scholar 

  • Giachetti T, Paris R, Kelfoun K, Pérez-Torrado FJ (2011) Numerical modelling of the tsunami triggered by the Güìmar debris avalanche, Tenerife (Canary Islands): Comparison with field-based data. Mar Geol 284(1-4):189–202. doi:10.1016/j.margeo.2011.03.018

    Article  Google Scholar 

  • Gisler G, Weaver R, Gittings ML (2006) SAGE calculations of the tsunami threat from La Palma. Sci Tsunami Haz 24(4):288–301

    Google Scholar 

  • Gisler GR (2008) Tsunami simulations. Annu Rev Fluid Mech 40:71–90. doi:10.1146/annurev.fluid.40.111406.102208

    Article  Google Scholar 

  • Gittings ML (1992) 1992 SAIC’s Adaptive Grid Eulerian Code. Defense Nuclear Agency Numerical Methods Symposium, pp 28-30.

  • Glimsdal S, Pedersen GK, Harbitz CB, Løvholt F (2013) Dispersion of tsunamis: does it really matter? Nat Hazards Earth Syst Sci 13:1507–1526. doi:10.5194/nhess-13-1507-2013

    Article  Google Scholar 

  • Gobbi MF, Kirby JT (1999) Wave evolution over submerged sills: tests of a high-order Boussinesq model. J Coastal Eng 37:57–96. doi:10.1016/S0378-3839(99)00015-0

    Article  Google Scholar 

  • Gobbi MF, Kirby JT, Wei G (2000) A fully nonlinear Boussinesq model for surface waves, II. Extension to O(kh4). J Fluid Mech 405:181–210. doi:10.1017/S0022112099007247

    Article  Google Scholar 

  • Gómez-Gesteira M, Rogers BD, Dalrymple RA, Crespo AJC (2010) State-of-the-art of classical SPH for free-surface flows. J Hydraul Res 48:6–27. doi:10.3826/jhr.2010.0012

    Article  Google Scholar 

  • Gómez-Gesteira M, Rogers BD, Crespo AJC, Dalrymple RA, Narayanaswamy M, Dominguez JM (2012a) SPHysics—development of a free-surface fluid solver—part 1: theory and formulations. Comput Geosci 48:289–299. doi:10.1016/j.cageo.2012.02.029

    Article  Google Scholar 

  • Gómez-Gesteira M, Crespo AJC, Rogers BD, Dalrymple RA, Dominguez JM, Barreiro A (2012b) SPHysics—development of a free-surface fluid solver—part 2: efficiency and test cases. Comput Geosci 48:300–307. doi:10.1016/j.cageo.2012.02.028

    Article  Google Scholar 

  • González FI, Geist EL, Jaffe B, et al. (2009) Probabilistic tsunami hazard assessment at Seaside, Oregon, for near- and far-field seismic sources. J Geophys Res 114:C11023. doi:10.1029/2008JC005132

    Article  Google Scholar 

  • Goto C, Ogawa Y (1992) Numerical method of tsunami simulation with the leap-frog scheme. Dept of Civil Eng, Tohoku Univ, Translated for the TIME project by Shuto N.

  • Goto C, Ogawa Y (1997) Numerical method of tsunami simulation with the Leapfrog scheme. IUGG/IOC Time Project, IOC Manuals and Guides no 35, UNESCO, by Imamura F, Tohoku University, Sendai, Japan.

  • Gotoh H, Shibahara T, Sakai T (2001) Sub-particle-scale turbulence model for the MPS method- Lagrangian flow model for hydraulic engineering. Comput Fluid Dyn J 9(4):339–347

    Google Scholar 

  • Gotoh H, Ikari H, Memita T, Sakai T (2005) Lagrangian particle method for simulation of wave overtopping on a vertical seawall. Coast Eng J 47(2-3):157–181. doi:10.1142/S0578563405001239

    Article  Google Scholar 

  • Gotoh MTS (2006) Key issues in the particle method for computation of wave breaking. Coast Eng 53:171–179. doi:10.1016/j.coastaleng.2005.10.007

    Article  Google Scholar 

  • Gray JMNT, Wieland M, Hutter K (1999) Gravity-driven free surface flow of granular avalanches over complex basal topography. Proc R Soc Lond A 455:1841–1874. doi:10.1098/rspa.1999.0383

    Article  Google Scholar 

  • Gray JMNT, Tai YC, Noelle S (2003) Shock waves, dead-zones and particle-free regions in rapid granular free-surface flows. J Fluid Mech 491:161–181. doi:10.1017/S0022112003005317

    Article  Google Scholar 

  • Gray JMNT, Edwards AN (2014) A depth-averaged μ(I)-rheology for shallow granular free-surface flows. J Fluid Mech 755:503–534. doi:10.1017/jfm.2014.450

    Article  Google Scholar 

  • Graziani L, Maramai A, Tinti S (2006) A revision of the 1783–1784 Calabrian (southern Italy) tsunamis. Nat Hazards Earth Syst Sci 6:1053–1060

    Article  Google Scholar 

  • Grilli ST, Watts P (1999) Modeling of waves generated by a moving submerged body, Applications to underwater landslides. Eng Anal Bound Elem 23:645–656. doi:10.1016/S0955-7997(99)00021-1

    Article  Google Scholar 

  • Grilli ST, Guyenne P, Dias F (2000) Modeling of overturning waves over arbitrary bottom in a 3D numerical wave tank. Proc the 10th Int Offshore and Polar Eng Conf, Seattle, USA III:221-228.

  • Grilli ST, Guyenne P, Dias F (2001) A fully nonlinear model for three-dimensional overturning waves over arbitrary bottom. Int J Numer Methods Fluids 35(7):829–867. doi:10.1002/1097-0363(20010415)35:7<829::AID-FLD115>3.0.CO;2-2

  • Grilli ST, Vogelmann S, Watts P (2002) Development of a 3D numerical wave tank for modeling tsunami generation by underwater landslides. Eng Anal Bound Elem 26(4):301–313. doi:10.1016/S0955-7997(01)00113-8

    Article  Google Scholar 

  • Grilli ST, Watts P (2005) Tsunami generation by submarine mass failure. Part I: modeling, experimental validation, and sensitivity analysis. J Waterw Port Coast Ocean Eng 131(6):283–297. doi:10.1061/(ASCE)0733-950X(2005)131:6(283)

    Article  Google Scholar 

  • Grilli ST, Taylor ODS, Baxter DP, Maretzki S (2009) Probabilistic approach for determining submarine landslide tsunami hazard along the upper East Coast of the United States. Mar Geol 264(1-2):74–97. doi:10.1016/j.margeo.2009.02.010

    Article  Google Scholar 

  • Grilli ST, Dias F, Guyenne P, Fochesato C, Enet F (2010) Progress in fully nonlinear potential flow modeling of 3D extreme ocean waves. In Advances in numerical simulation of nonlinear water waves (Series in Advances in coastal and ocean engineering 11, ISBN: 978-981-283-649-6), World Scientific Publishing Co Pte Ltd, 55 pps. doi:10.1142/9789812836502_0003

  • Grilli ST, O’Reilly C, Harris JC, Tajalli Bakhsh T, Tehranirad B, Banihashemi S, Kirby JT, Baxter CDP, Eggeling T, Ma G, Shi F (2015) Modeling of SMF tsunami hazard along the upper US East Coast: detailed impact around Ocean City, MD. Nat Hazards 76:705–746. doi:10.1007/s11069-014-1522-8

    Article  Google Scholar 

  • Haflidason H, Sejrup HP, Nygard A, Mienert J, Bryn P, Lien R, Forsberg CF, Berg K, Masson DG (2004) The Storegga slide: architecture, geometry and slide development. Mar Geol 213:201–234

    Article  Google Scholar 

  • Hampton MA, Lee HJ, Locat J (1996) Submarine landslides. Rev Geophys 34(1):33–59. doi:10.1029/95RG03287

    Article  Google Scholar 

  • Harbitz CB (1992) Model simulations of tsunamis generated by the Storegga slides. Mar Geol 105:1–21. doi:10.1016/0025-3227(92)90178-K

    Article  Google Scholar 

  • Harbitz CB, Pedersen G (1992) Model theory and analytical solutions for large water waves due to landslides. Preprint Ser 4, Dept of Mathematics, University of Oslo, Oslo, Norway

  • Harbitz CB, Pedersen G, Gjevik B (1993) Numerical simulations of large water waves due to landslides. J Hydraul Eng 119:1325–1342. doi:10.1061/(ASCE)0733-9429(1993)119:12(1325)

    Article  Google Scholar 

  • Harbitz CB, Løvholt F, Pedersen G, Masson DG (2006) Mechanisms of tsunami generation by submarine landslides: a short review. Nor J Geol 86:255–264 http://eprints.soton.ac.uk/id/eprint/42982

    Google Scholar 

  • Harbitz CB, Glimsdal S, Løvholt F, Kveldsvik V, Pedersen GK, Jensen A (2014a) Rockslide tsunamis in complex fjords: from an unstable rock slope at Åkerneset to tsunami risk in western Norway. Coast Eng 88:101–122. doi:10.1016/j.coastaleng.2014.02.003

    Article  Google Scholar 

  • Harbitz CB, Lovhølt F, Bungum H (2014b) Submarine landslide tsunamis: how extreme and how likely? Nat Hazards 72:1341–1374. doi:10.1007/s11069-013-0681-3

    Article  Google Scholar 

  • Harlow FH, Welch JE (1965) Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys Fluids 8:2182–2189. doi:10.1063/1.1761178

    Article  Google Scholar 

  • Hassan HS, Ramadan KT, Hanna SN (2010) Generation and propagation of tsunami by a moving realistic curvilinear slide shape with variable velocities in linearized shallow-water theory. Engineering 2:529–549. doi:10.4236/eng.2010.27070

    Article  Google Scholar 

  • Haugen KB, Lovholt F, Harbitz CB (2005) Fundamental mechanisms for tsunami generation by submarine flows in idealised geometries. Mar Pet Geol 22:209–217. doi:10.1016/j.marpetgeo.2004.10.016

    Article  Google Scholar 

  • He S, Liu W, Ouyang C, Li X (2014) A two-phase model for numerical simulation of debris flows. Nat Hazard Earth Syst Sci Discuss 2:2151–2183. doi:10.5194/nhessd-2-2151-2014

    Article  Google Scholar 

  • Heidarzadeh M, Krastel S, Yalciner AC (2013) The state-of-the-art numerical tools for modeling landslide tsunamis: a short review. Chapter 43:483–495. doi:10.1007/978-3-319-00972-8_43

    Google Scholar 

  • Heinrich P (1992) Nonlinear water waves generated by submarine and aerial landslides. J Wtrwy Port Coast Oc Eng ASCE 118(3):249–266. doi:10.1061/(ASCE)0733-950X(1992)118:3(249)

    Article  Google Scholar 

  • Heinrich P, Mangeney A, Guibourg S, Roche R, Boudon G, Cheminee JL (1998) Simulation of water waves generated by a potential debris avalanche in Montserrat, Lesser Antilles. Geophys Res Lett 25(19):3697–3700. doi:10.1029/98GL01407

