Skip to main content

Advertisement

Log in

Temporal variability of diverse mountain permafrost slope movements derived from multi-year daily GPS data, Mattertal, Switzerland

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

In this study, high resolution surface measurements of diverse slope movements are compared to environmental factors such as ground surface temperature (GST) and snow cover, in order to reveal and compare velocity fluctuations caused by changing environmental conditions. The data cover 2 years (2011–2013) of Global Positioning System (GPS) and GST measurements at 18 locations on various slope movement types within an alpine study site in permafrost (Mattertal, Switzerland). Velocities have been estimated based on accurate daily GPS solutions. The mean annual velocities (MAV) observed at all GPS stations varied between 0.006 and 6.3 ma−1. MAV were higher in the period 2013 compared to 2012 at all stations. The acceleration in 2013 was accompanied by a longer duration of the snow cover and zero curtain and slightly lower GST. The amplitude (0–600 %) and the timing of the intra-annual variability were generally similar in both periods. At most stations, an annual cycle in the movement signal was observed, with a phase lag of 1–4 months to GST. Maximum velocity typically occurred in late summer and autumn, and minimum velocity in late winter and beginning of spring. The onset of acceleration always started in spring during the snowmelt period. At two stations located on steep rock glacier tongues, overprinted on the annual cycle, short-term peaks of velocity increase, occurred during the snowmelt period, indicating a strong influence of meltwater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. 01.10.2011–30.09.2012

  2. Also for R6c, the tilt is grater than its uncertainty, but inclinometer data are only available until July 2012.

  3. Mean and 95-quantile of the absolute relative difference between the horizontal velocity of the antenna and the foot (in comparison to the mean velocity of the antenna), (\( {v}_f-{v}_a \))\( \cdot \)(100/\( {\sigma}_{v_{\mathrm{antenna}}} \)) for R2b with the largest mast tilt (\( \mathrm{in}{\mathrm{c}}_{\max }= \)33 °).

References

  • Arenson L, Hoelzle M, Springman S (2002) Borehole deformation measurements and internal structure of some rock glaciers in Switzerland. Permafr Periglac Process 13:117–135. doi:10.1002/ppp.414

    Article  Google Scholar 

  • Avian M, Kellerer-Pirklbauer A, Bauer A (2009) Lidar for monitoring mass movements in permafrost environments at the cirque Hinteres Langtal, Austria, between 2000 and 2008. Nat Hazards Earth Syst Sci 9:1087–1094. doi:10.5194/nhess-9-1087-2009

    Article  Google Scholar 

  • Baldi P, Cenni N, Fabris M, Zanutta A (2008) Kinematics of a landslide derived from archival photogrammetry and GPS data. Geomorphology 102(3–4):435–444

    Article  Google Scholar 

  • Barsch D (1996) Rock glaciers. Indicators for the present and former Geoecology in high mountain environments. Springer Verlag, Berlin

    Google Scholar 

  • Beniston M, Fox D, Adhikary S, Andressen R, Guisan A, Holten J, Innes J, Maitima J, Price M, Tessier L (1996) Impacts of climate change on mountain regions. Second assessment report of the Intergovernmental Panel on Climate Change (IPCC) pp 191–213

  • Beutel J, Buchli B, Ferrari F, Keller M, Thiele L, Zimmerling M (2011) X-sense: Sensing in extreme environments. In: Proceedings of design, automation and test in Europe, 2011, IEEE, pp 1–6

  • Bodin X, Thibert E, Fabre D, Ribolini A, Schoeneich P, Francou B, Reynaud L, Fort M (2009) Two decades of responses (1986–2006) to climate by the Laurichard rock glacier, French Alps. Permafr Periglac Process 20(4):331–344. doi:10.1002/ppp.665

    Article  Google Scholar 

  • Boeckli L, Brenning A, Gruber S, Noetzli J (2012) Permafrost distribution in the European Alps: calculation and evaluation of an index map and summary statistics. Cryosphere 6(4):807–820. doi:10.5194/tc-6-807-2012

