Skip to main content
Log in

The hydrodynamics of landslide tsunamis: current analytical models and future research directions

  • Review Article
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Landslide-generated tsunamis are lesser-known yet equally destructive than earthquake tsunamis. Indeed, the highest tsunami wave recorded in recent history was generated by a landslide in Lituya Bay (Alaska, July 9, 1958) and produced run-up in excess of 400 m. In this paper, we review the state of the art of landslide tsunami analytical modelling. Within the framework of a linearised shallow-water theory, we illustrate the dynamics of landslide tsunami generation and propagation along beaches and around islands. Finally, we highlight some intriguing new directions in the analytical modelling of landslide tsunamis to support early warning systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bardet JP, Synolakis CE, Davies HL, Imamura F, Okal EA (2003) Landslide tsunamis: Recent findings and research directions. Pageoph Top Vol 1793–1809

  • Cecioni C, Romano A, Bellotti G, Di Risio M, De Girolamo P (2011) Real-time inversion of tsunamis generated by landslides. Nat Hazards Earth Syst Sci 11:2511–2520

    Article  Google Scholar 

  • Cecioni C, Abdolali A, Bellotti G, Sammarco P (2015) Large-scale numerical modeling of hydro-acoustic waves generated by tsunamigenic earthquakes. Nat Hazards Earth Syst Sci 15:627–636

    Article  Google Scholar 

  • Couston LA, Mei CC, Alam MR (2015) Landslide tsunamis in lakes. J Fluid Mech 772:784–804

    Article  Google Scholar 

  • De Girolamo P, De Bernardinis B, Beltrami GM, Di Risio M, Bellotti G, Capone T (2011) The Italian activities on tsunami risk mitigation: the operating landslide tsunami early warning system of Stromboli (Aeolian Islands, Italy). Proceedings of the 7th International Workshop on Coastal Disaster Prevention, Tokyo

    Google Scholar 

  • De Girolamo P, Di Risio M, Romano A, Molfetta M (2014) Landslide tsunami: physical modeling for the implementation of tsunami early warning systems in the Mediterranean Sea. Procedia Eng 70:429–438

    Article  Google Scholar 

  • Di Risio M, Sammarco P (2008) Analytical modeling of landslide generated waves. J Waterway Port Coastal Ocean Eng 134:53–60

    Article  Google Scholar 

  • Di Risio M, Bellotti G, Panizzo A, De Girolamo P (2009a) Three dimensional experiments on landslide generated waves at a sloping coast. Coast Eng 56(5–6):659–671

    Article  Google Scholar 

  • Di Risio M, De Girolamo P, Bellotti G, Panizzo A, Aristodemo F, Molfetta M, Petrillo A (2009b) Landslide-generated tsunamis runup at the coast of a conical island: new physical model experiments. J Geophys Res 114(C01009)

  • Dias F, Dutykh D, O’Brien L, Renzi E, Stefanakis T (2014) On the modelling of tsunami generation and tsunami inundation. Procedia IUTAM 10:338–355

    Article  Google Scholar 

  • Farrell EJ, Ellis JT, Hickey KR (2015) Tsunami case studies. In: Ellis JT, Sherman DJ (eds) Coastal and marine hazards, risks, and disasters. Elsevier, Amsterdam, pp 93–128

    Chapter  Google Scholar 

  • Hendin G, Stiassnie M (2013) Tsunami and acoustic-gravity waves in water of constant depth. Phys Fluids 25(086103):1–20

    Google Scholar 

  • Kanoglu U, Synolakis C (2015) Tsunami dynamics, forecasting, and mitigation. In: Ellis JT, Sherman DJ (eds) Coastal and marine hazards, risks, and disasters. Elsevier, Amsterdam, pp 15–57

    Chapter  Google Scholar 

  • Liu PLF, Lynett P, Synolakis CE (2003) Analytical solutions for forced long waves on a sloping beach. J Fluid Mech 478:101–109

    Article  Google Scholar 

  • Liu PLF, Wu TR, Raichlen F, Synolakis CE, Borrero JC (2005) Runup and rundown generated by three-dimensional sliding masses. J Fluid Mech 536:107–144

    Article  Google Scholar 

  • Lynett P, Liu PLF (2005) A numerical study of the run-up generated by three-dimensional landslides. J Geophys Res 110(C03006):1–16

    Google Scholar 

  • Ma G, Shi F, Kirby JT (2012) Shock-capturing non-hydrostatic model for fully dispersive surface wave processes. Ocean Model 43–44:22–35