    Article  Google Scholar 

  • Heinrich P, Piatanesi A, Hébert H (2001) Numerical modelling of tsunami generation and propagation from submarine slumps: the 1998 Papua New Guinea event. Geophys J Int 145:97–111. doi:10.1111/j.1365-246X.2001.00336.x

    Article  Google Scholar 

  • Heller V, Hager WH, Minor HE (2009) Landslide generated impulse waves in reservoirs—basics and computation. VAW-Mitteilung 211, Boes R (ed.), ETH Zurich, Zurich. http://eprints.soton.ac.uk/id/eprint/74112

  • Heller V, Kinnear RD (2010) Discussion of (2009) “Experimental investigation of impact generated tsunami; related to a potential rock slide, Western Norway” by Sælevik G, Jensen A, Pedersen G (Coastal Eng 56:897-906). Coast Eng 57(8):773–777. doi:10.1016/j.coastaleng.2010.02.008

    Article  Google Scholar 

  • Heller V, Hager WH (2010) Impulse product parameter in landslide generated impulse waves. J Waterw Port C-ASCE 136(3):145155. doi:10.1061/(ASCE)WW.1943-5460.0000037

    Article  Google Scholar 

  • Heller V, Hager WH (2011) Wave types of landslide generated impulse waves. Ocean Eng 38(4):630–640. doi:10.1016/j.oceaneng.2010.12.010

    Article  Google Scholar 

  • Heller V, Moalemi M, Kinnear RD, Adams RA (2012) Geometrical effects on landslide-generated tsunamis. J Waterw Port C-ASCE 138(4):286–298. doi:10.1061/(ASCE)WW.1943-5460.0000130

    Article  Google Scholar 

  • Heller V, Spinneken J (2013) Improved landslide-tsunami prediction: effects of block model parameters and slide model. J Geophys Res Oceans 118:1489–1507. doi:10.1002/jgrc.20099

    Article  Google Scholar 

  • Heller V, Hager WH (2014) A universal parameter to predict subaerial landslide tsunamis? J Mar Sci Eng 2:400–412. doi:10.3390/jmse2020400

    Article  Google Scholar 

  • Heller V, Spinneken J (2015) On the effect of the water body geometry on landslide–tsunamis: physical insight from laboratory tests and 2D to 3D wave parameter transformation. Coast Eng 104:113–134. doi:10.1016/j.coastaleng.2015.06.006

    Article  Google Scholar 

  • Heller V, Bruggemann M, Spinneken J, Rogers BD (2016) Composite modelling of subaerial landslide–tsunamis in different water body geometries and novel insight into slide and wave kinematics. Coast Eng 109:20–41. doi:10.1016/j.coastaleng.2015.12.004

    Article  Google Scholar 

  • Henkel S, Strasser M, Schwenk T, Hanebuth TJJ, Hüsener J, Arnold GL, Winkelmann D, Formolo M, Tomasini J, Krastel S, Kasten S (2011) An interdisciplinary investigation of a recent submarine mass transport deposit at the continental margin off Uruguay. Geochem Geophys Geosyst 12(Q08009). doi: 10.1029/2011GC003669

  • Hermanns RL, Oppikofer Th, Roberts NJ, Sandoy G (2014) Catalogue of historical displacement waves and landslide-triggered tsunamis in Norway. Lollino et al. (eds), Eng Geol Soc Territory 4:63-66. doi: 10.1007/978-3-319-08660-6_13

  • Hill J, Piggott MD, Collins GS, Smith RC, Allison PA (2013) Multi-scale modeling of submarine landslide-generated tsunami. AGU Bibliography code: 2013AGUFMNH41A1688H.

  • Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225. doi:10.1016/0021-9991(81)90145-5

    Article  Google Scholar 

  • Holcomb RT, Searle RC (1991) Large landslides from oceanic volcanoes. Mar Geotechnol 10:19–32. doi:10.1080/10641199109379880

    Article  Google Scholar 

  • Hoque A (2002) Air bubble entrainment by breaking waves and associated energy dissipation. PhD thesis, Dept of Architecture and Civil Eng, Toyohashi Univ of Technology, Japan, 151 pp.

  • Hori C, Gotoh H, Ikari H, Khayyer A (2011) GPU-acceleration for moving particle semi-implicit method. Comput Fluids 51(1):174–183. doi:10.1016/j.compfluid.2011.08.004

    Article  Google Scholar 

  • Hornbach MJ et al. (2010) High tsunami frequency as a result of combined strike-slip faulting and coastal landslides. Nat Geosci 3(11):783–788. doi:10.1038/NGEO975

    Article  Google Scholar 

  • Horrillo J, Wood A, Kim GB, Parambath A (2013) A simplified 3-D Navier-Stokes numerical model for landslide-tsunami: application to the Gulf of Mexico. J Geophys Res: Oceans 118:6934–6950. doi:10.1002/2012JC008689

    Article  Google Scholar 

  • Hsiao SC, Lin TC (2010) Tsunami-like solitary waves impinging and overtopping an impermeable seawall: experiment and RANS modeling. Coast Eng 57:1–18. doi:10.1016/j.coastaleng.2009.08.004

    Article  Google Scholar 

  • Huang TY, Hsiao SC, Wu NJ (2013) Nonlinear wave propagation and run-up generated by subaerial landslides modeled using meshless method. Comput Mech 53(2):203–214. doi:10.1007/s00466-013-0902-3

    Article  Google Scholar 

  • Huber A (1982) Impulse waves in Swiss lakes as a result of rock avalanches and bank slides. Experimental results for the prediction of the characteristic numbers of these waves. Proc 14th Congrès des Grands Barrages, Rio de Janeiro, ICOLD, Paris, pp 455-476.

  • Huber A, Hager WH (1997) Forecasting impulse waves in reservoirs. Proc 19th Congrès des Grands Barrages, Florence, ICOLD, Paris, pp 993-1005.

  • Hungr O (1995) A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Can Geotech J 32:610–623. doi:10.1139/t95-063

    Article  Google Scholar 

  • Hungr O, Evans SG, Bovis MJ, Hutchinson JN (2001) A review of the classification of landslides of the flow type. Environmental & Engineering Geoscience VII(3):221-238. doi:10.2113/gseegeosci.7.3.221

  • Hungr O (2008) Simplified models of spreading flow of dry granular material. Can Geotech J 45:1156–1168. doi:10.1139/T08-059

    Article  Google Scholar 

  • Hutchinson JN (1986) A sliding-consolidation model for flow slides. Can Geotech J 23:115–126. doi:10.1139/t86-021

    Article  Google Scholar 

  • Hutter K, Greve R (1993) Two-dimensional similarity solutions for finite-mass granular avalanches with Coulomb- and viscous-type frictional resistance. J Glaucoma 39:357–372. doi:10.3198/1993JOG39-132-357-372

    Google Scholar 

  • Hutter H, Svendsen B, Rickenmann D (1996) Debris flow modelling: a review. Contin Mech Thermodyn 8:1

    Article  Google Scholar 

  • Imamura F, Goto C (1988) Truncation error in numerical tsunami simulation by the finite difference method. Coast Eng Jpn 31(2):245–263. doi:10.2208/jscej.1986.375_241

    Google Scholar 

  • Imamura F, Imteaz MA (1995) Long waves in two-layers: governing equations and numerical model. Sci Tsunami Hazards 13(1):3–24

    Google Scholar 

  • Imamura F, Gica EC (1996) Numerical model for tsunami generation subaqueous landslide along a coast. Sci Tsunami Hazards 14:13–28

    Google Scholar 

  • Imran J, Parker G, Locat J, Lee H (2001) 1D numerical model of muddy subaqueous and subaerial debris flows. J Hydraul Eng 127:959–968. doi:10.1061/(ASCE)0733-9429(2001)127:11(959)

    Article  Google Scholar 

  • Imteaz MMA, Imamura F (1995) Long waves in two-layers: governing equations and numerical model. Sci Tsunami Hazards 13:3–24

    Google Scholar 

  • Ioualalen M, Pelletier B, Watts P, Regnier M (2006) Numerical modeling of the 26 November 1999 Vanuatu tsunami. J Geophys Res 111(C06030). doi:10.1029/2005JC003249

  • Ioualalen M, Migeon S, Sardoux O (2010) Landslide tsunami vulnerability in the Ligurian Sea: case study of the 1979 October 16 Nice international airport submarine landslide and of identified geological mass failures. Geophys J Int 181:724–740. doi:10.1111/j.1365-246X.2010.04572.x

    Google Scholar 

  • Iverson R (1997a) The physics of debris flows. Rev Geophys 35:245–296. doi:10.1029/97RG00426

    Article  Google Scholar 

  • Iverson RM (1997b) Hydraulic modeling of unsteady debris-flow surges with solid-fluid interactions. Debris-flow hazards mitigation: mechanics, prediction, and assessment. ASCE, NY, pp 550-560.

  • Iverson RM, Vallance JW (2001) New views of granular mass flows. Geology 29(2):115–118. doi:10.1130/0091-7613(2001)029<0115:NVOGMF>​2.0.CO;2

  • Iverson RM, Denlinger RP (2001) Flow of variably fluidized granular masses across three-dimensional terrain 1. Coulomb mixture theory. J Geophys Res 106(B1):537–552. doi:10.1029/2000JB900329

    Article  Google Scholar 

  • Iwasaki S (1987) On the estimation of a tsunami generated by a submarine landslide. Proc Intl Tsunami Symp, Vancouver, BC, pp 134-38.

  • JAMSTEC (2011) YOKOSUKA Cruise Report YK11-E06 Leg 1, Japan Agency for Marine-Earth Science and Technology. JAMSTEC; July 11 2011–July 28 2011. (56 pp, http://www.godac.jamstec.go.jp/catalog/data/doc catalog/media-/YK11-E06leg1 all.pdf).

  • Jiang L, LeBlond PH (1992) The coupling of a submarine slide and the surface waves which it generates. J Geophys Res 97(C8):731–744. doi:10.1029/92JC00912

    Article  Google Scholar 

  • Jiang Z, Haff PK (1993) Multiparticle simulation methods applied to the micromechanics of bed load transport. Water Resour Res 29(2):399–412. doi:10.1029/92WR02063

    Article  Google Scholar 

  • Jørstad FA (1968) Waves generated by landslides in Norwegian fjords and lakes. Norw Geotech Inst Publ 79:13–31

    Google Scholar 

  • Joyce KE, Belliss SE, Samsonov SV, McNeill SJ, Glassey PJ (2009) A review of the status of satellite remote sensing and image processing techniques for mapping natural hazards and disasters. Prog Phys Geogr 33(2):183–207. doi:10.1177/0309133309339563

    Article  Google Scholar 

  • Juez C, Murillo J, García-Navarro P (2013) 2D simulation of granular flow over irregular steep slopes using global and local coordinates. J Comput Phys 255:166–204. doi:10.1016/j.jcp.2013.08.002

    Article  Google Scholar 

  • Kardos J (2013) Evaluating realistic tsunami simulations with SWE model on GPU-enabled clusters. USI Technical Report Series in Informatics, USI-INF-TR-2013-3.

