Skip to main content

Advertisement

Log in

Integration of LiDAR data for the assessment of activity in diachronic landslides: a case study in the Betic Cordillera (Spain)

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

In the procedures to minimize diachronic landslides, data on their temporal evolution and destructive capacities are necessary. For that purpose, remote-detection techniques proved to be highly useful for quantifying the ongoing change in the relief, as well as in comparisons between digital terrain models achieved by Light Detection and Ranging. The methodology presented in this paper includes the supervised merging and comparison of sequential scans, acquired within nearly annual intervals from an irregular terrain, which improves the quality of the results highlighting ground changes. This approach is based on the processing of digital terrain models from point clouds acquired by Terrestrial Laser Scanning to quantify and interpret the landslide displacements. In parallel, it is supported by Global Navigation Satellite Systems, the use of artificial targets and a refined data processing to minimize the uncertainty and improve the precision of the results. This is applied to a large translational slide affecting phyllite rocks in a IV-V degree of weathering settled on the southern slope of Sierra Nevada (south-eastern Spain). During the monitoring period (2008–2010), the slide remained inactive until 2009, followed by a reactivation with displacements in the range −1.80 to 1.20 m along the period 2009–2010, where negative values are downwards from the reference model (2009). The accumulated relative standard deviation between data sets was on the order of 7.5 cm, whereas the threshold to determine a terrain displacement (also avoiding changes due to erosion-accumulation processes) was of 10 cm. When applying this methodology to Airborne Laser Scanning datasets for the years 2008 and 2010, covering zones hidden to the line of sight of the terrestrial technique, a reactivation with similar deformation pattern was found useful to validate the findings, although the detail of changes and quantitative results did not match exactly due to the different accuracy and resolution of both techniques. The reactivation of the slide coincided with a period of intense rains, pointing to this as the triggering factor, with a precipitation threshold of roughly 1000 mm in a period of 4 months, only reached on one occasion throughout in the historical record.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abellán A, Calvet J, Vilaplana JM, Blanchard J (2010) Detection and spatial prediction of rockfalls by means of terrestrial laser scanner monitoring. Geomorphology 119:162–171

    Article  Google Scholar 

  • AGS (2000) Landslide risk management concepts and guidelines. Australian Geomechanics Society, Sub-committee on landslide risk management, 44pp

  • Balanyá JC, García-Dueñas V (1987) Les directions structurales dans le Domaine d’Alborán de part et d’autre du Détroit de Gibraltar. Comptes Rendus de l’Académie des Sciences de Paris. Comptes Rendus de l’Académie des Sciences de Paris Serie II 304(15):929–932

    Google Scholar 

  • Baltsavias EP (1999) Airborne laser scanning: basic relations and formulas. ISPRS Int Soc Photograme 54:199–214

    Article  Google Scholar 

  • Bernardini F, Rushmeier HE (2002) The 3D model acquisition pipeline. Comput Graphics Forum 21(2):149–172

    Article  Google Scholar 

  • Besl PJ, McKay N (1992) A method for registration of 3D shapes. IEEE Trans Pattern Anal Mach Intell 14(2):239–256

    Article  Google Scholar 

  • Bitelli G, Dubbini M, Zanutta A (2004) Terrestrial laser scanning and digital photogrammetry techniques to monitor landslide bodies. In: Orhan M (ed.) Proceedings of the XXth ISPRS congress, Istanbul, Turkey. ISPRS Archives vol. 35(B5): 246-251

  • Boris D (1934) Sur la sphère vide. Otdelenie Matematicheskikh i Estesvennykh Nauk 7:793–800

    Google Scholar 

  • Brabb EE (1984) Innovative approaches to landslide hazard and risk mapping. In: 4th International Symposium on Landslides, Toronto, Canada, vol. 1: 307–323

