Skip to main content

Advertisement

Log in

SHIA_Landslide: a distributed conceptual and physically based model to forecast the temporal and spatial occurrence of shallow landslides triggered by rainfall in tropical and mountainous basins

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Landslides are a main cause of human and economic losses worldwide. For this reason, landslide hazard assessment and the capacity to predict this phenomenon have been topics of great interest within the scientific community for the implementation of early warning systems. Although several models have been proposed to forecast shallow landslides triggered by rainfall, few models have incorporated geotechnical factors into a complete hydrological model of a basin that can simulate the storage and movement of rainwater through the soil profile. These basin and full hydrological models have adopted a physically based approach. This paper develops a conceptual and physically based model called open and distributed hydrological simulation and landslides—SHIA_Landslide (Simulación HIdrológica Abierta, or SHIA, in Spanish)—that is supported by geotechnical and hydrological features occurring on a basin-wide scale in tropical and mountainous terrains. SHIA_Landslide is an original and significant contribution that offers a new perspective with which to analyse shallow landslide processes by incorporating a comprehensive distributed hydrological tank model that includes water storage in the soil coupled with a classical analysis of infinite slope stability under saturated conditions. SHIA_Landslide can be distinguished by the following: (i) its capacity to capture surface topography and effects concerning the subsurface flow; (ii) its use of digital terrain model (DTM) to establish the relationships among cells, geomorphological parameters, slope angle, direction, etc.; (iii) its continuous simulation of rainfall data over long periods and event simulations of specific storms; (iv) its consideration of the effects of horizontal and vertical flow; and (vi) its inclusion of a hydrologically complete water process that allows for hydrological calibration. SHIA_Landslide can be combined with real-time rainfall data and implemented in early warning systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Environ 58:21–44

    Article  Google Scholar 

  • Anderson MG, Lloyd DM (1991) Using a combined slope hydrology-stability model to develop cut slope design charts. Proc Inst Civ Eng 91:705–718

    Google Scholar 

  • Anderson A, Sitar N (1995) Analysis of rainfall-induced debris flows. J Geotech Eng 121:544–552

    Article  Google Scholar 

  • Anon (1995) The description and classification of weathered rocks for engineering purposes. Geologial Society Engineering Group Working Party Report. Q J Eng Geol 28:207–242

    Article  Google Scholar 

  • Apip, Takara K, Yamashiki Y, Ibrahim AB, Sassa K, Fukuoka H (2010) A distributed hydrological–geotechnical model using satellite-derived rainfall for shallow landslide warning in a large basin. Landslides 7(3):237–258

    Article  Google Scholar 

  • Arnaud P, Lavabre J (1995) Couplage de modèles de simulation de hyétogrammes aux pas de temps journalier et horaire. Les modèles au Cemagref - Séminaire inter-chercheurs (1) - 23–31

  • Arnone E, Noto LV, Lepore C, Bras RL (2011) Physically-based and distributed approach to analyze rainfall-triggered landslides at watershed scale. Geomorphology 133:121–131

    Article  Google Scholar 

  • Askarinejad A, Laue J, Zweidler A, Iten M, Bleiker E, Buschor H, Springman S M (2012) Physical modelling of rainfall induced landslides under controlled climatic conditions. In Eurofuge 2012, Delft, Netherlands, published on CD only

  • Baum R L, Savage W Z, Godt W (2002) TRIGRS—a Fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis. U.S. Geological Survey Open-File Report, 2008–1159, 75 p

  • Bergström S (1995) The HBV model. In: Singh VP (ed) Computer models of watershed hydrology. Water Resources Publications, Colorado

    Google Scholar 

  • Bertoldi G, Rigon R (2004) Geotop: a hydrological balance model: technical description and programs guide, version 0.875, Technical Report DICA-04-001, University of Trento, Italy

  • Biondi D, Freni G, Iacobellis V, Mascaro G, Montanari A (2012) Validation of hydrological models: conceptual basis, methodological approaches and a proposal for a code of practice. Phys Chem Earth 42–44:710–776