  • Kafle J, Kattel P, Pokhrel P, Khattri KB, Gurung DB, Pudasaini SP (2013) Dynamic interaction between a two-phase submarine landslide and a fluid reservoir. Int J Lsld Env 1(1):35–36

    Google Scholar 

  • Kamphuis JW, Bowering RJ (1972) Impulse waves generated by landslides. Proc 12th Coastal Eng Conf 1:575-588, ASCE, NY. doi:10.9753/icce.v12.%25p

  • Karambas TV, Koutitas C (1992) A breaking wave propagation model based on the Boussinesq equations. Coast Eng 18:1–19. doi:10.1016/0378-3839(92)90002-C

    Article  Google Scholar 

  • Kawamura K, Laberg JS, Kanamatsu T (2014) Potential tsunamigenic submarine landslides in active margins. Mar Geol 356:44–49. doi:10.1016/j.margeo.2014.03.007

    Article  Google Scholar 

  • Kelfoun K, Giachetti T, Labazuy P (2010) Landslide-generated tsunamis at Reunion Island. J Geophys Res 115(F04012). doi: 10.1029/2009JF001381

  • Kennedy AB, Chen Q, Kirby JT, Dalrymple RA (2000) Boussinesq modeling of wave transformation, breaking, and runup. I: 1D. J Waterw Port Coast Ocean Eng 126(1):39–47. doi:10.1061/(ASCE)0733-950X(2000)126:1(39)

    Article  Google Scholar 

  • Ketabchi H, Ataie-Ashtiani B (2015) Evolutionary algorithms for the optimal management of coastal groundwater: a comparative study toward future challenges. J Hydrol 520:193–213. doi:10.1016/j.jhydrol.2014.11.043

    Article  Google Scholar 

  • Khayyer A, Gotoh H (2008) Development of CMPS method for accurate water surface tracking in breaking wave. Coast Eng J 50(2):179–207. doi:10.1142/S0578563408001788

    Article  Google Scholar 

  • Kienle J, Kowalik Z, Murty TS (1987) Tsunamis generated by eruptions from St. Augustine volcano, Alaska. Science 236:1442–1447. doi:10.1126/science.236.4807.1442

    Article  Google Scholar 

  • Kienle J, Kowalik Z, Troshina E (1996) Propagation and runup of tsunami waves generated by Mt. St. Augustine Volcano, Alaska. Sci Tsunami Hazards 14:191–206

    Google Scholar 

  • Keiser R (2006) Meshless Lagrangian methods for physics-based animations of solids and fluids. PhD thesis, Swiss Federal Institute of Technology, ETH Zürich, 195 pp.

  • Kirby JT (2003) Chapter 1 Boussinesq models and applications to nearshore wave propagation, surf zone processes and wave-induced currents. Adv Coastal Model 67:1–41. doi:10.1016/S0422-9894(03)80118-6

    Article  Google Scholar 

  • Kono F, Nakasato N, Hayashi K, Vazhenin A, Sedukhin S, Nagasu K, Sano K, Titov V (2015) Parallelization of tsunami simulation on CPU, GPU, and FPGAs. Int Conf High Performance Computing Networking Storage Analysis, Nov 15-20, Austin, TX.

  • Koo WC, Kim MH (2004) Freely floating-body simulation by a 2D fully nonlinear numerical wave tank. Ocean Eng 31:2011–2046. doi:10.1016/j.oceaneng.2004.05.003

    Article  Google Scholar 

  • Koo WC, Kim MH (2006) Numerical simulation of nonlinear wave and force generated by a wedge-shape wave maker. Ocean Eng 33:983–1006. doi:10.1016/j.oceaneng.2005.09.002

    Article  Google Scholar 

  • Koo WC, Kim MH (2008) Numerical modeling and analysis of waves induced by submerged and aerial/sub-aerial landslides. KSCE J Civil Eng 12(2):77–83. doi:10.1007/s12205-0077-1

    Article  Google Scholar 

  • Koshizuka S, Tamako H, Oka Y (1995) A particle method for incompressible viscous flow with fluid fragmentation. Comput Fluid Dyn J 4(1):29–46

    Google Scholar 

  • Koshizuka S, Nobe A, Oka Y (1998) Numerical analysis of breaking waves using the moving particle semi-implicit method. Int J Numer Methods Fluids 26:751–769. doi:10.1002/(SICI)1097-0363(19980415)26:73.3.CO;2-3

    Article  Google Scholar 

  • Kowalski J, McElwaine JN (2013) Shallow two-component gravity-driven flows with vertical variation. J Fluid Mech 714:434–462. doi:10.1017/jfm.2012.489

    Article  Google Scholar 

  • Krastel S, Schmincke HU, Jacobs CL, Richm R, Le Bas TP, Alibés B (2001) Submarine landslides around the Canary Islands. J Geophys Res 106(B3):3977–3997. doi:10.1029/2000JB900413

    Article  Google Scholar 

  • Kulikov EA, Rabinovich AB, Thomson RE, Bornhold BD (1996) The landslide tsunami of November 3, 1994, Skagway Harbor, Alaska. J Geophys Res 101(C3):6609–6615. doi:10.1029/95JC03562

    Article  Google Scholar 

  • Kundu A (2007) Tsunami and nonlinear waves. Springer Berlin Heidelberg NY. ISBN-13978-3-540-71255-8

  • Kvalstad TJ, Andresen L, Forsberg CF, Berg K, Bryn P, Wangen M (2005) The Storegga slide: evaluation of triggering sources and slide mechanics. Mar Pet Geol 22:245–256. doi:10.1016/j.marpetgeo.2004.10.019

    Article  Google Scholar 

  • Laberg JS, Vorren TO, Mienert J, Haflidason H, Bryn P, Lien R (2003) Preconditions leading to the Holocene Traenadjupet slide, offshore Norway. Submarine mass movements and their consequences, Locat J, Mienert J (eds), pp 247-254. Dordrecht, Netherlands: Kluwer Academic Publishers. doi: 10.1007/978-94-010-0093-2_28

  • Laigle D, Coussot P (1997) Numerical modeling of mudflows. J Hydraul Eng 123:617–623. doi:10.1061/(ASCE)0733-9429(1997)123:7(617)

    Article  Google Scholar 

  • Law L, Brebner A (1968) On water waves generated by landslides. 3rd Australasian Conf on Hydraulics and Fluid Mechanics, paper 2561, Sydney, NSW, Australia.

  • LeVeque RJ (2002) Finite volume methods for hyperbolic problems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Levin B, Nosov M (2009) Physics of tsunamis. Vol XI, Springer, 327p.

  • Li SF, Liu WK (2002) Meshfree and particle methods and their applications. Appl Mech Rev 55(1):1–34. doi:10.1115/1.1431547

    Article  Google Scholar 

  • Li YS, Zhan JM (2001) Boussinesq-type model with boundary-fitted coordinate system. J Waterw Port Coast Ocean Eng 127:152–160. doi:10.1061/(ASCE)0733-950X(2001)127:3(152)

    Article  Google Scholar 

  • Lin P, Liu PLF (1998a) A numerical study of breaking waves in the surf zone. J Fluid Mech 359:239–264. doi:10.1017/S002211209700846X

    Article  Google Scholar 

  • Lin P, Liu PLF (1998b) Turbulent transport, vorticity dynamics, and solute mixing under plunging breaking waves in surf zone. J Geophys Res 103:15677–15694. doi:10.1029/98JC01360

    Article  Google Scholar 

  • Lindstrøm EK, Pedersen GK, Jensen A, Glimsdal S (2014) Experiments on slide generated waves in a 1:500 scale fjord model. Coast Eng 92:12–23. doi:10.1016/j.coastaleng.2014.06.010

    Article  Google Scholar 

  • Liu J, Koshizuka S, Oka Y (2005a) A hybrid particle-mesh method for viscous, incompressible, multiphase flows. J Comput Phys 202:65–93. doi:10.1016/j.jcp.2004.07.002

    Article  Google Scholar 

  • Liu PLF, Yoon SB, Kirby JT (1985) Nonlinear refraction-diffraction of waves in shallow water. J Fluid Mech 153:185–201

    Article  Google Scholar 

  • Liu PLF, Losada IJ (2002) Wave propagation modeling in coastal engineering. J Hydraul Res 40(3):229–240. doi:10.1080/00221680209499939

    Article  Google Scholar 

  • Liu PLF, Wu TR, Raichlen F, Synolakis CE, Borrero JC (2005b) Runup and rundown generated by three-dimensional sliding masses. J Fluid Mech 536:107–144. doi:10.1017/S0022112005004799

    Article  Google Scholar 

  • Liu-Chao Q (2008) Two-dimensional SPH simulations of landslide-generated water waves. J Hydr Eng 134. doi:10.1061/(ASCE)0733-9429(2008)134:5(668)

  • Locat J (1997) Normalized rheological behavior of fine muds and their flow properties in a pseudoplastic regime. Proc 1st Int Conf ASCE, Reston, VA, pp 260-269. doi:10.3390/rs5052219

  • Locat J (2001) Instabilities along ocean margins: a geomorphological and geotechnical perspective. Mar Pet Geol 18(4):503–512. doi:10.1016/S0264-8172(00)00076-3

    Article  Google Scholar 

  • Locat J, Lee HJ (2002) Submarine landslides: advances and challenges. Can Geotech J 39:193–212. doi:10.1139/T01-089

    Article  Google Scholar 

  • Locat J, Lee H (2008) Submarine mass movement and their consequences: an overview. In: Sassa K, Canuti P (eds) Landslides-disaster risk reduction. Springer, NY, pp. 115–142

    Google Scholar 

  • Løvholt F, Pedersen G, Gisler G (2008) Oceanic propagation of a potential tsunami from the La Palma Island. J Geophys Res 113(C09026). doi: 10.1029/2007JC004603

  • Løvholt F, Pedersen G, Harbitz CB, Glimsdal S, Kim J (2015) On the characteristics of landslide tsunamis. Phil Trans R Soc A 373:20140376. doi:10.1098/rsta.2014.0376

    Article  Google Scholar 

  • Lüthi MP, Vieli A (2015) Multi-method observation and analysis of an impulse wave and tsunami caused by glacier calving. Crysphere Disscuss 9:6471–6493. doi:10.5194/tcd-9-6471-2015

    Article  Google Scholar 

  • Lynett P, Liu PLF (2002) A numerical study of submarine landslide generated waves and runup. Proc R Soc Lond A 458:2885–2910. doi:10.1098/rspa.2002.0973

    Article  Google Scholar 

  • Lynett P, Liu PLF (2004) A multi-layer approach to wave modeling. Proc R Soc Lond A 460:2637–2669. doi:10.1098/rspa.2004.1305

    Article  Google Scholar 

  • Lynett P, Liu PLF (2005) A numerical study of the run-up generated by three-dimensional landslides. J Geophys Res 110(C03006). doi:10.1029/2004JC002443