    Article  Google Scholar 

  • Brueckl E, Brunner F, Kraus K (2006) Kinematics of a deep-seated landslide derived from photogrammetric, GPS and geophysical data. Eng Geol 88(3–4):149–159. doi:10.1016/j.enggeo.2006.09.004

    Article  Google Scholar 

  • Buchli B, Sutton F, Beutel J (2012) GPS-equipped wireless sensor network node for high-accuracy positioning applications. In: Wireless Sensor Networks, Springer, pp 179–195

  • Buchli T, Merz K, Zhou X, Kinzelbach W, Springman S (2013) Characterization and monitoring of the Furggwanghorn rock glacier, Turtmann Valley, Switzerland: results from 2010 to 2012. Vadose Zone J 12(1):1–15. doi:10.2136/vzj2012.0067

    Article  Google Scholar 

  • Buck S, Kaufmann V (2010) The influence of air temperature on the creep behaviour of three rockglaciers in the Hohe Tauern. In: Grazer Schriften der Geographie und Raumforschung.10th International Symposium on High Mountain Remote Sensing Cartography, vol 45, pp 159–170

  • Bühler Y, Graf C (2013) Sediment transfer mapping in a high-alpine catchment using airborne LiDAR. In: Graf C (ed) Mattertal - ein Tal in Bewegung, vol 29. Publikation zur Jahrestagung der Schweizerischen Geomorphologischen Gesellschaft, St. Niklaus, pp 113–124

    Google Scholar 

  • Coe J, Ellis W, Godt J, Savage W, Savage J, Michael J, Kibler J, Powers P, Lidke D, Debray S (2003) Seasonal movement of the Slumgullion landslide determined from Global Positioning System surveys and field instrumentation. Eng Geol 68(1):67–101. doi:10.1016/S0013-7952(02)00199-0

    Article  Google Scholar 

  • Copland L, Sharp M, Nienow P (2003) Links between short-term velocity variations and the subglacial hydrology of a predominantly cold polythermal glacier. J Glaciol 49(166):337–348. doi:10.3189/172756503781830656

    Article  Google Scholar 

  • Crosta G (2004) Introduction to the special issue on rainfall-triggered landslides and debris flows. Eng Geol 73:191–192. doi:10.1016/j.enggeo.2004.01.004

    Article  Google Scholar 

  • Dach R, Hugentobler U, Fridez P, Meindl M (2007) Bernese GPS Software. Version 5.0. Astronomical Institute, University of Bern

  • Delaloye R (2010) GPS Messungen Mattertal 2010. Departement of Geosciences, University of Fribourg, Fribourg, Switzerland, unpublished report

  • Delaloye R, Kaufmann M, Bodin X, Hausmann H, Ikeda A, Kääb A, Kellerer-Pirklbauer A, Krainer K, Lambiel C, Mihajlovic D, Roer I, Thibert E (2008a) Recent interannual variations of rock glacier creep in the European Alps. In: Proceedings of the 9th International Conference on Permafrost, Fairbanks, Alaska, USA, pp 343–348

  • Delaloye R, Strozzi T, Lambiel C, Perruchoud E, Raetzo H (2008b) Landslide-like development of rockglaciers detected with ERS-1/2 SAR interferometry. In: Proceedings of the 8th International Conference on Permafrost, 21–25 July, Zürich, Switzerland, pp 26–30

  • Delaloye R, Lambiel C, Gärtner-Roer I (2010) Overview of rock glacier kinematics research in the Swiss Alps. Geogr Helv 65:135–145. doi:10.5194/gh-65-135-201

