Skip to main content
Log in

An integrated methodology for landslides’ early warning systems

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Early Warning Systems (EWS) are efficient tools for preventing and mitigating the risks associated to landslides occurrence. In this paper, an integrated methodology for landslides’ analysis is presented and described. Such methodology is aimed at the creation of early warning systems and is based on the integration between a modern monitoring technique, such as the Ground-Based Interferometric Synthetic Aperture Radar (GBInSAR), along with advanced numerical modelling. The paper also shows the application of the proposed methodology to the case study of a rockslide in central Italy. The integration between monitoring data, thanks to a GBInSAR survey and advanced numerical simulations with the combined Finite-Discrete Elements Method (FDEM), allowed for the definition of a set of surface velocity thresholds to be adopted for the long-term monitoring of the landslide and for the creation of an effective EWS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abellán A, Jaboyedoff M, Oppikofer T, Vilaplana JM (2009) Detection of millimetric deformation using a terrestrial laser scanner: experiment and application to a rockfall event. Nat Hazards Earth Syst Sci 9:365–372

  • Scuola di Alta Specializzazione e Centro Studi per la Manutenzione e la Conservazione dei Centri Storici in Territori Instabili (2006) Studio del Fenomeno Franoso in essere in località Tor Giovannetto di Assisi (PG) ed individuazione degli interventi volti alla riduzione del rischio idrogeologico - Relazione Finale ed Integrazioni Alla Relazione Finale. Unpublished report. In Italian

  • Antolini F (2014) The use of radar interferometry and finite-discrete modelling for the analysis of rock landslides. PhD Thesis, Politecnico di Torino, 273 pp

  • Antolini F, Barla M, (2014) Combining finite-discrete numerical modelling and radar interferometry for rock landslide early warning systems. Proceedings of XII IAEG Congress, Torino, 15-19 September 2014, Vol. 6 Applied Geology for Major Engineering Projects, 705-708

  • Aresys 2007 GRAPeS software for IBIS-L, v. 2.7

  • Atzeni C, Barla M, Pieraccini M, Antolini F (2015) Early warning monitoring of natural and engineered slopes with ground-based synthetic aperture radar. Rock Mech Rock Eng 48:235–246. doi:10.1007/s00603-014-0554-4

    Article  Google Scholar 

  • Balducci M, Regni R, Buttiglia S, Piccioni R, Venanti LD, Casagli N, Gigli G (2011) Design and built of a ground reinforced embankment for the protection of a provincial road (Assisi, Italy) against rockslide. Proc. XXIV Conv. Naz. Geotecnica, AGI, Napoli, 22th-24th June 2011

  • Barla M, Antolini F (2012) Integrazione tra monitoraggio e modellazione delle grandi frane in roccia nell’ottica dell’allertamento rapido. In: Barla G, Barla M, Ferrero A, Rotonda T (eds) Nuovi metodi di indagine e modellazione degli ammassi rocciosi, MIR 2010, Torino 30th November – 1st December 2010. Pàtron, Bologna, pp 211–229, In Italian

    Google Scholar 

  • Barla G, Antolini F, Barla M, Mensi E, Piovano G (2010a) Monitoring of the Beauregard landslide (Aosta Valley, Italy) using advanced and conventional techniques”. Eng Geol 116:218–235

    Article  Google Scholar 

  • Barla G, Barla M, Martinotti M (2010b) Development of a new direct shear testing apparatus. Rock Mech Rock Eng 43:117–122

    Article  Google Scholar 

  • Barla G, Barla M, Debernardi D (2010c) New triaxial apparatus for rocks. Rock Mech Rock Eng 43:225–230

    Article  Google Scholar 

  • Barla M, Piovano G, Grasselli G (2011) Rock slide simulation with the combined finite discrete element method. International Journal of Geomechanics 12 (6). DOI: 10.1061/(ASCE)GM.1943-5622.0000204

  • Barla G, Antolini F, Barla M, Perino A (2013) Key aspects in 2D and 3D modeling for stability assessment of a high rock slope. In: Workshops ‘Failure Prediction’ 2013, Austrian Society for Geomechanics, Salzburg, 9th October 2013

  • Barla M, Antolini F, Dao S (2014) Il monitoraggio delle frane in tempo reale. Strade e Autostrade 107:154–157