  • Ma G, Shi F, Kirby JT (2011) A polydisperse two-fluid model for surf zone bubble simulation. J Geophys Res 116(C05010). doi: 10.1029/2010JC006667

  • Ma G, Shi F, Kirby JT (2012) Shock-capturing non-hydrostatic model for fully dispersive surface wave processes. Ocean Modelling 43-44:22-35. doi: 10.1016/j.ocemod.2011.12.002

  • Ma G, Kirby JT, Shi F (2013) Numerical simulation of tsunami waves generated by deformable submarine landslides. Ocean Model 69:146–165. doi:10.1016/j.ocemod.2013.07.001

    Article  Google Scholar 

  • Ma G, Kirby JT, Hsu TJ, Shi F (2015) A two-layer granular landslide model for tsunami wave generation: theory and computation. Ocean Model 93:40–55. doi:10.1016/j.ocemod.2015.07.012

    Article  Google Scholar 

  • Macías J, Castro MJ, González-Vida JM, de la Asunción M, Ortega S (2014) HySEA: an operational GPU-based model for tsunami early warning systems. Geophys Res Abstr 16:EGU2014–EG14217

    Google Scholar 

  • Macías J, Vázquez JT, Fernández-Salas LM, González-Vida JM, Bárcenas P, Castro MJ, Díaz-del-Río V, Alonso B (2015) The Al-Borani submarine landslide and associated tsunami, a modelling approach. Mar Geol 361:79–95. doi:10.1016/j.margeo.2014.12.0066

    Article  Google Scholar 

  • Mader CL (1973) Numerical simulation of tsunamis. Hawaii University of Geophysics, Tsunami Research Report of University of Hawaii, Honolulu

    Google Scholar 

  • Mader CL, Gittings ML (2002) Modeling the 1958 Lituya Bay mega-tsunami II. Sci Tsunami Hazards 20(5):241–250

    Google Scholar 

  • Mader CL, Gittings ML (2003) Dynamics of water cavity generation. Sci Tsunami Hazards 21(2):91–101

    Google Scholar 

  • Madsen PA, Murray R, Sørensen OR (1991) A new form of the Boussinesq equations with improved linear dispersion characteristics. Coast Eng 15(4):371–388. doi:10.1016/0378-3839(91)90017-B

    Article  Google Scholar 

  • Madsen PA, Sørensen OR (1992) A new form of the Boussinesq equations with improved linear dispersion characteristics. Part 2. A slowly-varying bathymetry. Coast Eng 18:183–204. doi:10.1016/0378-3839(92)90019-Q

    Article  Google Scholar 

  • Madsen PA, Schäffer HA (1997) Higher-order Boussinesq-type equations for surface gravity waves: derivation and analysis. Philos Trans R Soc Lond Ser A 356:3123–3184. doi:10.1098/rsta.1998.0309

    Article  Google Scholar 

  • Madsen PA, Schäffer HA (1999) A review of Boussinesq-type equations for gravity waves. Adv Coast Ocean Eng 5:1–94. doi:10.1142/9789812797544_0001

    Article  Google Scholar 

  • Madsen PA (2010) On the evolution and run-up of tsunamis. 9th Intl Conf on Hydrodynamics, Shanghai, China, J Hydrodynamics 22(5) supplement 1:1-6. doi: 10.1016/S1001-6058(09)60160-8

  • Maeno F, Imamura F (2011) Tsunami generation by a rapid entrance of pyroclastic flow into the sea during the 1883 Krakatau eruption, Indonesia. J Geophys Res 116:B09205. doi:10.1029/2011JB008253

    Article  Google Scholar 

  • Mangeney A, Heinrich P, Rachel R, Boudon G, Cheminee JL (2000) Modeling of debris avalanche and generated water waves: application to real and potential events in Montserrat. Phys Chem Earth A 25(9-11):741–745. doi:10.1016/S1464-1895(00)00115-0

    Article  Google Scholar 

  • Mangeney-Castelnau A, Vilotte JP, Bristeau MO, Perthame B, Bouchet F, Siomeoni C, Yerneni S (2003) Numerical modeling of avalanches based on Saint Venant equations using a kinetic scheme. J Geophys Res 108(B11):2527. doi:10.1029/2002JB002024

    Article  Google Scholar 

  • Manninen M, Taivassalo V, Kallio S (1996) On the mixture model for multiphase flow. Technical Research Center of Finland, VTT Publications, ESPOO, Report No 288.

  • Maramai A, Graziani L, Alessio G, Burrato P, Colini L, Cucci L, Nappi R, Nardi A, Vilardo G (2005) Near- and far-field survey report of the 30 December 2002 Stromboli (Southern Italy) tsunami. Mar Geol 215:93–106. doi:10.1016/j.margeo.2004.11.009

    Article  Google Scholar 

  • Martínez ML, Intralawan A, Vázquez G, Pérez-Maqueo O, Sutton P, Landgrave R (2007) The coasts of our world: ecological, economic and social importance. Ecol Econ 63:254–272. doi:10.1016/j.ecolecon.2006.10.022

    Article  Google Scholar 

  • Masson DG, Watts AB, Gee MRJ, Urgeles R, Mitchell NC, Le Bas TP, Canals M (2002) Slope failures on the flanks of the western Canary Islands. Earth-Sci Rev 57:1–35. doi:10.1016/S0012-8252(01)00069-1

    Article  Google Scholar 

  • Masson DG, Harbitz CB, Wynn RB, Pedersen G, Løvholt F (2006) Submarine landslides: processes, triggers and hazard prediction. Phil Trans R Soc A 364:2009–2039. doi:10.1098/rsta.2006.1810

    Article  Google Scholar 

  • Mayer S, Garapon A, Sorensen LS (1998) A fractional step method for unsteady free-surface flow with applications to non-linear wave dynamics. Int J Numer Methods Fluids 28:293–315. doi:10.1002/(SICI)1097-0363(19980815)28:2<293::AID-FLD719>3.0.CO;2-1

  • McAdoo BG, Pratson LF, Orange DL (2000) Submarine landslide geomorphology, US continental slope. Mar Geol 169:103–136. doi:10.1016/S0025-3227(00)00050-5

    Article  Google Scholar 

  • McAdoo BG, Watts P (2004) Tsunami hazard from submarine landslides on the Oregon continental slope. Mar Geol 203:235–245. doi:10.1016/S0025-3227(03)00307-4

    Article  Google Scholar 

  • McDougall S, Hungr O (2004) A model for the analysis of rapid landslide motion across three-dimensional terrain. Can Geotech J 41:1084–1097. doi:10.1139/T04-052

    Article  Google Scholar 

  • McEwen A, Malin M (1989) Dynamics of Mount St Helens’ 1980 pyroclastic flows, rockslide-avalanche, lahars and blast. J Volcanol Geotherm Res 37:205–231. doi:10.1016/0377-0273(89)90080-2

    Article  Google Scholar 

  • McMurtry GM, Watts P, Fryer GJ, Smith JR, Imamura F (2004) Giant landslides, mega-tsunamis, and paleo-sea level in the Hawaiian Islands. Mar Geol 203:219–233. doi:10.1016/S0025-3227(03)00306-2

    Article  Google Scholar 

  • Medina V, Bateman A, Hürlimann M (2008a) A 2D finite volume model for debris flow and its application to events occurred in the Eastern Pyrenees. Int J Sediment Res 23(4):348–360. doi:10.1016/S1001-6279(09)60006-8

    Article  Google Scholar 

  • Medina V, Hürlimann M, Bateman A (2008b) Application of FLATModel, a 2D finite volume code, to debris flows in the northeastern part of the Iberian Peninsula. Landslides 5:127–142. doi:10.1007/s10346-007-0102-3

    Article  Google Scholar 

  • Mei CC, Liu PLF (1993) Surface waves and coastal dynamics. Annu Rev Fluid Mech 25:215–240. doi:10.1146/annurev.fl.25.010193.001243

    Article  Google Scholar 

  • Metternicht G, Hurni L, Gogu R (2005) Remote sensing of landslides: an analysis of the potential contribution to geo-spatial systems for hazard assessment in mountainous environments. Remote Sens Environ 98:284–303. doi:10.1016/j.rse.2005.08.004

    Article  Google Scholar 

  • Miller DJ (1960) Giant waves in Lituya Bay Alaska. USGS Professional Paper 354-C, Shorter Contributions to General Geology.

  • Mohammed F, Fritz HM (2010) Experiments on tsunamis generated by 3D granular landslides, in Submarine mass movements and their consequences. Adv Nat Technol Hazards Res 28:705-718, Mosher DC et al. (eds), Springer, NY. doi: 10.1007/978-90-481-3071-9_57

  • Mohammed F, Fritz HM (2012) Physical modeling of tsunamis generated by three-dimensional deformable granular landslides. J Geophys Res 117(C11015). doi: 10.1029/2011JC007850

  • Monaghan JJ, Kos A (1999) Solitary waves on a Cretan beach. J Waterw Port Coast Ocean Eng 125(3):145–154. doi:10.1061/(ASCE)0733-950X(1999)125:3(145)

    Article  Google Scholar 

  • Monaghan JJ, Kos A (2000) Scott Russell’s wave generator. Phys Fluids 12(3):622–630

    Article  Google Scholar 

  • Monaghan JJ, Kos A, Issa N (2003) Fluid motion generated by impact. J Waterway Port Coast Ocean Eng (ASCE) 129:250–259. doi:10.1061/(ASCE)0733-950X(2003)129:6(250)

    Article  Google Scholar 

  • Moore JG, Clague DA, Holcomb RT, Lipman PW (1989) Prodigious submarine landslides on the Hawaiian Ridge. J Geophys Res 94(B12):465–484. doi:10.1029/JB094iB12p17465

    Article  Google Scholar 

  • Moore JG, Normark WR, Holcomb RT (1994) Giant Hawaiian landslides. Annu Rev Earth Planet Sci 22:119–144. doi:10.1146/annurev.ea.22.050194.001003

    Article  Google Scholar 

  • Moriguchi S, Borja RI, Yashima A (2009) Sawada K. Estimating the impact force generated by granular flow on a rigid obstruction. Acta Geotech 4:57–71. doi:10.1007/s11440-009-0084-5

    Article  Google Scholar 

  • Murty TS (1979) Submarine slide-generated water waves in Kitimat inlet, British Colombia. J Geophys Res 84(C12):7777–7779

    Article  Google Scholar 

  • Musumeci RE, Svendsen IA, Veeramony J (2005) The flow in the surf zone: a fully nonlinear Boussinesq-type of approach. Coast Eng 52:565–598. doi:10.1016/j.coastaleng.2005.02.007

    Article  Google Scholar 

  • Naef D, Rickenmann D, Rutschmann P, McArdell BW (2006) Comparison of flow resistance relations for debris flows using a one-dimensional finite element simulation model. Nat Hazards Earth Syst Sci 6:155–165. doi:10.5194/nhess-6-155-2006

    Article  Google Scholar 

  • Najafi-Jilani A (2006) Landslide generated impulsive waves in dam reservoirs; Numerical modeling and experimental investigations. PhD thesis, Sharif University of Technology (SUT), Tehran, Iran. (In Persian)

  • Najafi-Jilani A, Ataie-Ashtiani B (2008) Estimation of near-field characteristics of tsunami generation by submarine landslide. Ocean Eng 35(5-6):545–557. doi:10.1016/j.oceaneng.2007.11.006

    Article  Google Scholar 

  • Nichols BD, Hirt CW (1974) Calculating three-dimensional free surface flows in the vicinity of submerged and exposed structures. J Comput Phys 12:227–246. doi:10.1016/S0021-9991(73)80013-0

    Google Scholar 

  • Nishimura Y, Satake K (1993) Numerical computations on tsunamis from the past and future eruptions of Komagatake volcano, Hokkaido, Japan. In Tsunami ’93 Proc IUGG/IOC Int Tsunami Symp, Wakayama, Japan, 23-27 August, pp 573-583.