    Google Scholar 

  • Bishop AW (1955) The use of the slip circle in the stability analysis of slopes. Geotechnique 5:7–17

    Article  Google Scholar 

  • Borga M, Dalla Fontana G, Daros D, Marchi L (1998) Shallow landslide hazard assessment using a physically based model and digital elevation data. Environ Geol 35(2–3):81–88

    Article  Google Scholar 

  • Brand EW (1985) Predicting the performance of residual soil slopes. Proc 11th Int Conf Soil Mech Found Eng 5:2541–2578

    Google Scholar 

  • Bray DI (1979) Estimating average velocity in gravel-bed rivers. J Hydraul Div ASCE 105:1103–1122

    Google Scholar 

  • Brunsden D (2002) The fifth Glossop Lecture. Geomorphological roulette for engineers and planners: some insights into an old game. Q J Eng Geol 35:101–142

    Article  Google Scholar 

  • Burton A, Bathurst JC (1998) Physically based modeling of shallow landslide sediment yield at a catchment scale. Environ Geol 35(2–3):89–99

    Article  Google Scholar 

  • Carrara A, Crosta G, Frattini P (2008) Comparing models of debris-flow susceptibility in the alpine environment. Geomorphology 94:353–378

    Article  Google Scholar 

  • Cepeda J, Hoeg K, Nadim F (2010) Landslide triggering rainfall thresholds: a conceptual framework. Q J Eng Geol Hydrogeol 43:69–84

    Article  Google Scholar 

  • Chacón J, Irigaray C, Fernandez T, El Hamdouni R (2006) Engineering geology maps: landslides and geographical information systems. Eng Geol Environ 65:341–411

    Article  Google Scholar 

  • Collins BD, Znidarcic D (2004) Stability analyses of rainfall induced landslides. J Geotech Geoenviron 130(4):362–371

    Article  Google Scholar 

  • Corominas J, Moya J (1999) Reconstructing recent landslide activity in relation to rainfall in the Llobregat river basin, Eastern Pyrenees, Spain. Geomorphology 30:79–93

    Article  Google Scholar 

  • Crosta G (1998) Regionalization of rainfall threshold: an aid for landslide susceptibility zonation. Environ Geol 35(2–3):131–145

    Article  Google Scholar 

  • Crosta G, Frattini P (2003) Distributed modeling of shallow landslides triggered by intense rainfall. Nat Hazard Earth Syst Sci 3:81–93

    Article  Google Scholar 

  • Crosta G, Frattini P (2008) Rainfall-induced landslides and debris flows. Hydrol Process 22:473–477

    Article  Google Scholar 

  • Deere D U, Patton F D (1971) Slope stability in residual soils. En Proc., Fourth Pan American Conference on Soil Mechanics and Foundation Engineering, Puerto Rico. 1:87–170

  • Dhakal AS, Sidle RC (2003) Distributed simulations of landslides for different rainfall conditions. Hydrol Process 18:757–776

    Article  Google Scholar 

  • D’Odorico P, Fagherazzi S (2003) A probabilistic model of rainfall-triggered shallow landslides in hollows: a long term analysis. Water Resour Res 39(9):1262

    Google Scholar 

  • D’Odorico P, Fagherazzi S, Rigon R (2005) Potential for landsliding: dependence on hyetograph characteristics. J Geophys Res 110:1–10

    Google Scholar 

  • Edijatno N, Michel C (1989) Un modèle pluie-débit à trois paramètres. La Houille Blanche 2:113–121

    Article  Google Scholar 

  • Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27:861–874

    Article  Google Scholar 

  • Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage W Z, (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng Geol 102:85–98

  • Frances F, Vélez J J, Munera J C, Medici C, Busii G (2012) Descripción del modelo conceptual distribuido de simulación hidrológica TETIS v.8. Universidad Politécnica de Valencia, pp 86

  • Frances F, Vélez JI, Vélez JJ (2007) Split-parameter structure for the automatic calibration of distributed hydrological models. J Hydrol 332:226–240