  • Brabb EE (1991) The world landslide problem. Episodes 14(1):52–61

    Google Scholar 

  • Breien H, De Blasio FV, Elverhøi A, Høeg K (2008) Erosion and morphology of a debris flow caused by a glacial lake outburst flood, Western Norway. Landslides 5:271–280

    Article  Google Scholar 

  • Brideau MA, Sturzenegger M, Stead D, Jaboyedoff M, Martin M, Roberts N, Ward B, Millard T, Clague J (2012) Stability analysis of the 2007 Chehalis lake landslide based on long-range terrestrial photogrammetry and airborne LiDAR data. Landslides 9:75–91

    Article  Google Scholar 

  • Brown ET (1981) Rock characterization testing and monitoring. Ed. Pergamon Press, Oxford

    Google Scholar 

  • Brückl E, Brunner FK, Kraus K (2006) Kinematics of a deep-seated landslide derived from photogrammetric, GPS and geophysical data. Eng Geol 88(3-4):149–159

    Article  Google Scholar 

  • Carrara A (1983) A multivariate model for landslide hazard evaluation. Math Geol 15:403–426

    Article  Google Scholar 

  • Carrara A, Cardinali M, Detti R, Guzzetti F, Pasqui V, Reichenbach P (1991) GIS techniques and statistical models in evaluating landslide hazard. Earth Surf Process Landf 16(5):427–445. doi:10.1002/esp.3290160505

    Article  Google Scholar 

  • Carrara A, Cardinali M, Guzzetti F, Reichenbach P (1995) GIS technology in mapping landslide hazard. In: Carrara A, Guzzetti F (eds) Geographical Information Systems in assessing natural hazards. Kluwer Academic Publisher, Dordrecht, pp p135–p175

    Chapter  Google Scholar 

  • Carrara A, Crosta GB, Frattini P (2003) Geomorphological and historical data in assessing landslide hazard. Earth Surf Process Landf 28(10):1125–1142

    Article  Google Scholar 

  • Casson B, Delacourt C, Baratoux D, Allemand P (2003) Seventeen years of the “La Clapière” landslide evolution analysed from ortho-rectified aerial photographs. Eng Geol 68(1-2):123–139

    Article  Google Scholar 

  • Chacón J, Irigaray C, Fernández T (1993) Methodology for large scale landslide hazard mapping in a G.I.S. Seventh International Conference & Field Workshop on Landslides. pp. 77-82. Bratislava, Slovakia, Septiembre 1993. In “Landslides” Ed. Balkema. ISBN: 90-5410-302-7

  • Chacón J, Irigaray C, El Hamdouni R, Fernández T (1996) From the inventory to the risk analysis: improvements to a large scale G.I.S. method. In: Chacón J, Irigaray C, Fernández T (eds) Landslides. Balkema, Rotterdam. 8th ICFL Granada, Spain, p335-342

  • Chacón J, Irigaray C, Fernández T, El Hamdouni R (2006) Engineering geology maps: landslides and Geographical Information Systems (GIS). Bull Eng Geol Environ 65:341–411. doi:10.1007/s10064-006-0064-z

    Article  Google Scholar 

  • Chacón J, Irigaray C, El Hamdouni R, Jiménez-Perálvarez JD (2010) Diachroneity of landslides. In: Williams AL, Pinches GM, Chin CY, McMorran TJ, Massey CI (eds) Geologically active, vol. 1. CRC Press/Balkema, Taylor & Francis Group, Leiden, pp 999–1006. ISBN 978-0-415-60034-7

    Google Scholar 

  • Chandler JH, Brunsden D (1995) Steady state behaviour of the Black Ven mudslide: the application of archival analytical photogrammetry to studies of landform change. Earth Surf Process Landf 20(3):255–275

    Article  Google Scholar 

  • Chung CF, Frabbri AG (1999) Probabilistic prediction models for landslide hazard mapping. Photogramm Eng Remote Sens 65(12):1389–1399

    Google Scholar 

  • Corominas J, Moya J (2008) A review of assessing landslide frequency for hazard zoning purposes. Eng Geol 102:193–213