  • Noda EK (1971) Water waves generated by a local surface disturbance. J Geophys Res 76(30):7389–7400. doi:10.1029/JC076i030p07389

    Article  Google Scholar 

  • Nomanbhoy N, Satake K (1995) Generation mechanism of tsunamis from the 1883 Krakatau eruption. Geophys Res Lett 22(4):509–512. doi:10.1029/94GL03219

    Article  Google Scholar 

  • Normark WR, Moore JG, Torresan ME (1993) Giant volcano related landslides and the development of the Hawaiian Islands. In Submarine landslides: selected studies in the US Exclusive Economic Zone, Schwab WC, Lee HJ, Twichell DC (ed.s), US Geol Surv Bull 2002, 184-196.

  • Nwogu O (1993) An alternative form of Boussinesq equations for near shore wave propagation. J Waterw Port Coast Ocean Eng 119(6):618–638. doi:10.1061/(ASCE)0733-950X(1993)119:6(618)

    Article  Google Scholar 

  • O’Brien JS, Julien PY, Fullerton WT (1993) Two-dimensional water flood and mudflow simulation. J Hydraul Eng 119:244. doi:10.1061/(ASCE)0733-9429(1993)119:2(244)

    Article  Google Scholar 

  • Oehler JF, Labazuy P, Lénat JF (2004) Recurrence of major flank landslides during the last 2-Ma-history of Réunion Island. Bull Volcanol 66:585–598. doi:10.1007/s00445-004-0341-2

    Article  Google Scholar 

  • Oehler JF, Lénat JF, Labazuy P (2007) Growth and collapse of the Reunion Island volcanoes. Bull Volcanol 70:717–742. doi:10.1007/s00445-007-0163-0

    Article  Google Scholar 

  • Osher S, Fedkiw R (2003) Level set methods and dynamic implicit surfaces. Springer-Verlag.

  • Panizzo A (2004) SPH modelling of water waves generated by landslides. IDRA Conf of Idraulica e Costruzioni Idrauliche, Trento, Italy.

  • Panizzo A, Dalrymple RA (2004) SPH modelling of underwater landslide generated waves. Proc 29th Intl Conf Coastal Eng, Lisbon World Scientific Press, pp 1147-1159. doi: 10.1142/9789812701916_0091

  • Panizzo A, De Girolamo P, Di Risio M, Maistri A, Petaccia A (2005a) Great landslide events in Italian artificial reservoirs. Nat Hazards Earth Syst Sci 5:733–740

    Article  Google Scholar 

  • Panizzo A, De Girolamo P, Petaccia A (2005b) Forecasting impulse waves generated by subaerial landslides. J Geophys Res 110(C12025). doi: 10.1029/2004JC002778

  • Panizzo A, Cuomo G, Darlymple RA (2006) 3D-SPH simulation of landslide generated waves. Proc of ICCE. doi:10.1142/9789812709554_0128

    Google Scholar 

  • Panizzo A, Darlymple RA (2006) SPH modeling of underwater landslide generated waves. Proc ICCE, ASCE. doi:10.1142/9789812701916_0091

    Google Scholar 

  • Paris R, Carracedo JC, Pérez-Torrado FJ (2005) Massive flank failures and tsunamis in the Canary Islands: past, present, future. Z Geomorphol Suppl 140:37–54

    Google Scholar 

  • Pariseau (1980) A simple mechanical model for rockslides and avalanches. Eng Geol 16:111–123. doi:10.1016/0013-7952(80)90011-3

    Article  Google Scholar 

  • Pasenow F, Zilian A, Dinkler D (2008) Numerical model for tsunami generation by subaerial landslides. PAMM Proc Appl Math Mech 8:10519–10520. doi:10.1002/pamm.200810519

    Article  Google Scholar 

  • Pastor M, Haddad B, Sorbino G, Cuomo S, Drempetic V (2009) A depth-integrated, coupled SPH model for flow-like landslides and related phenomena. Int J Numer Anal Methods Geomech 33:143–172. doi:10.1002/nag.705

    Article  Google Scholar 

  • Pastor M, Blanc T, Haddad B, Drempetic V, Morles MS, Dutto P, Stickle MM, Mira P, Fernández Merodo JA (2015) Depth averaged models for fast landslide propagation: mathematical, rheological, and numerical aspects. Arch Comput Meth Eng 22:67–104. doi:10.1007/s11831-014-9110-3

    Article  Google Scholar 

  • Pedersen G, Langtangen H (1998) Dispersive effects on tsunamis. Int conf on tsunamis, Paris, 326.

  • Peggion M, Bernardini A, Masera M (2008) Geographic information systems and risk assessment. Luxembourg, Scientific and Technical Research Series No EUR 23058-EN.

  • Pelinovsky E, Poplavsky A (1996) Simplified model of tsunami generation by submarine landslides. Phys Chem Earth 21(12):12–17. doi:10.1016/S0079-1946(97)00003-7

    Google Scholar 

  • Pelinovsky E, Talipova T, Kurkin A, Kharif C (2001) Nonlinear mechanism of tsunami wave generation by atmospheric disturbances. J Nat Hazards Earth Syst Sci 1:243–250

    Article  Google Scholar 

  • Peregrine DH (1967) Long waves on a beach. J Fluid Mech 27:815–827. doi:10.1017/S0022112067002605

    Article  Google Scholar 

  • Pérez G, García-Navarro P, ASCE M, Vázquez-Cendón ME (2006) One-dimensional model of shallow water surface waves generated by landslides. J Hydraul Eng ASCE 132:462–473. doi:10.1061/(ASCE)0733-9429(2006)132:5(462)

    Article  Google Scholar 

  • Pierson TC, Costa JE (1987) A rheologic classification of subaerial sediment-water flows. Rev Eng Geol 7:1–12. doi:10.1130/REG7-p1

    Article  Google Scholar 

  • Pitman EB, Nichita CC, Patra A, Bauer A, Sheridan M, Bursik M (2003b) Computing granular avalanches and landslides. Phys Fluids 15(12):3638–3646. doi:10.1063/1.1614253

    Article  Google Scholar 

  • Pitman EB, Nichita CC, Patra A, Bauer AC, Bursik M, Webb A (2003a) A model of granular flows over an erodible surface. Discrete Continuous Dyn Syst-Ser B 3(4):589–599 http://www.jstor.org/stable/29765302

    Article  Google Scholar 

  • Plafker G, Eyzaguirre VR (1979) Rock avalanche and wave at Chungar, Peru. In: Voight B (ed) Rockslides and avalanches, 2. Developments in geotechnical engineering 14B. Elsevier, Amsterdam, pp. 269–279

    Google Scholar 

  • Prager C, Zangerl C, Patzelt G, Brandner R (2008) Age distribution of fossil landslides in the Tyrol (Austria) and its surrounding areas. Nat Hazards Earth Syst Sci 8:377–407. doi:10.5194/nhess-8-377-2008

    Article  Google Scholar 

  • Prior DB, Suhayda JN, Lu NZ, Bornhold BD, Kelfer GH, Wiseman WJ, Wright LD, Yang ZS (1989) Storm wave reactivation of a submarine landslide. Nature 341:47–50. doi:10.1038/341047a0

    Article  Google Scholar 

  • Pudasaini SP, Wang Y, Hutter K (2005) Modelling debris flows down general channels. Nat Hazards Earth Syst Sci 5:799–819

    Article  Google Scholar 

  • Pudasaini SP, Hutter K (2007) Avalanche dynamics: dynamics of rapid flows of dense granular avalanches. Springer, Berlin

    Google Scholar 

  • Pudasaini SP (2011) Some exact solutions for debris and avalanche flows. Phys Fluids 23(4):043301. doi:10.1063/1.3570532

    Article  Google Scholar 

  • Pudasaini SP (2012) A general two-phase debris flow model. J Geophys Res 117:F03010. doi:10.1029/2011JF002186

    Article  Google Scholar 

  • Pudasaini SP, Miller SA (2012a) Buoyancy induced mobility in two-phase debris flow. Am Inst Phys Proc 1479:149–152. doi:10.1063/1.4756084

    Google Scholar 

  • Pudasaini SP, Miller SA (2012b) A real two-phase submarine debris flow and tsunami. Am Inst Phys Proc 1479:197–200. doi:10.1063/1.4756096

    Google Scholar 

  • Pudasaini SP (2014) Dynamics of submarine debris flow and tsunami. Acta Mech 225:2423–2434. doi:10.1007/s00707-014-1126-0

    Article  Google Scholar 

  • Quecedo M, Pastor M, Herreros MI (2004) Numerical modelling of impulse wave generated by fast landslides. Int J Numer Methods Eng 59:1633–1656. doi:10.1002/nme.934

    Article  Google Scholar 

  • Rajabi M, Ataie-Ashtiani B (2014) Sampling efficiency in Monte Carlo based uncertainty propagation strategies: application in seawater intrusion simulations. Adv Water Resour 67(6):46–64. doi:10.1016/j.advwatres.2014.02.004

    Article  Google Scholar 

  • Rajabi M, Ataie-Ashtiani B, Simmons CT (2015a) Polynomial chaos expansions for uncertainty propagation and moment independent sensitivity analysis of seawater intrusion simulations. J Hydrol 520:101–122. doi:10.1016/j.jhydrol.2014.11.020

    Article  Google Scholar 

  • Rajabi M, Ataie-Ashtiani B, Janssen H (2015b) Efficiency enhancement of optimized Latin hypercube sampling strategies: application to Monte Carlo uncertainty analysis and meta-modeling. Adv Water Resour 76:127–139. doi:10.1016/j.advwatres.2014.12.008

    Article  Google Scholar 

  • Raney DC, Butler HL (1975) A numerical model for predicting the effects of landslide generated water waves. US Army Engineering Waterway and Reservoir Report, No H-75-1.

  • Raney DC, Butler HL (1976) Landslide generated water wave model. J Hydraul Div ASCE 102(9):1269–1279

    Google Scholar 

  • Rickenmann D, Koch T (1997) Comparison of debris flow modeling approaches. In Chen C (ed) Proc of 1st Int Conf on Debris-Flow Hazards Mitigation, San Francisco, pp 576–585.