    Article  Google Scholar 

  • Frattini P, Crosta G, Fusi N, Dal Negro P (2004) Shallow landslides in pyroclastic soils: a distributed modeling approach for hazard assessment. Eng Geol 73:277–295

    Article  Google Scholar 

  • Fredlund DG, Rahardjo H (1993) Soil mechanics for unsaturated soils. Wiley, New York, p 517

    Book  Google Scholar 

  • Godt JW, Sener-Kaya B, Lu N, Baum RL (2012) Stability of infinite slopes under transient partially saturated seepage conditions. Water Resour Res 48:1–14

    Article  Google Scholar 

  • Graham J (1984) Methods of stability analysis. In: Brunsden D, Prior DB (eds) Slope instability. Wiley, New York, pp 171–215

    Google Scholar 

  • Grifiths J A, Collison A J C (1999) The validity of using a simplified distributed hydrological model for estimation of landslide probability under a climate change scenario. Proceedings of the Fourth International Conference on GeoComputation, Virginia, USA. (http://www.geocomputation.org/1999/index.htm ). Accessed 12 Oct 2012

  • Hack JT (1957) Studies of longitudinal stream profiles in Virginia and Maryland. US Geol Surv Prof Pap 294-B:45–97

    Google Scholar 

  • Hammond C, Hall D, Miller S, Swetik P (1992) Level I stability analysis (LISA) documentation for version 2.0, general technical report INT-285, USDA Forest Service Intermountain Research Station

  • Hermelin M, Mejía O, Velásquez E (1992) Erosional and depositional features produced by a convulsive event, San Carlos, Colombia, September 21, 1990. Bull Int Assoc Eng Geol 45:89–95

    Article  Google Scholar 

  • Hey RD (1979) Dynamic process-response model of river channel development. Earth Surf Process 4:59–72

    Article  Google Scholar 

  • Hutchinson J, Bhandari R (1971) Undrained loading, a fundamental mechanism of mudflows and other mass movements. Geotechnique 21(4):353–358

    Article  Google Scholar 

  • IGAC – Instituto Geográfico Agustín Codazzi (2007) Estudio general de suelos y zonificación de tierras del departamento de Antioquia. Bogotá, pp 207

  • Iida T (1999) A stochastic hydro-geomorphological model for shallow landsliding due to rainstorm. Catena 34:293–313

    Article  Google Scholar 

  • INTEGRAL S A (1990) Informe sobre daños en la central de calderas por la avalancha ocurrida en la quebrada La Arenosa el 21 de septiembre de 1990 y su reparación. Report Interconexión Eléctrica S.A. ISA. pp 45

  • Ivanov VY, Vivoni E, Bras RL, Entekhabi D (2004) Catchment hydrologic response with a fully-distributed triangulated irregular network model. Water Resour Res 40:W11102

    Article  Google Scholar 

  • Iverson R (2000) Landslide triggering by rain infiltration. Water Resour Res 36(7):1897–1910

    Article  Google Scholar 

  • Jaramillo A (2006) Evapotranspiración de referencia en la región Andina de Colombia. Cenicafé 57(4):288–298

    Google Scholar 

  • Klemes V (1986) Operational testing of hydrological simulation models. Hydrol Sci J 31:13–24

    Article  Google Scholar 

  • Kojima T, Takara K (2003) A grid-cell based distributed flood runoff model and its performance. In: Tachikawa Y, Vieux BE, Georgakakos KP, Nakakita E (eds) Weather radar information and distributed hydrological modelling. IAHS, Publication No. 282, 234–240

  • Kubota J, Sivapalan M (1995) Towards a catchment-scale model of subsurface runoff generation based on synthesis of small-scale process-based modeling and field studies. In: Sivapalan M (ed) Scale issues in hydrological modeling. Wiley, New York, pp 297–310

    Google Scholar 

  • Larsen MC (2008) Rainfall-triggered landslides, anthropogenic hazards and mitigation strategies. Adv Geosci 14:147–153

    Article  Google Scholar 

  • Leopold L B, Maddock T J (1953) Hydraulic geometry of stream channels and some physiographic implications. U. S. Geological Survey Professional Paper 252, pp 55