    Article  Google Scholar 

  • Delaloye R, Barboux C, Morard S, Abbet D, Gruber V (2013) Rapidly moving rock glaciers in Mattertal. In: Graf C (ed) Mattertal - ein Tal in Bewegung. Publikation zur Jahrestagung der Schweizerischen Geomorphologischen Gesellschaft, St. Niklaus, pp 21–31

    Google Scholar 

  • Dikau R (1996) Untersuchungen zur Murgangaktivität im Mattertal. In: International Symposium. Interpreavent 1996 - Garmisch-Partenkirchen. Tagungspublikation, Band 1, pp 397–408

  • Dunse T, Schuler T, Hagen J, Reijmer C (2012) Seasonal speed-up of two outlet glaciers of Austfonna, Svalbard, inferred from continuous GPS measurements. Cryosphere 6(2):453–466. doi:10.5194/tc-6-453-2012

    Article  Google Scholar 

  • Fischer L (2010) Slope instabilities on perennially frozen and glacierized rock walls: multi-scale observations, analysis and modelling. PhD thesis, University of Zürich, Zürich, Switzerland

  • Geertsema M, Clague J, Schwab J, Evans S (2006) An overview of recent large catastrophic landslides in northern British Columbia, Canada. Eng Geol 83(1–3):120–143. doi:10.1016/j.enggeo.2005.06.028

    Article  Google Scholar 

  • Govi M (1989) The 1987 landslide on Mount Zandila in the Valtellina, Northern Italy. Landslide News 3:1–3

    Google Scholar 

  • Graf C, Deubelbeiss Y, Bühler Y, Meier L, McArdell B, Christen M, Bartelt P (2013) Gefahrenkartierung Mattertal: Grundlagenbeschaffung und numerische Modellierung von Murgängen. In: Graf C (ed) Mattertal - ein Tal in Bewegung, vol 29. Publikation zur Jahrestagung der Schweizerischen Geomorphologischen Gesellschaft, St. Niklaus, pp 85–112

    Google Scholar 

  • Gruber S (2013) Landsides in cold regions: making a science that can be put into practice. In: Margottini Cea (ed) Landslide Science and Practice, Springer, vol 4, pp 329–333

  • Gruber S, Haeberli W (2007) Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change. J Geophys Res 112:1–10. doi:10.1029/2006JF000547

    Google Scholar 

  • Gubler S, Fiddes J, Gruber S, Keller M (2011) Scale-dependent measurement and analysis of ground surface temperature variability in alpine terrain. Cryosphere 5(2):431–443. doi:10.5194/tc-5-431-2011

    Article  Google Scholar 

  • Haeberli W (1985) Creep of mountain permafrost: internal structure and flow of alpine rock glaciers. Mitt Versuchsanstalt Wasserbau, Hydrol Glaziologie ETH Zürich 77:5–142

    Google Scholar 

  • Haeberli W, Rickenmann D, Zimmermann M, Rösli U (1990) Investigation of 1987 debris flows in the Swiss Alps: general concept and geophysical soundings. IAHS Publ 194:303–310

    Google Scholar 

  • Haeberli W, Wegmann M, Vonder Mühll D (1997) Slope stability problems related to glacier shrinkage and permafrost degradation in the Alps. Eclogae Geol Helv 90(3):407–414. doi:10.5169/seals-168172

    Google Scholar 

  • Hantke R (1980) Eiszeitalter 2: Kalt-/Warmzeit-Zyklen und Eistransport im alpinen und voralpinen Raum. Ott Verlag, Thun

  • Harris C, Davies M (1998) Pressures recorded during laboratory freezing and thawing of a natural silt-rich soil. In: Proceedings of the 7th International Conference on Permafrost Conference, 23–27 June, Nordicana, Yellowknife, Canada, pp 23–27

  • Harris C, Davies M, Etzelmüller B (2001) The assessment of potential geotechnical hazards associated with mountain permafrost in a warming global climate. Permafr Periglac Process 12(1):145–156. doi:10.1002/ppp 376