  • Rickenmann D, Laigle D, McArdell B, Hübl J (2006) Comparison of 2D debris-flow simulation models with field events. Comput Geosci 10(2):241–264. doi:10.1007/s10596-005-9021-3

    Article  Google Scholar 

  • Roberts NJ, McKillop R, Hermanns RL, Clague JJ, Oppikofer T (2014) Displacemnet waves from subaerial landslides. Landslide science for a Safer Geoenvironment, pp 687-692. doi: 10.1007/978-3-319-04996-0_104

  • Robinson JE, Eakins BW (2006) Calculated volumes of individual shield volcanoes at the young end of the Hawaiian Ridge. In Coombs ML, Eakins BW, Cervelli PF (Eds.), Growth and Collapse of Hawaiian Volcanoes, J Volcanol Geothermal Res 151(1-3):309–317. doi:10.1016/j.jvolgeores.2005.07.033

  • Russell JS (1837) Report of the committee on waves. in Report of the 7th Meeting of the British Association for the Advancement of Science 7:417-496, Br Assoc for the Adv of Sci, Liverpool, UK.

  • Russell JS (1844) Report on waves. in Report of the 14th Meeting of the British Association for the Advancement of Science 14:311-390, Br Assoc for the Adv of Sci, Liverpool, UK.

  • Rygg OB (1988) Nonlinear refraction-diffraction of surface waves in intermediate and shallow water. J Coastal Eng 12:191–211. doi:10.1016/0378-3839(88)90005-1

    Article  Google Scholar 

  • Sælevik G, Jensen A, Pedersen G (2009) Experimental investigation of impact generated tsunami related to a potential rock slide, western Norway. Coast Eng 56:897–906. doi:10.1016/j.coastaleng.2009.04.007

    Article  Google Scholar 

  • Sailer R, Rammer L, Sampl P (2002) Recalculation of an artificially released avalanche with SAMOS and validation with measurements from a pulsed Doppler radar. Nat Hazards Earth Syst Sci 2:211–216. doi:10.5194/nhess-2-211-2002

    Article  Google Scholar 

  • Salzmann N, Kääb A, Huggle C, Allgöwer B, Haeberli W (2004) Assessment of the hazard potential of ice avalanches using remote sensing and GIS-modelling. Norsk Geografisk Tidsskrift–Norwegian J Geography 58:74–84. doi:10.1080/00291950410006805

    Article  Google Scholar 

  • Sampl P, Granig M (2009) Avalanche simulation with SAMOS-AT. Proc Int Snow Science Workshops, Davos, pp. 519–523

    Google Scholar 

  • Sander J, Hutter K (1992) Evolution of weakly non-linear channelized shallow water waves generated by a moving boundary. Acta Mech 91:119–155

    Article  Google Scholar 

  • Sander J, Hutter K (1996) Experimental and computational study of channelized water waves generated by a porous body. Acta Mech 115:133–149

    Article  Google Scholar 

  • Sassa S, Miyamoto J, Sekiguchi H (2003) The dynamics of liquefied sediment flow undergoing progressive solidification. In Submarine mass movements and their consequences, Locat J, Mienert J (eds), Springer, Dordrecht, Advances in natural technological hazards research 19: 95-102. doi: 10.1007/978-94-010-0093-2_11

  • Sassa K, Nagai O, Solidum R, Yamazaki Y, Ohta H (2010) An integrated model simulating the initiation and motion of earthquake and rain induced rapid landslides and its application to the 2006 Leyte landslide. Landslides 7:219–236. doi:10.1007/s10346-010-0230-z

    Article  Google Scholar 

  • Sassa S, Sekiguchi H (2010) LIQSEDFLOW: role of two-phase physics in subaqueous sediment gravity flows. Soils Found 50(4):495–504. doi:10.3208/sandf.50.495

    Article  Google Scholar 

  • Sassa S, Sekiguchi H (2012) Dynamics of submarine liquefied sediment flows: theory, experiments and analysis of field behavior. Adv Nat Tech Hazards Res 31:405–416. doi:10.1007/978-94-007-2162-3_36

    Google Scholar 

  • Sassa K, He B, Miyagi T, Strasser M, Konagai K, Ostric M, Setiawan H, Takara K, Nagai O, Yamashiki Y, Tutumi S (2012) A hypothesis of the Senoumi submarine megaslide in Suruga Bay in Japan-based on the undrained dynamic-loading ring-shear tests and computer simulation. Landslides 9(4):439–455. doi:10.1007/s10346-012-0356-2

    Article  Google Scholar 

  • Sassa K, He B, Dang KQ, Nagai O, Takara K (2014a) Progress in landslide dynamics. Landslide science for a safer geoenvironment, Proc The 3rd World Landslide Forum, Springer, 1:37-67. doi: 10.1007/978-3-319-04999-1_3

  • Sassa K, Dang K, He B, Takara K, Inoue K, Nagai O (2014b) A new high-stress undrained ring-shear apparatus and its application to the 1792 Unzen–Mayuyama megaslide in Japan. Landslides 11:827–842. doi:10.1007/s10346-014-0501-1

    Article  Google Scholar 

  • Satake K (2001) Tsunami modeling from submarine landslides. ITS Proc 6(6-4):665–674

    Google Scholar 

  • Satake K (2012) Tsunamis generated by submarine landslides. Submarine mass movements and their consequences, Yamada Y. et al. (eds.), Advances in Natural and Technological Hazards Research 31:475-484. doi: 10.1007/978-94-007-2162-3_42

  • Satu S (1996) Numerical Simulation of 1993 Southwest Hokkaido Earthquake Tsunami around Okushiri Island. J waterway port coastal ocean eng 209-215. doi: 10.1061/(ASCE)0733-950X(1996)122:5(209)

  • Saut O (2003) Determination of dynamic stability characteristics of an underwater vehicle including free surface effects. MSc Thesis, Florida Atlantic University.

  • Savage SB, Hutter K (1989) The motion of a finite mass of granular material down a rough incline. J Fluid Mech 199:177–215. doi:10.1017/S0022112089000340

    Article  Google Scholar 

  • Schaub Y (2015) Outburst floods from high-mountain lakes: risk analysis of cascading processes under present and future conditions. PhD dissertation, Univ of Zurikh, Germany, pp 293.

  • Schaub Y, Huggel C, Cochachin A (2015) Ice-avalanche scenario elaboration and uncertainty propagation in numerical simulation of rock-/ice-avalanche-induced impact waves at Mount Hualcán and Lake 513, Peru Landslides doi: 10.1007/s10346-015-0658-2

  • Schäffer HA, Madsen PA, Deigaard R (1993) A Boussinesq model for waves breaking in shallow water. Coast Eng 20:185–202. doi:10.1016/0378-3839(93)90001-O

    Article  Google Scholar 

  • Scheffers A, Kelletat D (2003) Sedimentologic and geomorphologic tsunami imprints worldwide - a review. Earth Sci Rev 63:83–92. doi:10.1016/S0012-8252(03)00018-7

    Article  Google Scholar 

  • Schneider D, Huggel C, Cochachin A, Guillén S, García J (2014) Mapping hazards from glacier lake outburst floods based on modelling of process cascades at Lake 513, Carhuaz, Peru. Adv Geosci 35:145–155. doi:10.5194/adgeo-35-145-2014

    Article  Google Scholar 

  • Semenza E (2002) La storia del Vajont, raccontata dal geologo che ha scoperto la frana. Tecomproject, Ferrara.

  • Serrano-Pacheco A, Murillo J, García-Navarro P (2009a) A finite volume method for the simulation of the waves generated by landslides. J Hydrol 373:273–289. doi:10.1016/j.jhydrol.2009.05.003

    Article  Google Scholar 

  • Serrano-Pacheco A, Murillo J, García-Navarro P, Brufau P (2009b) Numerical simulation of flood waves induced by landslides. Monografías de la Real Academia de Ciencias de Zaragoza 31:199–216

    Google Scholar 

  • Shakeri Majd M, Sanders BF (2014) The LHLLC scheme for two-layer and two-phase transcritical flows over a mobile bed with avalanching, wetting and drying. Adv Water Resour 67:16–31. doi:10.1016/j.advwatres.2014.02.002

    Article  Google Scholar 

  • Shao SD, Lo EYM (2003) Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Adv Water Resour 26(7):787–800. doi:10.1016/S0309-1708(03)00030-7

    Article  Google Scholar 

  • Shi F, Kirby JT, Ma G (2010) Modeling quiescent phase transport of air bubbles induced by breaking waves. Ocean Model 35:105–117. doi:10.1016/j.ocemod.2010.07.002

    Article  Google Scholar 

  • Shi F, Kirby JT, Harris JC, Geiman JD, Grilli ST (2012) A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation. Ocean Modell 43–44:36–51. doi: 10.1016/j.ocemod.2011.12.004

  • Shigihara Y, Goto D, Imamura F, Kitamura Y, Matsubara T, Takaoka K, Ban K (2006) Hydraulic and numerical study on the generation of a subaqueous landslide-induced tsunami along the coast. Nat Hazards 39:159–177. doi:10.1007/s11069-006-0021-y

    Article  Google Scholar 

  • Sitanggang KI, Lynett P (2005) Parallel computation of a highly nonlinear Boussinesq equation model through domain decomposition. Int J Numer Methods Fluids 49(1):57–74. doi:10.1002/fld.985

    Article  Google Scholar 

  • Skvortsov A, Bornhold B (2007) Numerical simulation of the landslide-generated tsunami in Kitimat Arm, British Columbia, Canada, 27 April 1975. J Geophysical Research 112(F02028). doi: 10.1029/2006JF000499

  • Slingerland RL, Voight B (1979) Occurrences, properties and predictive models of landslide-generated impulse waves. Rockslides and avalanches, Dev Geotech Eng 14B:317–397, ed Voight B, Elsevier, Amsterdam. doi: 10.1016/B978-0-444-41508-0.50017-X

  • Smith R, Parkinson S, Hill J, Collins G, Piggott M (2014) Numerical modeling of tsunami generated by deformable submarine slides using mesh adaptivity. EGU General Assembly, Vienna, Austria, Bibliography Code: 2014EGUGA.16.5810S.