  • Leopold L B, Wolman M G, Miller J P (1964) Fluvial Processes and Geomorphology. Freeman and Co., San Francisco, California. pp 522

  • Limerinos J T (1969) Relation of the Manning coefficient to measure bed roughness in stable natural channels. U S Geological Survey Professional paper 650D, pp 45

  • Little A L (1969) The engineering classification of residual tropical soils. Proceedings of 7th International Conference of Soil Mechanics and Foundation Engineering 1:1–10

  • Martínez C (2012) Susceptibilidad a la ocurrencia de movimientos en masa superficiales detonados por lluvia utilizando el modelo SHALSTAB: Cuenca La Arenosa, municipio de San Carlos, Antioquia. Dissertation. University of Antioquia, Medellín, pp 60

  • Mejía R, Velásquez M E (1991) Procesos y depósitos asociados al aguacero de septiembre 21 de 1990 en el Área de San Carlos (Antioquia). Dissertation, University of Colombia, Medellín, pp160

  • Montgomery DR, Dietrich WE (1994) A physically based model for the topographic control of shallow landsliding. Water Resour Research 30:1153–1171

    Article  Google Scholar 

  • NOAA—National Oceanic and Atmospheric Administration, USGS—United States Geological Survey (2005) NOAA-USGS debris flow warning system. Final report, circular 1283. http://pubs.usgs.gov/circ/2005/1283/. Accessed 11 January 2012

  • O’Loughlin EM (1986) Prediction of surface saturation zones in natural catchments by topographic analysis. Water Resour Res 22:794–804

    Article  Google Scholar 

  • Pack R T, Tarboton D G, Goodwin C N (1998) Terrain stability mapping with SINMAP, technical description and users guide for version 1.00, Report Number 4114-0, Terratech Consulting Ltd, Salmon Arm, BC, Canada

  • Paniconi C, Troch PA, van Loon EE, Arno G, Hilberts J (2003) Hillslope-storage Boussinesq model for subsurface flow and variable source areas along complex hillslopes: 2. Intercomparison with a three-dimensional Richards’s equation model. Water Resour Res 39(11):1317–1329

    Article  Google Scholar 

  • Parsons AJ, Abrahams AD, Wainwright J (1994) On determining resistance to interrill overland flow. Water Resour Res 30(12):3515–3521

    Article  Google Scholar 

  • Rahardjo H, Leong EC, Rezaur RB (2008) Effect of antecedent rainfall on pore-water pressure distribution characteristics in residual soil slopes under tropical rainfall. Hydrol Process 22:506–523

    Article  Google Scholar 

  • Rahardjo H, Li XW, Toll DG, Leong EC (2001) The effect of antecedent rainfall on slope stability. Geotech Geoenviron Eng 19:371–399

    Article  Google Scholar 

  • Rahardjo H, Lim TT, Chang MF, Fredlund DG (1995) Shear strength characteristics of a residual soil. Can Geotech J 32:60–77

    Article  Google Scholar 

  • Restrepo P, Jorgensen D P, Cannon S H, Laber J E, Major J, Marter J A, Purpura J, Werner K (2008) Prototype debris flow warning system for recently burned areas in Southern California. Bulletin of the Meteorological Society, Insights and Innovation, American Meteorological Society, pp 1845–1851

  • Rezzoug A, Schumann A, Chifflard P, Zepp H (2005) Field measurements of soil moisture dynamics and numerical simulation using the kinematic wave approximation. Adv Water Resour 28:917–926

    Article  Google Scholar 

  • Richards LA, Weaver LR (1944) Moisture retention by some irrigated soils as related to soil moisture tension. J Agric Res 69:215–235

    Google Scholar 

  • Rossi G, Catani F, Leoni L, Segoni S, Tofani V (2013) HIRESSS: a physically based slope stability simulator for HPC applications. Nat Hazards Earth Syst Sci (13) 151–166