    Article  Google Scholar 

  • Corominas J, Van Westen JC, Frattini P, Cascini L, Malet JP, Fotopoulou S, Catani F, Van Den Eeckhaut M, Mavrouli O, Agliardi F, Pitilakis K, Winter MG, Pastor M, Ferlisi S, Tofani V, Hervás J, Smith JT (2013) Recommendations for the quantitative analysis of landslide risk. Bull Eng Geol Environ 73(2):209–263. doi:10.1007/s10064-013-0538-8

    Google Scholar 

  • Crosta GB, Frattini P (2008) Rainfall-induced landslides and debris flows. Hydrol Process 22(4):473–477. doi:10.1002/hyp.6885

    Article  Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslides types and processes. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation. National Academic Press, Washington, DC, pp 35–76, Sp-Rep 247

    Google Scholar 

  • Delacourt C, Allemand P, Berthier E, Raucoules D, Casson B, Grandjean P, Pambrun C, Varel E (2007) Remote-sensing techniques for analysing landslide kinematics: a review. Bull Soc Geol Fr 178(2):89–100

    Article  Google Scholar 

  • Dikau R, Schrott L (1999) The temporal stability and activity of landslide in Europe with respect to climatic change (TESLEC): main objectives and results. Geomorphology 30:1–12

    Article  Google Scholar 

  • Dunning SA, Rosser NJ, Massey CI (2010) The integration of terrestrial laser scanning and numerical modelling in landslide investigations. Q J Eng Geol Hydrogeol 43:233–247

    Article  Google Scholar 

  • El Hamdouni R, Irigaray C, Fernández T, Sanz de Galdeano C, Chacón J (2003) Susceptibilidad a los movimientos de ladera en borde S.O. de Sierra Nevada (España): Implicación de la tectónica activa como factor determinante. In: Ayala-Carcedo FJ, Corominas J (eds) Mapas de susceptibilidad a los movimientos de ladera con técnicas SIG. Fundamentos y Aplicaciones en España. I.G.M.E, Madrid, pp p155–p168

    Google Scholar 

  • Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. Eng Geol 102(3-4):85–98. doi:10.1016/j.enggeo.2008.03.022

    Article  Google Scholar 

  • Fernández T, Irigaray C, El Hamdouni R, Chacón J (2003) Methodology for landslide susceptibility mapping by means of a GIS. Application to the Contraviesa Area (Granada, Spain). Nat Hazards 30(3):297–308

    Article  Google Scholar 

  • Fernández T, Pérez JL, Cardenal J, Delgado J, Irigaray C, Chacón J (2011) Evolution of a diachronic landslide by comparison between different DEMs obtained from Digital Photogrammetry Techniques in Las Alpujarras (Granada, Southern Spain). In: Conference of Geoinformation for Disaster Management (GI4DM). Antalya, Turquía, 6pp

  • Flageollet JC (1996) The time dimension in the study of mass movements. Geomorphology 15(3-4):185–190

    Article  Google Scholar 

  • Gentili G, Giusti E, Pizzaferri G (2002) Photogrammetric techniques for the investigation of the Corniglio landslide. In: Allison RJ (ed) Applied geomorphology. Wiley, Chichester, pp p39–p48

    Google Scholar 

  • Giussani A, Scaioni M. (2004) Application of TLS to support landslides study: survey planning, operational issues and data processing. ISPRS Archives 36(8/W2): 318-323

  • Glenn NF, Streutker DR, Chadwick DJ, Thackray GD, Dorsch SJ (2006) Analysis of LiDAR-derived topographic information for characterizing and differentiating landslide morphology and activity. Geomorphology 73:131–148

    Article  Google Scholar 

  • Gómez-Pugnaire MT, Galindo-Zaldívar J, Rubatto D, González-Lodeiro F, López V, Jabaloy A (2004) A reinterpretation of the Nevado-Filábride and Alpujárride complexes (Betic Cordillera): field, petrography and U-Pb ages from orthogneisses (western Sierra Nevada, S Spain). Schweiz Miner Petrogr Mitt 84(3):303–322