    Google Scholar 

  • Brocca L, Ponziani F, Moramarco T, Melone F, Berni N, Wagner W (2012) Improving landslide forecasting using ASCAT-derived soil moisture data: a case study of the torgiovannetto landslide in Central Italy. Rem Sens 2012(4):1232–1244

    Article  Google Scholar 

  • Canuti P, Casagli N, Gigli G (2006) Il modello geologico nelle interazioni fra movimenti di massa, infrastrutture e centri abitati. In: Barla G, Barla M (eds) Instabilità di versante, interazioni con le infrastrutture i centri abitati e l'ambiente, MIR 2006, Torino, 28th-29th November 2006. Pàtron, Bologna, pp 41–61, In Italian

    Google Scholar 

  • Casagli N, Gigli G, Lombardi L, Nocentini M, Papini M (2006) “Valutazione delle distanze di propagazione relative ai fenomeni franosi presenti sul fronte della cava di Torgiovannetto (PG) – Relazione 2.0”. Dipartimento di Scienze della Terra, Università degli Studi di Firenze, unpublished report, 74 pp., in Italian

  • Casagli N, Gigli G, Lombardi L, Mattiangeli L, Nocentini M, Vannocci P (2008) “Indagini geofisiche e geotecniche e modellazione dinamica della frana di Torgiovannetto (PG) - Rapporto Finale”. Dipartimento di Scienze della Terra, Università degli Studi di Firenze. Unpublished report, 87 pp. In Italian

  • Casagli N, Catani F, Del Ventisette C, Luzi G (2010) Monitoring, prediction, and early warning using ground-based radar interferometry. Landslides 7(3):291–301

    Article  Google Scholar 

  • Corominas J, Copons R, Moya J, Vilaplana J, Altimir J, Amigo J (2005) Quantitative assessment of the residual risk in a rock-fall protected area. Landslides 2:343–357

    Article  Google Scholar 

  • Crosta G, Agliardi F (2003) Failure forecast for large rock slides by surface displacement measurements. Can Geotech J 40(1):176–191

    Article  Google Scholar 

  • Dai FC, Lee CF, Ngai YY (2002) Landslide risk assessment and management: an overview. Eng Geol 64:65–87

    Article  Google Scholar 

  • Di Biagio E, Kjekstad O (2007) Early Warning, Instrumentation and Monitoring Landslides. 2nd Regional Training Course, RECLAIM II, 29th January - 3rd February 2007

  • Dixon N, Spriggs M (2007) Quantification of slope displacement rates using acoustic emission monitoring. Can Geotech J 44(8):966–976

    Article  Google Scholar 

  • Eberarhardt E (2006) From cause to effect: using numerical modeling to understand rock slope instability mechanisms. In

  • Einstein HH, Sousa R, Karam I, Manzella I, Kveldsvik V (2010) Rock slopes from mechanics to decision making. In: Zhao J, Labiouse V, Dudt J-P, Mathier J-F (eds) Chapter 1 - rock mechanics in civil and environmental engineering. CRC Press, London, pp 3–13

    Chapter  Google Scholar 

  • Fell R (1994) Landslide risk assessment and acceptable risk. Can Geotech J 31:261–272

    Article  Google Scholar 

  • Fell R, Hartford D (1997) Landslide risk management. In: Cruden D, Fell R (eds) Landslide risk assessment. Balkema, Rotterdam, pp 51–109

    Google Scholar 

  • Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage W (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng Geol 102:85–98

    Article  Google Scholar 

  • Ferretti A, Prati C, Rocca F (2001) Permanent scatterers in SAR interferometry”. IEEE Trans Geosci Rem Sens 39(1):8–20

    Article  Google Scholar 

  • Gigli G, Casagli N, Lombardi L, Nocentini M (2007) “Magnitude estimation and runout analyses of a rockslide in the Torgiovannetto quarry (PG)”. EGU 2007 – Geoph. Res. Abs., 9, 08399, 2007

  • Graziani A, Marsella M, Rotonda T, Tommasi P, Soccodato C (2009) “Study of a rock slide in a limestone formation with clay interbeds”. Proceedings of International Conference on Rock Joints and Jointed Rock Masses, Tucson, Arizona, USA 7th-8th January 2009