    Article  Google Scholar 

  • Ma G, Kirby JT, Shi F (2013) Numerical simulation of tsunami waves generated by deformable submarine landslides. Ocean Model 69:146–165

    Article  Google Scholar 

  • Mei CC (1997) Mathematical analysis in engineering. Cambridge University Press, Cambridge

    Google Scholar 

  • Mei CC, Stiassnie M, Yue DKP (2005) Theory and application of ocean surface waves. World Scientific, Singapore

    Google Scholar 

  • Mohammed F, Fritz H (2012) Physical modeling of tsunamis generated by three-dimensional deformable granular landslides. J Geophys Res 11(C11)

  • Panizzo A, De Girolamo P, Di Risio M, Maistri A, Petaccia A (2005) Great landslide events in Italian artificial reservoirs. Nat Hazards Earth Syst Sci 5:733–740

    Article  Google Scholar 

  • Renzi E (2010) Landslide tsunamis. PhD thesis, University of Rome Tor Vergata

  • Renzi E, Sammarco P (2010) Landslide tsunamis propagating around a conical island. J Fluid Mech 605:251–285

    Article  Google Scholar 

  • Renzi E, Sammarco P (2012) The influence of landslide shape and continental shelf on landslide generated tsunamis along a plane beach. Nat Hazards Earth Syst Sci 12:1503–1520

    Article  Google Scholar 

  • Renzi E, Cecioni C, Bellotti G, Sammarco P, Dias F (2015) Extended mild-slope equations for compressible fluids. Proceedings of the 30th IWWWFB, Bristol

    Google Scholar 

  • Romano A, Di Risio M, Bellotti G (2013) Wavenumber-frequency analysis of the landslide-generated tsunamis at a conical island. Coast Eng 81:32–43

    Article  Google Scholar 

  • Sammarco P, Renzi E (2008) Landslide tsunamis propagating along a plane beach. J Fluid Mech 598:107–119

    Article  Google Scholar 

  • Sammarco P, Cecioni C, Bellotti G, Abdolali A (2013) Depth integrated equation for large-scale modelling of low-frequency hydroacoustic waves. J Fluid Mech 722(R6):1–10

    Google Scholar 

  • Sarri A, Guillas S, Dias F (2012) Statistical emulation of a tsunami model for sensitivity analysis and uncertainty quantification. Nat Hazards Earth Syst Sci 12:2003–2018

    Article  Google Scholar 

  • Stefanakis T, Contal E, Vayatis F, Dias F, Synolakis CE (2014) Can small islands protect nearby coasts from tsunamis? An active experimental design approach. Proc R Soc A 470(20140575)

  • Stefanakis T, Dias F, Synolakis C (2015) Tsunami generation above a sill. Pure Appl Geophys 172(3–4):985–1002

    Article  Google Scholar 

  • Synolakis CE, Bardet JP, Borrero JC, Davies HL, Okal EA, Silver E, Sweet S, Tappin DR (2002) The slump origin of the 1998 Papua New Guinea tsunami. Proc R Soc A 458:763–789

    Article  Google Scholar 

  • Tappin DR, Watts P, Grilli ST (2008) The Papua New Guinea tsunami of 17 July 1998: anatomy of a catastrophic event. Nat Hazards Earth Syst Sci 8:243–266

    Article  Google Scholar 

  • Tehranirad B, Harris JC, Grilli AR, Grilli ST, Abadie S, Kirby JT, Shi F (2015) Far-field tsunami impact in the North Atlantic Basin from large scale flank collapses of the cumbre vieja volcano, la palma. Pure Appl Geophys 1–28

  • Tinti S, Manucci A, Pagnoni G, Armigliato A, Zaniboni F (2005) The 30 December 2002 landslide-induced tsunamis in Stromboli: sequence of the events reconstructed from the eyewitness accounts. Nat Hazards Earth Syst Sci 5:763–775

    Article  Google Scholar 

  • Wang Y, Liu PLF, Mei CC (2011) Solid landslide generated waves. J Fluid Mech 675:529–539

    Article  Google Scholar 

  • Watts P, Grilli ST, Kirby JT, Fryer GJ, Tappin DR (2003) Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model. Nat Hazards Earth Syst Sci 3(391–402)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emiliano Renzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Renzi, E., Sammarco, P. The hydrodynamics of landslide tsunamis: current analytical models and future research directions. Landslides 13, 1369–1377 (2016). https://doi.org/10.1007/s10346-016-0680-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-016-0680-z

Keywords

Navigation