    Article  Google Scholar 

  • Harris C, Arenson L, Christiansen H, Etzelmüller B, Frauenfelder R, Gruber S, Haeberli W, Hauck C, Hölzle M, Humlum O et al (2009) Permafrost and climate in Europe: monitoring and modelling thermal, geomorphological and geotechnical responses. Earth Sci Rev 92(3):117–171. doi:10.1016/j.earscirev.2008.12.002

    Article  Google Scholar 

  • Hasler A, Gruber S, Haeberli W (2011) Kinematics of steep bedrock permafrost. Journal of Geophysical Research: Earth Surface (2003–2012) 117(F1). doi: 10.1029/2011JF001981

  • Heim A (1932) Bergsturz und Menschenleben. Fretz & Wasmuth, Zurich

  • Hirschmugl M (2003) Debris flows in the mountain permafrost zone: Hohe Tauern National Park (Austria). In: Phillips M, Springman S, Arenson L (eds) Proceedings of the 8th International Conference on Permafrost, 21–25 July, Zürich, Switzerland, pp 413–418

  • Hoelzle M, Wagner S, Kääb A, Vonder Mühll D (1998) Surface movement and internal deformation of ice-rock mixtures within rock glaciers at Pontresina-Schafberg, Upper Engadin, Switzerland. In: Proceedings of the Seventh International Conference on Permafrost, pp 465–471

  • Huggel C, Clague J, Korup O (2012) Is climate change responsible for changing landslide activity in high mountains? Earth Surf Process Landf 37(1):77–91. doi:10.1002/esp.2223

    Article  Google Scholar 

  • Ikeda A, Matsuoka N (2002) Degradation of talus-derived rock glaciers in the Upper Engadin, Swiss Alps. Permafr Periglac Process 13(2):145–161. doi:10.1002/ppp.413

    Article  Google Scholar 

  • Ikeda A, Matsuoka N, Kääb A (2003) A rapidly moving small rock glacier at the lower limit of the mountain permafrost belt in the Swiss Alps. In: Proceedings of the 8th International Conference on Permafrost, 21–25 July, Zürich, Switzerland, 1: 455–460

  • Ikeda A, Matsuoka N, Kääb A (2008) Fast deformation of perennially frozen debris in a warm rock-glacier in the Swiss Alps: an effect of liquid water. J Geophys Res 113(F01021):1–12. doi:10.1029/2007JF000859

    Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  • Jerde C, Visscher D (2005) GPS measurement error influences on movement model parameterization. Ecol Appl 15(3):806–810. doi:10.1890/04-0895

    Article  Google Scholar 

  • Kääb, A (2005) Remote sensing of mountain glaciers and permafrost creep. PhD thesis, Geographisches Institut der Universität Zürich

  • Kääb A, Haeberli W, Gudmundsson G (1997) Analysing the creep of mountain permafrost using high precision aerial photogrammetry: 25 years of monitoring Gruben rock glacier, Swiss Alps. Permafr Periglac Process 8:409–426. doi:10.1002/(SICI)1099-1530(199710/12)8:4<409::AID-PPP267>3.0.CO;2-C

    Article  Google Scholar 

  • Kääb A, Huggel C, Fischer L, Guex S, Paul F, Roer I, Salzmann N, Schäferli S, Schmutz K, Schneider D, Strozzi T, Weidmann Y (2005) Remote sensing of glacier and permafrost-related hazards in high mountains: an overview. Nat Hazards Earth Syst Sci 5:527–554. doi:10.5194/nhess-5-527-2005

    Article  Google Scholar 

  • Kääb A, Frauenfelder R, Roer I (2007) On the response of rockglacier creep to surface temperature increase. Glob Planet Chang 56(1–2):172–187. doi:10.1016/j.gloplacha.2006.07.005