  • Graziani A, Rotonda T, Tommasi P (2012) Fenomeni di scivolamento planare in ammassi stratificati: situazioni tipiche e motodi di analisi”. In: Barla G, Barla M (eds) Problemi di stabilità nelle opere geotecniche, MIR 2012, Torino, November 30th- Dicember 1st 2011. Pàtron, Bologna, pp 93–124

    Google Scholar 

  • Hoek E, Bray JW (1981) Rock slope engineering. The Institution of Mining and Metallurgy, London, 358 pp

    Google Scholar 

  • Intrieri E, Gigli G, Mugnai F, Fanti R, Casagli N (2012) Design and implementation of a landslide early warning system. Eng Geol 147–148(2012):124–136

    Article  Google Scholar 

  • Mikkelsen PE (1996) Chapter 11 - field instrumentation. In: Turner AK, Schuster RL (eds) Landslides investigation and mitigation. Transportation Research Board, Washington, pp 278–318

    Google Scholar 

  • Monserrat O, Crosetto M (2008) Deformation measurement using terrestrial laser scanning data and least squares 3D surface matching. ISPRS J Photogramm Remote Sens 63:142–154

    Article  Google Scholar 

  • Munjiza A (2004) The combined finite-discrete element method. Wiley, New York, 333 pp

    Book  Google Scholar 

  • Munjiza A, Owen D, Bicanic N (1995) A combined finite-discrete element method in transient dynamics of fracturing solids. Eng Comput 12(2):145–174

    Article  Google Scholar 

  • O’Connor KM, Dowding CH (2000) Comparison of TDR and inclinometers for slope monitoring. Proceedings of GeoDenver 2000, Denver, Colorado August 5th-7th, 2000, 12 pp

  • Pieraccini M, Casagli N, Luzi G, Tarchi D, Mecatti D, Noferini L, Atzeni C (2003) Landslide monitoring by ground-based radar interferometry: a field test in Valdarno (Italy). Int J Remote Sens 24(6):1385–1391

    Article  Google Scholar 

  • Piovano G, Barla G, Barla M (2011) FEM/DEM modeling of a slope instability on a circular sliding surface. Proc. of IACMAG 2011, Melbourne, Australia, 9-11 May 2011, 6 pp

  • Piovano G, Antolini F, Barla M, Barla G (2013) Continuum-discontinuum modelling of failure and evolution mechanisms of deep seated landslides. In: 6th International Conference on Discrete Element Method, Golden, USA, 5-6 August 2013, 295-300

  • Popescu ME (2002) Landslide causal factors and landslide remedial options. Proc. 3rd Int. Conf. Landslides, Slope Stability and Safety of Infra-Structures, Singapore, 2002, pp. 61–81

  • Salciarini D, Tamagnini C, Conversini P (2009) Discrete element modeling of debris-avalanche impact on earthfill barriers. Phys Chem Earth 35(2010):172–181

    Google Scholar 

  • Teza G, Galgaro A, Zaltron N, Genevois R (2007) Terrestrial laser scanner to detect landslide displacement fields: a new approach. Int J Remote Sens 28(16):3425–3446

    Article  Google Scholar 

  • United Nations International Strategy for Disaster Reduction (UNISDR) (2009) Terminology on Disaster Risk Reduction. Available at http://www.unisdr.org

  • Uzielli M, Nadim F, Lacasse S, Kaynia AM (2008) A conceptual framework for quantitative estimation of physical vulnerability to landslides. Eng Geol 102:251–258

    Article  Google Scholar 

Download references

Acknowledgments

The work described in this paper was partially funded by the Italian Ministry of Instruction, University and Research (MIUR) in the framework of the National Research Project PRIN 2009 titled “Integration of monitoring and numerical modelling techniques for early warning of large rockslides.” The project was carried out by the Department of Earth Sciences of the Università degli Studi di Firenze (National coordinator and Responsible of the Research Unit: Prof. Nicola Casagli), the Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” of the Università degli Studi di Bologna (Responsible of the Research Unit: Dr. Andrea Giorgetti) and the Department of Structural, Building and Geotechnical Engineering of Politecnico di Torino (Responsible of the Research Unit: Dr. Marco Barla).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Barla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barla, M., Antolini, F. An integrated methodology for landslides’ early warning systems. Landslides 13, 215–228 (2016). https://doi.org/10.1007/s10346-015-0563-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-015-0563-8

Keywords

Navigation