    Google Scholar 

  • González-Díez A, Fernández-Maroto G, Doughty MW, Díaz de Terán JR, Bruschi V, Cardenal J, Pérez JL, Mata E, Delgado J (2014) Development of a methodological approach for the accurate measurement of slope changes due to landslides, using digital photogrammetry. Landslides 11(4):615–628. doi:10.1007/s10346-013-0413-5

    Article  Google Scholar 

  • Guzzetti F (2002) Landslide hazard assessment and risk evaluation: overview, limits and prospective. Proceedings 3rd MITCH Workshop Floods, Droughts and Landslides, p24-26

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31(1-4):181–216. doi:10.1016/S0169-55X(99)00078-1

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Cardinali M, Galli M, Ardizzone F (2005) Probabilistic landslide hazard assessment at the basin scale. Geomorphology 72(1-4):272–299. doi:10.1016/j.geomorph.2005.06.002

    Article  Google Scholar 

  • Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang KT (2012) Landslide inventory maps: new tools for an old problem. Earth Sci Rev 112(1):42–66. doi:10.1016/j.earscirev.2012.02.001

    Article  Google Scholar 

  • Hoek E, Brown ET (1980) Empirical strength criterion for rock masses. J Geotech Engng Div, ASCE 106 (GT9): 1013-1035

  • Hoek E, Brown E (1997) Practical estimates of rock mass strength. Int J Rock Mech Min Sci 34:1165–1186

    Article  Google Scholar 

  • Hunt RE (2005) Geotechnical engineering investigation manual, 2nd edn. CRC Press, Taylor & Francis Group, Leiden, 256pp. ISBN 978-0-8493-2182-5

    Book  Google Scholar 

  • IGN (2008-2012) Plan Nacional de Ortofotografía Aérea (National Plan of aerial orthophotography). Instituto Geográfico Nacional de España (National Geographic Institute of Spain). http://www.ign.es/PNOA/presentacion.html. Accessed 22 Jan 2015

  • Irigaray C, Palenzuela JA (2013) Análisis de la actividad de movimientos de ladera mediante láser escáner terrestre en el suroeste de la Cordillera Bética (España). Revista de Geología Aplicada a la Ingeniería y al Ambiente 31:53–67

    Google Scholar 

  • Irigaray C, Chacón J, Fernández T, (1996) Comparative analysis of methods for landslide susceptibility mapping. In: Chacón J, Irigaray C, Fernández T (eds) Landslides. Balkema, Rotterdam. 8th ICFL Granada, Spain, p373-384

  • Irigaray C, Lamas F, El Hamdouni R, Fernández T, Chacón J (2000) The importance of the precipitation and the susceptibility of the slopes for the triggering of landslides along the roads. Nat Hazards 21(1):65–81. doi:10.1023/A:1008126113789

    Article  Google Scholar 

  • Irigaray C, Fernández T, El Hamdouni R, Chacón J (2007) Evaluation and validation of landslide-susceptibility maps obtained by a GIS matrix method: examples from the Betic Cordillera (southern Spain). Nat Hazards 41(1):61–79. doi:10.1007/s11069-006-9027-8

    Article  Google Scholar 

  • ISRM (International Society for Rock Mechanics) (1978) Suggested methods for determining hardness and abrasiveness of rocks. Int J Rock Mech 15:89–97

    Google Scholar 

  • Iverson RM (2000) Landslide triggering by rain infiltration. Water Resour Res 36(7):1897–1910. doi:10.1029/2000wr900090

    Article  Google Scholar 

  • Jiménez-Perálvarez JD (2012) Movimientos de ladera en la vertiente meridional de Sierra Nevada (Granada, España): identificación, análisis y cartografía de susceptibilidad y peligrosidad mediante SIG. PhD Thesis, Department of Civil Engineering University of Granada, Spain, 188pp