  • Sassa K, Wang, G H (2005) Mechanism of landslide-triggered debris flows: liquefaction phenomena due to the undrained loading of torrent deposits. Debris-flow hazards and related phenomena. Springer Praxis Books 81–104

  • Saxton KE, Rawls WJ (2006) Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci Soc Am J 70:1569–1578

    Article  Google Scholar 

  • Schuster RL (1996) Socioeconomic significance of landslides. In: Turner AK, Schuster RL (eds) Landslides investigation and mitigation. Transportation Research Board, National Research Council, Special Report 247. National Academy Press, Washington, pp 129–177

    Google Scholar 

  • Sidle RC, Ochiai H (2006) Landslides: processes, prediction, and land use. Water Resources Monograph 1. American Geophysical Union, Washington

    Book  Google Scholar 

  • Simoni S, Zanotti F, Bertoldi G, Rigon R (2008) Modelling the probability of occurrence of shallow landslides and channelized debris flows using GEOtop-FS. Hydrol Process 22:532–545

    Article  Google Scholar 

  • Singh VP (2003) On the theories of hydraulic geometry. Int J Sediment Res 18(3):196–218

    Google Scholar 

  • Singh V P, Dickinson W T (1975) An analytical method to determine daily soil moisture. Proceedings of the Second World Congress on Water Resources, Delhi, India (4): 355–365

  • Strickler A (1923) Beiträge zur Frage des Geschwindigheitsformel und der Rauhigkeitszahlen für Strome, Kanale und Geschlossene Leitungen. Mitteilingen des Eidgennössischer Amtes für Wasserwirtschaft, Bern, Switzerland

  • Takasao T, Shiiba M (1988) Incorporation of the effect of concentration of flow into the kinematic wave equations and its applications to runoff system lumping. J Hydrol 102:301–322

    Article  Google Scholar 

  • Take WA, Bolton MD, Wong PCP, Yeung FJ (2004) Evaluation of landslide triggering mechanisms in model fill slopes. Landslides 1:173–184

    Article  Google Scholar 

  • Terlien MTJ (1998) The determination of statistical and deterministic hydrological landslide-triggering thresholds. Environ Geol 35(2–3):124–130

    Article  Google Scholar 

  • Troch P, van Loon E, Hilberts A (2002) Analytical solutions to a hillslope-storage kinematic wave equation for subsurface flow. Adv Water Resour 25:637–649

    Article  Google Scholar 

  • Veihmeyer FJ, Hendrickson AH (1928) Plants. Plant Physiol 3(3):355–357

    Article  Google Scholar 

  • Vélez J I (2001) Desarrollo de un modelo hidrológico conceptual distribuido orientado a la simulación de crecidas. Valencia. Dissertation. Universidad Politécnica de Valencia, pp 202

  • Vélez JI, Villarraga MR, Álvarez OD, Alarcón JE, Quintero F (2004) Modelo distribuido para determinar la amenaza de deslizamiento superficial por efecto de tormentas intensas y sismos. XXI Congreso latinoamericano de hidráulica, Sao Pedro, Brasil, p 8

    Google Scholar 

  • Wang G, Sassa K (2003) Pore pressure generation and movement of rainfall-induced landslides: effects of grain size and fine particle content. Eng Geol 69:109–125

    Article  Google Scholar 

  • Wu W, Sidle R C (1995) A distributed slope stability model for steep forested basins. Water Resour

Download references

Acknowledgments

The authors wish to thank the Hans Wildsdorf Foundation and the Colombian Association of Petroleum Geologists and Geophysicist (ACGGP) for providing financial support for conducting this research. We also thank the two anonymous reviewers and the Associate Editor for their constructive and useful comments that greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edier Aristizábal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aristizábal, E., Vélez, J.I., Martínez, H.E. et al. SHIA_Landslide: a distributed conceptual and physically based model to forecast the temporal and spatial occurrence of shallow landslides triggered by rainfall in tropical and mountainous basins. Landslides 13, 497–517 (2016). https://doi.org/10.1007/s10346-015-0580-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-015-0580-7

Keywords

Navigation