    Article  Google Scholar 

  • Keller M, Hungerbuehler G, Knecht O, Sheikh S, Beutel J, Gubler S, Fiddes J, Gruber S (2010) iAssist: rapid deployment and maintenance of tiny sensing systems. In: Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems, ACM, New York, USA, SenSys’10, pp 401–402, doi:10.1145/1869983.1870043

  • Kelly M (2003) The late Würmian Age in the western Swiss Alps—last glacial maximum (LGM) ice-surface reconstruction and 10Be dating of late-glacial features. Ph.d. thesis, Philosophisch-naturwissenschaftlichen Fakultät der Universität Bern, Bern, Switzerland

  • Krainer K, He X (2006) Flow velocities of active rock glaciers in the Austrian Alps. Geogr Ann Ser A Phys Geogr Ser A Phys Geogr 88(4):267–280. doi:10.1111/j.0435-3676.2006.00300.x

    Article  Google Scholar 

  • Krummenacher B, Mihajlovic D, Nussbaum A, Staub B (eds) (2008) 20 Jahre Furggentälti. Permafrostuntersuchungen auf der Gemmi. Geographica Bernensia G80, Geographisches Institut der Universität Bern

  • Krysiecki J, Bodin X, Schoeneich P (2008) Collapse of the Bérard rock glacier (Southern French Alps). In: Proceedings of the 9th International Conference on Permafrost, Fairbanks, Alaska, USA, pp 153–154

  • Labhart T (1995) Geologie der Schweiz, 3rd edn. Ott Verlag, Thun

  • Lambiel C, Delaloye R, Perruchoud E (2005) Yearly and seasonally variations of surface velocities on creeping permafrost bodies. Cases studies in the Valais Alps. In: 3rd Swiss Geoscience Meeting, Zürich

  • Laube P, Purves RS (2011) How fast is a cow? Cross-scale analysis of movement data. Trans GIS 15(3):401–418. doi:10.1111/j.1467-9671.2011.01256.x

    Article  Google Scholar 

  • Leith K (2012) Stress development and geomechanical controls on the geomorphic evolution of alpine valleys. PhD thesis, Department of Earth Sciences, ETH Zurich, Switzerland

  • Lewkowicz A (2007) Dynamics of active-layer detachment failures, Fosheim Peninsula, Ellesmere Island, Nunavut Canada. Permafr Periglac Process 18:93–103. doi:10.1002/ppp.578

    Google Scholar 

  • Limpach P, Grimm D (2009) Rock glacier monitoring with low-cost GPS receivers. In: Abstract Volume 7th Swiss Geoscience Meeting, November 2009, Neuchatel, Switzerland, pp 247–248

  • Lugon R, Stoffel M (2010) Rock-glacier dynamics and magnitude-frequency relations of debris flows in a high-elevation watershed: Ritigraben, Swiss Alps. Glob Planet Chang 73(3–4):202–210. doi:10.1016/j.gloplacha.2010.06.004

    Article  Google Scholar 

  • Maisch M (1999) Die Gletscher der Schweizer Alpen: Gletscherhochstand 1850, aktuelle Vergletscherung, Gletscherschwund-Szenarien. Schlussbericht NFP31, Vdf, Hochschulverlag AG an der ETH

  • Malet J, Maquaire O, Calais E (2002) The use of Global Positioning System techniques for the continuous monitoring of landslides: application to the Super-Sauze earthflow (Alpes-de-Haute-Provence, France). Geomorphology 43(1–2):33–54. doi:10.1016/S0169-555X(01)00098-8

    Article  Google Scholar 

  • Massey C, Petley D, McSaveney M (2013) Patterns of movement in reactivated landslides. Eng Geol 159:1–19. doi:10.1016/j.enggeo.2013.03.011

    Article  Google Scholar 

  • Morgenstern N, Nixon J (1971) One-dimensional consolidation of thawing soils. Can Geotech J 8(4):558–565. doi:10.1139/t71-057

