Skip to main content
Log in

Analytical and approximate expressions predicting post-failure landslide displacement using the multi-block model and energy methods

  • Technical Note
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

A multi-block sliding model has been proposed in order to simulate the actual geometry of landslides and their rotation with displacement. The governing equation of motion was formulated with the force equilibrium approach and solved by numerical integration in terms of time. The present work derives the formulation of the multi-block model based on another perspective, the energy conservation principle. This approach, in contrast to the force equilibrium approach, has the ability to derive analytical equations predicting the distance moved of masses sliding with resistance exhibiting both cohesional and frictional components. The most general geometry, where analytical solution predicting post-failure displacement can be obtained, is considered. Then, and as this equation is complex, a simple special case geometry is considered in order to derive easy-to-apply simple expressions which predict post-failure landslide displacement in terms of soil resistance and geometric parameters of the sliding mass. The accuracy of this approximate for general geometries expression is validated by extensive parametric analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Ciabati M (1964) La dinamica della frana del Vaiont. G Geol 32:139–154

    Google Scholar 

  • Hendron AJ, Patton FD (1985) The Vaiont slide, a geotechnical analysis based on new geological observations of the failure surface. Tech. Rep. GL-85–5, 2, Department of the Army, US Corps of Engineers, Washington

    Google Scholar 

  • Sarma SK (1979) Stability analysis of embankments and slopes. Journal of Geotechnical Engineering, ASCE 105(12):1511–1524

    Google Scholar 

  • Stamatopoulos C (2015)  Constitutive and multi-block modeling of slides on saturated sands along slip surfaces, Soils and foundations, The Japanese Geotechnical Society,  55(4):703–719

  • Stamatopoulos C, Di B (2014) Simplified multi-block constitutive model predicting earthquake-induced slide triggering and displacement along slip surfaces of saturated sand, Soil Dynamics and Earthquake Engineering 67:16–29

  • Stamatopoulos C, Velgaki E, Sarma S (2000) Sliding-block back analysis of earthquake-induced slides. Soils and foundations, The Japanese Geotechnical Society 40(6):61–75

    Article  Google Scholar 

  • Stamatopoulos CA, Mavromihalis C, Sarma S (2011) Correction for geometry changes during motion of sliding-block seismic displacement, ASCE. Journal of Geotechnical and Geoenvironmental Engineering 137(10):926–938

    Article  Google Scholar 

  • Tika TE, Hutchinson JN (1999) Ring shear tests on soil from the Vaiont landslide slip surface. Geotechnique 59–74

  • Timoshenko S., Young D. H. (1948) Advanced Dynamics. McGraw-Hill Company, Inc

  • Wu S, Wang T, Shi L, Sun P, Shi J, Li B, Xin P, Wang H (2010) Catastrophic landslides triggered by the 2008 Wenchuan Earthquake. China J Eng Geol 18(2):145–159

    Google Scholar 

Download references

Acknowledgement

The work was funded by the project “Novel methodologies for the assessment of risk of ground displacement” under ESPA 2007–2013 of Greece, under action: Bilateral S & T Cooperation between China and Greece. Mrs Eleni G. Velgaki assisted in the development of the analytical solution. Mrs Lydia Balla performed most of the parametric analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantine A. Stamatopoulos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stamatopoulos, C.A., Di, B. Analytical and approximate expressions predicting post-failure landslide displacement using the multi-block model and energy methods. Landslides 12, 1207–1213 (2015). https://doi.org/10.1007/s10346-015-0638-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-015-0638-6

Keywords

Navigation