  • Jiménez-Perálvarez JD, Irigaray C, El Hamdouni R, Chacón J (2011) Landslide-susceptibility mapping in a semi-arid mountain environment: an example from the southern slopes of Sierra Nevada (Granada, Spain). Bull Eng Geol Environ 70:265–277. doi:10.1007/s10064-010-0332-9

    Article  Google Scholar 

  • Lichti DD, Jamtsho S (2006) Angular resolution of terrestrial laser scanners. Photogrammetric Rec 21:141–160

    Article  Google Scholar 

  • Lichti DD, Gordon SJ, Stewart MP (2002) Ground-based laser scanners: operation, systems and applications. Geomatica 56:21–33

    Google Scholar 

  • Mayne PW, Christopher BR, DeJong J (2001) Manual on Subsurface Investigations, FHWA NHI-01-031. National Highway Institute and FHWA. U.S. DOT, Washington DC

    Google Scholar 

  • Monserrat O, Crosetto M (2008) Deformation measurement using terrestrial laser scanning data and least squares 3D surface matching. ISPRS J Photogramm Remote Sens 63(1):142–154. doi:10.1016/j.isprsjprs.2007.07.008

    Article  Google Scholar 

  • Oppikofer T, Jaboyedoff M, Blikra L, Derron MH, Metzger R (2009) Characterization and monitoring of the Åknes rockslide using terrestrial laser scanning. Nat Hazards Earth Syst Sci 9:1003–1019

    Article  Google Scholar 

  • P/WLI (1995) A suggested method for describing the rate of movement of a landslide. International Geotechnical Societies’ UNESCO Working Party on World Landslide Inventory; Chairman Bonnard CH. Bull Eng Geol Environ 52:75–78

    Google Scholar 

  • Palenzuela JA, Irigaray C, Jiménez-Perálvarez JD, Chacón J (2013) Application of terrestrial laser scanner to the assessment of the evolution of diachronic landslides. In: Margottini C, Canuti P, Sassa K (eds) Landslide science and practice, vol 2. Springer, Berlin, pp 517–523. ISBN 978-3-642-31445-2

    Chapter  Google Scholar 

  • Palenzuela JA, Marsella M, Nardinocchi C, Pérez JL, Fernández T, Chacón J, Irigaray C (2014) Landslide detection and inventory by integrating LiDAR data in a GIS environment. Landslides, Online First October 2014, 16pp. doi: 10.1007/s10346-014-0534-5

  • REDIAM (Environmental Information Network of Andalusia) (2014) Service for download ortofotographs and data from the territory. Council of Andalucía. URL: http://www.juntadeandalucia.es/medioambiente/site/rediam/menuitem.aedc2250f6db83cf8ca78ca731525ea0/?vgnextoid=0863d61d8470f210VgnVCM2000000624e50aRCRD&lr=lang_en. Accessed 22 Jan 2015

  • Riegl (2010) Terrestrial scanning, http://www.riegl.com/products/terrestrial-scanning/, Riegl Laser Measurement Systems GmbH. Horm, Austria

  • Rodríguez-Peces MJ, García-Mayordomo J, Azañón JM (2009) Evaluación regional de inestabilidades de ladera inducidas por terremotos para diferentes escenarios sísmicos en Sierra Nevada (Granada, SE España). In: Alonso E, Corominas J, Hürlimann M (eds) VII Simposio Nacional sobre Taludes y Laderas Inestables, Barcelona, vol. 2: 687-698

  • Rosser NJ, Petley DN, Lim M, Dunning SA, Allison RJ (2005) Terrestrial laser scanning for monitoring the process of hard rock coastal cliff erosion. Q J Eng Geol Hydrogeol 38:363–375

    Article  Google Scholar 

  • Scaioni M (2005) Direct georeferencing of TLS in surveying of complex sites. Int Arch Photogram Rem Sens Spatial Inform Sci 36:8