    Article  Google Scholar 

  • Nishii R, Matsuoka N (2010) Monitoring rapid head scarp movement in an alpine rockslide. Eng Geol 115(1):49–57. doi:10.1016/j.enggeo.2010.06.014

    Article  Google Scholar 

  • Nordvik T, Blikra L, Nyrnes E, Derron M (2010) Statistical analysis of seasonal displacements at the Nordnes rockslide, northern Norway. Eng Geol 114(3):228–237. doi:10.1016/j.enggeo.2010.04.019

    Article  Google Scholar 

  • Outcalt S, Nelson F, Hinkel K (1990) The zero-curtain effect: heat and mass transfer across an isothermal region in freezing soil. Water Resour Res 26(7):1509–1516. doi:10.1029/WR026i007p01509

    Google Scholar 

  • PERMOS (2013) Permafrost in Switzerland 2008/2009 and 2009/2010. Noetzli, J. (ed.), Glaciological Report (Permafrost) No. 10/11 of the Cryospheric Commission of the Swiss Academy of Sciences

  • PERMOS (2014) Key messages on permafrost in Switzerland 2012/2013. unpublished report by the PERMOS Scientific Committee p 7 pp

  • Perruchoud E, Delaloye R (2007) Short-term changes in surface velocities on the Becs-de-Bosson rock glacier (western Swiss Alps). Grazer Schriften Geogr Raumforschung 43:131–136

    Google Scholar 

  • Ravanel L, Deline P (2010) Climate influence on rockfalls in high-Alpine steep rockwalls: the north side of the Aiguilles de Chamonix (Mont Blanc massif) since the end of the ‘Little Ice Age’. The Holocene 21(2):357–365. doi:10.1177/0959683610374887

    Article  Google Scholar 

  • Roer I (2005) Rockglacier kinematics in a high mountain geosystem. PhD thesis, Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn

  • Roer I, Haeberli W, Avian M, Kaufmann V, Delaloye R, Lambiel C, Kääb A (2008) Observations and considerations on destabilizing active rock glaciers in the European Alps. In: Proceedings of the 9th International Conference on Permafrost, Fairbanks, Alaska, vol 2, pp 1505–1510

  • Schmid M, Gubler S, Fiddes J, Gruber S (2012) Inferring snow pack ripening and melt out from distributed ground surface temperature measurements. Cryosphere 6(5):1127–1139. doi:10.5194/tc-6-1127-2012

    Article  Google Scholar 

  • Shan W, Hu Z, Jiang H, Guo Y, Wang C (2013) Mechanism of permafrost landslide based on GPS and resistivity surveying. In: Progress of Geo-Disaster Mitigation Technology in Asia, Springer, pp 349–361, doi:10.1007/978-3-642-29107-4-18

  • Strozzi T, Farina P, Crosini A, Ambrosi C, Thüring A, Zilger J, Wiesmann A, Wegmüller U, Werner C (2005) Survey and monitoring of landslide displacements by means of L-band satellite SAR interferometry. Landslides 2:193–201. doi:10.1007/s10346-005-0003-2

    Article  Google Scholar 

  • Strozzi T, Delaloye R, Raetzo H, Wegmüller U (2009a) RADAR interferometric observations of destabilized rockglaciers. In: Proceedings of the ‘Fringe 2009 Workshop’, Frascati, Italy, 30 November – 4 December 2009 (ESA SP-677, March 2010), pp 1–5

  • Strozzi T, Wegmuller U, Werner C, Wiesmann A, Delaloye R, Raetzo H (2009b) Survey of landslide activity and rockglaciers movement in the Swiss Alps with TerraSAR-X. In: Geoscience and Remote Sensing Symposium, 2009 I.E. International, IGARSS, 12–17 July 2009, vol 3, pp III–53–III–56, DOI 10.1109/IGARSS.2009.5418175