  • Son S, Lynett PJ, Kim DH (2011) Nested and multi-physics modeling of tsunami evolution from generation to inundation. Ocean Model 38:96–113. doi:10.1016/j.ocemod.2011.02.007

    Article  Google Scholar 

  • Stelling GS, Duinmeijer SPA (2003) A staggered conservative scheme for every Froude number in rapidly varied shallow water flows. Int J Numer Methods Fluids 43(12):1329–1354. doi:10.1002/fld.537

    Article  Google Scholar 

  • Stelling G, Zijlema M (2003) An accurate and efficient finite-difference algorithm for non-hydrostatic free-surface flow with application to wave propagation. Int J Numer Methods Fluids 43(1):1–23. doi:10.1002/fld.595

    Article  Google Scholar 

  • Strasser M, Henry P, Kanamatsu T, Thu M, Moore G, IODP Expedition Scientists et al (2012) Scientific drilling of mass-transport deposits in the Nankai accretionary wedge: first result of from IODP Expedition 333. In Yamada Y et al (eds) Submarine mass movements and their consequences 31, Adv natural and technological hazards res. Springer, NY, pp 671-681. doi:10.1007/978-94-007-2162-3_60

  • Svendsen IA (1984) Mass flux and undertow in a surf zone. Coast Eng 8:347–365. doi:10.1016/0378-3839(84)90030-9

    Article  Google Scholar 

  • Synolakis CE, Liu P, Carrier G, Yeh H (1997) Tsunamigenic sea-floor deformations. Science 278:598–600. doi:10.1126/science.278.5338.598

    Article  Google Scholar 

  • Synolakis CE, Bardet JP, Borrero JC, Davies HL, Okal EA, Solver EA, Sweet S, Tappin DR (2002) The slump origin of the Papua New Guinea tsunami. R Soc Lond 458(A):763–789. doi:10.1098/rspa.2001.0915

    Article  Google Scholar 

  • Takahashi T (2007) Debris flow: mechanics, prediction and countermeasures. Taylor & Francis, London

    Book  Google Scholar 

  • Tannehill JC, Anderson DA, Pletcher RH (1997) Computational fluid mechanics and heat transfer, Series in computational and physical processes in mechanics and thermal sciences. Taylor & Francis Publishers.

  • Tappin DR, Watts P, Grilli ST (2008) The Papua New Guinea tsunami of 1998: anatomy of a catastrophic event. Nat Hazards Earth Syst Sci 8:243–266. doi:10.5194/nhess-8-243-2008

    Article  Google Scholar 

  • Tappin DR, Grilli ST, Harris JC, Geller RJ, Masterlark T, Kirby JT, Shi F, Ma G, Thingbaijam KKS, Mai PM (2014) Did a submarine landslide contribute to the 2011 Tohoku tsunami? Mar Geol 357:344–361. doi:10.1016/j.margeo.2014.09.043

    Article  Google Scholar 

  • ten Brink US, Lee HJ, Geist EL, Twichell D (2009) Assessment of tsunami hazard to the US East Coast using relationships between submarine landslides and earthquakes. Mar Geol 264:65–73. doi:10.1016/j.margeo.2008.05.011

    Article  Google Scholar 

  • ten Brink US, Chaytor JD, Geist EL, Brothers DS, Andrews BD (2014) Assessment of tsunami hazard to the U.S. Atlantic margin. Mar Geol 353:31–54. doi:10.1016/j.margeo.2014.02.011

    Article  Google Scholar 

  • Thomson RE, Rabinovich AB, Kulikov EA, Fine IV, Bornhold BD (2001) On Numerical simulation of the landslide-generated tsunami of November 3, 1994 in Skagway Harbor, Alaska. Tsunami research at the end of a critical decade, Hebenstreit GT (ed), pp 243-282, Kluwer Academic, Dordrecht.

  • Tinti S, Bortolucci E, Vannini C (1997) A block-based theoretical model suited to gravitational sliding. Nat Hazards 16:1–28. doi:10.1023/A:1007934804464

    Article  Google Scholar 

  • Tinti S, Bortolucci E, Armigliato A (1999) Numerical simulation of the landslide-induced tsunami of 1988 in Vulcano Island, Italy. Bull Volcanol 61:121–137. doi:10.1007/s004450050267

    Article  Google Scholar 

  • Tinti S, Bortolucci E (2000) Energy of water waves induced by submarine landslides. Pure Appl Geophys 157:281–318. doi:10.1007/s000240050001

    Article  Google Scholar 

  • Tinti S, Manucci A, Pagnoni G, Armigliato A, Zaniboni F (2005) The 30 December 2002 landslide-induced tsunamis in Stromboli: sequence of the events reconstructed from the eyewitness accounts. Nat Hazards Earth Syst Sci 5:763–775. doi:10.5194/nhess-5-763-2005

    Article  Google Scholar 

  • Tinti S, Armigliato A, Manucci A, Pagnoni G, Zaniboni F, Yalciner AC, Altinok Y (2006) The generating mechanisms of the August 17 1999 Izmit bay (Turkey) tsunami: regional (tectonic) and local (mass instabilities) causes. Mar Geol 225:311–330. doi:10.1016/j.margeo.2005.09.010

    Article  Google Scholar 

  • Tinti S, Tonini R (2013) The UBO-TSUFD tsunami inundation model: validation and application to a tsunami case study focused on the city of Catania, Italy. Nat Hazards Earth Syst Sci 13:1795–1816. doi:10.5194/nhess-13-1795-2013

    Article  Google Scholar 

  • Titov VV, Gonzalez FI (1997) Implementation and testing of the method of splitting tsunami (MOST) numerical model. NOAA Tech Memo ERL PMEL-112 (PB98-122773), PMEL, Seattle, WA, 11 pp.

  • Toni SD, Scotton P (2005) Two-dimensional mathematical and numerical model for the dynamics of granular avalanches. Cold Reg Sci Technol 43:36–48. doi:10.1016/j.coldregions.2005.05.002

    Article  Google Scholar 

  • Townson JM, Kaya Y (1988) Simulations of the waves in Lake Botnen by the Rissa landslide. Proc Inst Civ Eng 2(85):145–160. doi:10.1680/iicep.1988.113

    Google Scholar 

  • Tralli DM, Bolm RG, Zlotnicki V, Donnellan A, Evans DL (2005) Satellite remote sensing of earthquake, volcano, flood, landslide and coastal inundation hazards. ISPRS J Photogramm Remote Sens 59(4):185–198. doi:10.1016/j.isprsjprs.2005.02.002

    Article  Google Scholar 

  • Tsuji Y, Kawaguchi T, Tanaka T (1993) Discrete particle simulation of two-dimensional fluidized bed. Powder Technol 77:79–87. doi:10.1016/0032-5910(93)85010-7

    Article  Google Scholar 

  • Unzen Restoration Office of the Ministry of Land, Infrastructure and Transport of Japan (2002) The Catastrophe in Shimabara—1791-92 eruption of Unzen-Fugendake and the sector collapse of Mayu-Yama. An English leaflet (23 pages)

  • Vacondio R, Mignosa P, Pagani S (2013) 3D SPH numerical simulation of the wave generated by the Vajont rockslide. Adv Water Resour 59:146–156. doi:10.1016/j.advwatres.2013.06.009

    Article  Google Scholar 

  • Veeramony J, Svendsen IA (2000) The flow in surf-zone waves. Coast Eng 39:93–122. doi:10.1016/S0378-3839(99)00058-7

    Article  Google Scholar 

  • Verriere M, Lenoir M (1992) Computation of waves generated by submarine landslides. Int J Numer Methods Fluids 14:403–421. doi:10.1002/fld.1650140403

    Article  Google Scholar 

  • Viroulet S, Cébron D, Kimmoun O, Kharif C (2013) Shallow water waves generated by subaerial solid landslides. Geophys J Int 193:747–762. doi:10.1093/gji/ggs133

    Article  Google Scholar 

  • Voight B (1981) Time scale for the first moments of the May 18, eruption. In Lipman PW, Mullineaux DR (eds) The 1980 eruptions of Mount St. Helens, Washington. US Geol Surv Prof Pap 1250:69–86

    Google Scholar 

  • Walder JS, Watts P, Sorensen OE, Janssen K (2003) Tsunamis generated by subaerial mass flows. J Geophys Res 108(B5):2236. doi:10.1029/2001JB000707

    Article  Google Scholar 

  • Walder JS, Watts P, Waythomas CF (2006) Case study: mapping tsunami hazards associated with debris flow into a reservoir. J Hydraul Eng 132:1–11. doi:10.1061/(ASCE)0733-9429(2006)132:1(1)

    Article  Google Scholar 

  • Walkley MA (1999) A numerical method for extended Boussinesq shallow water wave equations. PhD Thesis, The University of Leeds, Leeds, UK, pp 70–95.

  • Walters RA (2005) A semi-implicit finite element model for non-hydrostatic (dispersive) surface waves. Int J Numer Methods Fluids 49(7):721–737. doi:10.1002/fld.1019

    Article  Google Scholar 

  • Walton OR (1994) Numerical simulation of inelastic frictional particle–particle interaction. In: Roco MC (ed) Particulate two-phase flow, chapter 25 edn. Butterworth-Heinemann, Oxford, pp. 884–911

    Google Scholar 

  • Wang FW, Zhang YM, Huo ZT, Matsumoto T, Huang BL (2004) The July 14, 2003 Qianjiangping landslide, Three Gorges Reservoir, China. Landslides 1:157–162. doi:10.1007/s10346-004-0020-6

    Article  Google Scholar 

  • Wang FW, Wang G, Sassa K, Takeuchi A, Araiba K, Zhang Y, Peng X (2005) Displacement monitoring and physical exploration on the Shuping Landslide reactivated by impoundment of the Three Gorges Reservoir, China. In Sassa K, Fukuoka H, Wang F, Wang G (eds) Landslides, Risk analysis and sustainable disaster management. Proc 1st general assembly int consortium on landslides, Springer, pp 313–319.

  • Wang X (2009) User manual for COMCOT version 1.7. Institute of Geological & Nuclear Science, New Zealand

    Google Scholar 

  • Ward SN (2001) Landslide tsunami. J Geophys Res 106(6):11201–11215. doi:10.1029/2000JB900450

    Article  Google Scholar 

  • Ward SN, Day S (2001) Cumbre Vieja Volcano—potential collapse and tsunami at La Palma, Canary Islands. Geophys Res Lett 28:397–400. doi:10.1029/2001GL013110

    Article  Google Scholar 

  • Ward SN, Day S (2003) Ritter Island Volcano-lateral collapse and the tsunami of 1888. Geophys J Int 154:891–902. doi:10.1046/j.1365-246x.2003.02016.x

    Article  Google Scholar 

  • Ward SN, Day S (2006) Particulate kinematic simulations of debris avalanches: interpretation of deposits and landslide seismic signals of Mount Saint Helens 1980 May 18. Geophys J Int 167:991–1004. doi:10.1111/j.1365-246X.2006.03118.x

    Article  Google Scholar 

  • Watanabe Y, Saeki H, Hosking RJ (2005) Three-dimensional vortex structures under breaking waves. J Fluid Mech 545:291–328. doi:10.1017/S0022112005006774

    Article  Google Scholar 

  • Ward SN, Day S (2008) Tsunami Balls: a granular approach to tsunami runup and inundation. Commun Comput Phys 3(1):222–249

    Google Scholar 

  • Ward SN, Day S (2010) The 1958 Lituya Bay landslide and tsunami—a tsunami ball approach. J Earthquake Tsunami 4(4):285–319. doi:10.1142/S1793431110000893

    Article  Google Scholar 

  • Ward SN, Day S (2011) The 1963 landslide and flood at Vaiont Reservoir Italy. A tsunami ball simulation. Ital J Geosci 130(1):16–26. doi:10.3301/IJG.2010.21

    Google Scholar 

  • Watt SFL et al. (2012) Combinations of volcanic-flank and seafloor-sediment failure offshore Montserrat, and their implications for tsunami generation. Earth Planet Sci Lett 319-320:228–240. doi:10.1016/j.epsl.2011.11.032

    Article  Google Scholar 

  • Watts P (1998) Wavemaker curves for tsunamis generated by underwater landslides. J Waterw Port Coast Ocean Eng 124(3):127–137. doi:10.1061/(ASCE)0733-950X(1998)124:3(127)

    Article  Google Scholar 

  • Watts P (2000) Tsunami features of solid block underwater landslides. J Waterw Port Coast Ocean Eng 126(3):144–152. doi:10.1061/(ASCE)0733-950X(2000)126:3(144)

    Article  Google Scholar 

  • Watts P, Borrero JC (2001) Probability distributions of landslide tsunamis. ITS 2001 Proc 6(6-8):697–710

    Google Scholar 

  • Watts P, Grilli ST, Imamura F (2001) Coupling of tsunami generation and propagation codes. ITS 2001 Proc 7(7-13):811–823

    Google Scholar 

  • Watts P, Borrero JC, Tappin DR, Bardet JP, Grilli ST, Synolakis CE (2002) Novel simulation technique employed on the 1998 Papua New Guinea tsunami. The 1999 IUGG General Assembly in Birmingham, UK. www.appliedfluids.com/resume.html.