    Google Scholar 

  • Schmertmann JH (1975) Measurement of in-situ shear strength. Proc ASCE Specialty Conf. on In situ measurement of soil properties, Raleigh vol. 2

  • Soeters R, Van Westen JC (1996) Slope instability recognition, analysis, and zonation. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation. National Academic Press, Washington, DC, Sp-Rep 247, p129-177

  • Sterzai P, Vellico M, Berti M, Coren F, Corsini A, Rosi A, Mora P, Zambonelli F, Ronchetti F (2010) LiDAR and hyperspectral data integration for landslide monitoring. Int J Remote Sens 42(3):89–99

    Google Scholar 

  • Teza G, Galgaro A, Zaltron N, Genevois R (2007) Terrestrial laser scanner to detect landslide displacement fields: a new approach. Int J Remote Sens 28:3425–3446

    Article  Google Scholar 

  • Thornes JB, Alcántara-Ayala I (1998) Modelling mass failure in a Mediterranean mountain environment: climatic, geological, topographical and erosional controls. Geomorphology 24(1):87–100

    Article  Google Scholar 

  • Van Westen CJ, Van Asch TW, Soeters R (2006) Landslide hazard and risk zonation—why is it still so difficult? Bull Eng Geol Environ 65(2):167–184. doi:10.1007/s10064-005-0023-0

    Article  Google Scholar 

  • Varnes DJ (1984) Landslide hazard zonation: a review of principles and practice. Commission on Landslides of the IAEG, UNESCO, Paris. Natural Hazards Series 3, 63pp

  • Walstra DJR, van Rijn LC, Klein A (2004) Validation of a new transport formula (TRANSPOR2004) in a three-dimensional morphological model. In: Smith JM (ed.) Proc. 29th Int. Conf. on Coastal Engineering, Lisbon, Portugal, p. 2703-2715

  • Walstra J, Chandler JH, Dixon N, Dijkstra TA (2007) Aerial photography and digital photogrammetry for landslide monitoring. In: Teeuw RM (ed) Mapping hazardous terrain using remote sensing, vol 283, Geological Society, London, Special Publications., pp p53–p63

    Google Scholar 

  • Wieczoreck GF (1996) Landslide triggering mechanisms. In: Turner AK, Schuster RL (eds) Landslides investigation and mitigation, vol 247, Special Report. TRB National Research Council. National Academy Press, Washington, DC, pp 76–90

    Google Scholar 

  • WP/WLI (1993) A suggested method for describing the activity of a landslide. International Geotechnical Societies’ UNESCO Working Party on World Landslide Inventory; Chairman Cruden DM. Bull Eng Geol Environ 47:53–57

    Google Scholar 

  • Zhang W, Chen Y, Zhan L (2006) Loading/Unloading response ratio theory applied in predicting deep-seated landslides triggering. Eng Geol 82(4):234–240. doi:10.1016/j.enggeo.2005.11.005

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by CGL2008-04854 Research Project, funded by the Ministry of Science and Education of Spain, and the Excellence Project P06-RNM-02125 by the Regional Government. It was performed in the RNM-121 Research Group funded by the Andalusian Research Plan. Rainfall dates have been supplied by the Andalusian Water Agency. Authors much appreciate the given support by the Scientific Instrumentation Centre of the University of Granada and his staff. This work has also been possible thanks to the follow institutions: Andalusian Positioning Network and Andalusia Cartographic Institute belonging to the Science and Innovation Counselling of Andalusia Regional Government. Andalusian Geophysics Institute belongs to the University of Granada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Jiménez-Perálvarez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palenzuela, J.A., Jiménez-Perálvarez, J.D., El Hamdouni, R. et al. Integration of LiDAR data for the assessment of activity in diachronic landslides: a case study in the Betic Cordillera (Spain). Landslides 13, 629–642 (2016). https://doi.org/10.1007/s10346-015-0598-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-015-0598-x

Keywords

Navigation