  • Strozzi T, Delaloye R, Kaeaeb A, Ambrosi C, Perruchoud E, Wegmüller U (2010) Combined observations of rock mass movements using satellite SAR interferometry, differential GPS, airborne digital photogrammetry, and airborne photography interpretation. J Geophys Res 115(F1):F01,014. doi:10.1029/2009JF001311

    Google Scholar 

  • Strozzi T, Wegmuller U, Werner C, Kos A (2012) TerraSAR-X interferometry for surface deformation monitoring on periglacial area. In: Geoscience and Remote Sensing Symposium (IGARSS), 2012 I.E. International, IEEE, pp 5214–5217

  • VTI Technologies (2010) Sca830-d07: 1-axis inclinometer with digital SPI interface. Data-sheet. Doc.nr. 82 823 00 C. wwwvtifi

  • Terlien M (1998) The determination of statistical and deterministic hydrological landslide-triggering thresholds. Environ Geol 35(2–3):124–130. doi:10.1007/s002540050299

    Article  Google Scholar 

  • Vaisala (2012) Vaisala Weather Transmitter WXT520Ref. Product specification. Doc.nr. B210417en-J. http://www.vaisalade

  • Vieli A, Jania J, Blatter H, Funk M (2004) Short-term velocity variations on Hansbreen, a tidewater glacier in Spitsbergen. J Glaciol 50(170):389–398. doi:10.3189/172756504781829963

    Article  Google Scholar 

  • Wahrhaftig C, Cox A (1959) Rock glaciers in the Alaska range. Geol Soc Am Bull 70(4):383–436. doi:10.1130/0016-7606(1959)70[383:RGITAR]2.0.CO;2

    Article  Google Scholar 

  • Winterhalter R (1959) Terrainbewegung am Osthang der Gugla, östlich Herbriggen. Tech. rep., Baudepartement des Kanton Wallis

  • Wirz V, Limpach P, Buchli B, Beutel J, Gruber S (2013) Temporal characteristics of different cryosphere-related slope movements in high mountains. In: Margottini C, Canuti P, Sassa K (eds) Landslide science and practice. Springer, Berlin, pp 383–390

    Chapter  Google Scholar 

  • Wirz V, Gruber S, Gubler S, Purves RS (2014) Estimating velocity from noisy GPS data for investigating the temporal variability of slope movements. Nat Hazards Earth Syst Sci 14:2503–2520. doi:10.5194/nhess-14-2503-2014

    Article  Google Scholar 

  • Zimmermann M, Haeberli W (1992) Climatic change and debris flow activity in high-mountain areas—a case study in the Swiss Alps. Catena Suppl 22:59–59

    Google Scholar 

Download references

Acknowledgments

This project was funded through nanotera.ch, project X-Sense. This work was also supported by the Grid Computing Competence Center (GC3, www.gc3.uzh.ch) with computational infrastructure and support, including customized libraries (gc_gps and GC3Pie) and user support. This study would not have been possible without the collaboration with colleagues from the project X-Sense, notably Jan Beutel (Computer Engineering and Networks Lab of ETH Zurich) who has led the design and deployment of the measurement infrastructure, Dr. P. Limpach (Geodesy and Geodynamics Lab of ETH Zurich) who processed the daily GPS solutions and Hugo Raetzo (Federal Office for the Environment) who had provided valuable insight and discussion concerning slope movements and placement of GPS stations. We thank Reynald Delaloye (Physical Geography at the University of Fribourg) and Andreas Vieli (3G, Department of Geography of the University of Zurich) for valuable comments on the manuscript. The software iAssist (Keller et al. 2010) was used to program and read-out the iButtons.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa Wirz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 4794 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wirz, V., Geertsema, M., Gruber, S. et al. Temporal variability of diverse mountain permafrost slope movements derived from multi-year daily GPS data, Mattertal, Switzerland. Landslides 13, 67–83 (2016). https://doi.org/10.1007/s10346-014-0544-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-014-0544-3

Keywords

Navigation