  • Watts P, Grilli ST (2003) Underwater landslide shape, motion, deformation, and tsunami generation. Proc the 13th Int Offshore and Polar Eng Conf, Honolulu, Hawaii, USA, May 25–30, pp 364-371.

  • Watts P, Grilli ST, Kirby JT, Fryer GJ, Tappin DR (2003) Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model. Nat Hazards Earth Syst Sci 3:391–402. doi:10.5194/nhess-3-391-2003

    Article  Google Scholar 

  • Watts P, Waythomas CF (2003) Theoretical analysis of tsunami generation by pyroclastic flows. J Geophys Res 108(B12):2563. doi:10.1029/2002JB002265

    Article  Google Scholar 

  • Watts P (2004) Probabilistic predictions of landslide tsunamis of Southern California. Mar Geol 203:281–301. doi:10.1016/S0025-3227(03)00311-6

    Article  Google Scholar 

  • Watts P, Grilli ST, ASCE M, Tappin D, Fryer GJ (2005) Tsunami generation by submarine mass failure Part II: predictive equations and case studies. J Waterw Port Coast Ocean Eng 131(6):298–310. doi:10.1061/(ASCE)0733-950X(2005)131:6(298)

    Article  Google Scholar 

  • Waythomas CF, Watts P (2003) Numerical simulation of tsunami generation by pyroclastic flow at Aniakchak Volcano, Alaska. Geophys Res Lett 30(14):1751. doi:10.1029/2003GL017220

    Article  Google Scholar 

  • Waythomas CF, Watts P, Walder JS (2006) Numerical simulation of tsunami generation by cold volcanic mass flows at Augustine Volcano, Alaska. Nat Hazards Earth Syst Sci 6:671–685. doi:10.5194/nhess-6-671-2006

    Article  Google Scholar 

  • Wei G, Kirby JT, Grilli ST, Subramanya R (1995) A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves. J Fluid Mech 294:71–92. doi:10.1017/S0022112095002813

    Article  Google Scholar 

  • Weiss R, Fritz HM, Wünnemann K (2009) Hybrid modeling of the mega-tsunami runup in Lituya Bay after half a century. Geophys Res Lett 36(6):L09602. doi:10.1029/2009GL037814

    Google Scholar 

  • Wiegel RL (1955) Laboratory studies of gravity waves generated by the movement of a submerged body. Eos Trans AGU 36(5):759–774

    Article  Google Scholar 

  • Wiegel RL, Noda EK, Kuba EM, Gee DM, Tornberg GF (1970) Water waves generated by landslides in reservoirs. J Waterw Harb Coast Eng Div 96(2):307–333

    Google Scholar 

  • Wieland M, Gray MNT, Hutter K (1999) Channelized free-surface flow of cohesionless granular avalanches in chute with shallow lateral curvature. J Fluid Mech 392:73–100. doi:10.1017/S0022112099005467

    Article  Google Scholar 

  • Worni R, Huggel C, Clague JJ, Schaub Y, Stoffel M (2014) Coupling glacial lake impact, dam breach, and flood processes: a modeling perspective. Geomorphology 224:161–176. doi:10.1016/j.geomorph.2014.06.031

    Article  Google Scholar 

  • Wu DM, Wu TY (1983) Three-dimensional nonlinear long waves due to moving surface pressure. Proc 14th symposium on naval hydrodynamics, National academy press, Ann Arbor, MI, pp 103-125.

  • Xiao L, Ward SN, Wang J (2015) Tsunami squares approach to landslide-generated waves: application to Gongjiafang Landslide, Three Gorges Reservoir, China. Pure Appl Geophys 172(12):3639–3654. doi:10.1007/s00024-015-1045-6

    Article  Google Scholar 

  • Xie J, Tai YC, Jin YC (2013) Study of the free surface flow of water–kaolinite mixture by moving particle semi-implicit (MPS) method. Int J Numer Anal Methods Geomech 38:811–827. doi:10.1002/nag.2234

    Article  Google Scholar 

  • Yamamoto Y, Ogawa Y, Ichino T, Muraoka S, Chiba T (2007) Large-scale chaotically mixed sedimentary body within the Late Pliocene to Pleistocene Chikura Group, Central Japan. Island Arc 16:505–507. doi:10.1111/j.1440-1738.2007.00587.x

    Article  Google Scholar 

  • Yamazaki Y, Kowalik Z, Cheung KF (2009) Depth-integrated, non-hydrostatic model for wave breaking and run-up. Int J Numer Methods Fluids 61:473–497. doi:10.1002/fld.1952

    Article  Google Scholar 

  • YangMH (2009) Progress on unstructured-grid based high-order CFD methods. PhD thesis, Iowa State University, Ames, Iowa.

  • Yavari-Ramshe S, Ataie-Ashtiani B (2009) Simulation of wave generated by landslides in Maku dam reservoir. Prediction and Simulation Methods for Geohazard Mitigation, edited by Oka F, Kimoto S, Murakami O. Chapter 14, CRC Press. doi:10.1201/NOE0415804820.ch14

  • Yavari-Ramshe S, Ataie-Ashtiani B, Sanders BF (2015) A robust finite volume model to simulate granular flows. Comput Geotech 66:96–112. doi:10.1016/j.compgeo.2015.01.015

    Article  Google Scholar 

  • Yavari-Ramshe S, Ataie-Ashtiani B (2015) A rigorous finite volume model to simulate subaerial and submarine landslide generated waves. Landslides. doi:10.1007/s10346-015-0662-6

    Google Scholar 

  • Yongfu S, Bolin H (2014) A potential tsunami impact assessment of submarine landslide at Baiyun Depression in Northern South China Sea. Geoenviron Disaster 1:7. doi:10.1186/s40677-014-0007-0

    Article  Google Scholar 

  • Young CC, Wu CH (2009) An efficient and accurate non-hydrostatic model with embedded Boussinesq-type like equations for surface wave modeling. Int J Numer Methods Fluids 60:27–53. doi:10.1002/fld.1876

    Article  Google Scholar 

  • Yuan H, Wu CH (2004a) A two-dimensional vertical non-hydrostatic σ model with an implicit method for free-surface flows. Int J Numer Methods Fluids 44(8):811–835. doi:10.1002/fld.670

    Article  Google Scholar 

  • Yuan H, Wu CH (2004b) An implicit three-dimensional fully non-hydrostatic model for free-surface flows. Int J Numer Meth Fluids 46(7):709–733. doi:10.1002/fld.778

    Article  Google Scholar 

  • Yuan H, Wu CH (2006) Fully nonhydrostatic modeling of surface waves. J Eng Mech 132(4):447–456. doi:10.1061/(ASCE)0733-9399(2006)132:4(447)

    Article  Google Scholar 

  • Yuk D, Yim SC, Liu PLF (2006) Numerical modeling of submarine mass-movement generated waves using RANS model. Comput Geosci 32(7):927–935. doi:10.1016/j.cageo.2005.10.028

    Article  Google Scholar 

  • Zanuttigh B, Lamberti A (2004) Analysis of debris wave development using 1D shallow water equations. J Hydraul Eng 1304:293–304. doi:10.1061/(ASCE)0733-9429(2004)130:4(293)

    Article  Google Scholar 

  • Zhao M, Teng B, Cheng L (2004) A new form of generalized Boussinesq equations for varying water depth. J Ocean Eng 31:2047–2072. doi:10.1016/j.oceaneng.2004.03.010

    Article  Google Scholar 

  • Zhao L, Mao J, Bai X, Liu X, Li T, Williams JJR (2015) Finite element simulation of impulse wave generated by landslides using a three-phase model and the conservative level set method. Landslides. doi:10.1007/s10346-014-0552-3

    Google Scholar 

  • Zhou H, Moore CW, Wei Y, Titov VV (2011) A nested-grid Boussinesq-type approach to modelling dispersive propagation and runup of landslide-generated tsunamis. Nat Hazards Earth Syst Sci 11:2677–2697. doi:10.5194/nhess-11-2677-2011

    Article  Google Scholar 

  • Zijlema M, Stelling G (2005) Further experiences with computing non-hydrostatic free-surface flows involving water waves. Int J Numer Methods Fluids 48:169–197. doi:10.1002/fld.821

    Article  Google Scholar 

  • Zijlema M, Stelling GS (2008) Efficient computation of surf zone waves using the nonlinear shallow water equations with non-hydrostatic pressure. Coast Eng 55:780–790. doi:10.1016/j.coastaleng.2008.02.020

    Article  Google Scholar 

  • Zweifel A, Hager WH, Minor HE (2006) Plane impulse waves in reservoirs. J Waterway Port Coastal Ocean Eng ASCE 132(5):358–368. doi:10.1061/(ASCE)0733-950X(2006)132:5(358)

    Article  Google Scholar 

Download references

Acknowledgments

Authors appreciate the continued support of Civil Engineering department of Sharif University of Technology, Iran, for this research topic during the past 10 years. The second author acknowledges the contributions of his former graduate students including Dr. A. Najafi-Jilani, Dr. G.R. Shobayri, Eng. A. Nik-Khah, Dr. L. Farhadi, Dr. S. Malek-Mohammadi, Dr. S. Mansour-Rezaei, and Dr. R. Jalali-Farahani who had worked on this research topic. The authors wish to thank the editor-in-chief Professor Sassa for his thoughtful comments and also two anonymous reviewers for their valuable comments, which helped to improve the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yavari-Ramshe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yavari-Ramshe, S., Ataie-Ashtiani, B. Numerical modeling of subaerial and submarine landslide-generated tsunami waves—recent advances and future challenges. Landslides 13, 1325–1368 (2016). https://doi.org/10.1007/s10346-016-0734-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-016-0734-2

Keywords

Navigation