Skip to main content
Log in

The formation and development of debris flows in large watersheds after the 2008 Wenchuan Earthquake

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

The Wenchuan earthquake has caused abundance of loose materials supplies for debris flows. Many debris flows have occurred in watersheds in area beyond 20 km2, presenting characteristics differing from those in small watersheds. The debris flows yearly frequency decreases exponentially, and the average debris flow magnitude increases linearly with watershed size. The rainfall thresholds for debris flows in large watersheds were expressed as I = 14.7 D −0.79 (2 h < D < 56 h), which is considerably higher than those in small watersheds as I = 4.4 D −0.70 (2 h < D < 37 h). A case study is conducted in Ergou, 39.4 km2 in area, to illustrate the formation and development processes of debris flows in large watersheds. A debris flow develops in a large watershed only when the rainfall was high enough to trigger the wide-spread failures and erosions on slope and realize the confluence in the watershed. The debris flow was supplied by the widely distributed failures dominated by rill erosions (14 in 22 sources in this case). The intermittent supplying increased the size and duration of debris flow. While the landslide dam failures provided most amounts for debris flows (57 % of the total amount), and amplified the discharge suddenly. During these processes, the debris flow velocity and density increased as well. The similar processes were observed in other large watersheds, indicating this case is representative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Caine N (1980) The rainfall intensity–duration control of shallow landslides and debris flows. Geografiska Annaler Series A Phys Geogr 62:23–27

    Article  Google Scholar 

  • Cannon S, Gartner J, Wilson R, Bowers J, Laber J (2008) Storm rainfall conditions for floods and debris flows from recently burned areas in southwestern Colorado and southern California. Geomorphology 96:250–269

    Article  Google Scholar 

  • Chien N, Wan ZH (1999) Mechanics of sediment transport. ASCE Press, Reston

    Book  Google Scholar 

  • Coe JA, Glancy PA, Whitney JW (1997) Volumetric analysis and hydrologic characterization of a modern debris flow near Yucca Mountain Nevada. Geomorphology 20:11–28

    Article  Google Scholar 

  • Cui P (1992) Studies on condition and mechanism of debris flow initiation by means of experiment. Chin Sci Bull 37(9):759–763

    Google Scholar 

  • Cui P, Chen XQ, Zhu YY, Su FH, Wei FQ, Han YS, Liu HJ, Zhuang JQ (2011) The Wenchuan Earthquake (May 12, 2008), Sichuan Province, China, and resulting geohazards. Nat Hazards 56(1):19–36

    Article  Google Scholar 

  • Cui P, Zhou GGD, Zhu XH, Zhang JQ (2013) Scale amplification of natural debris flows caused by cascading landslide dam failures. Geomorphology 182:173–189

    Article  Google Scholar 

  • Godt JW, Coe JA (2007) Alpine debris flows triggered by a 28 July 1999 thunderstorm in the central Front Range, Colorado. Geomorphology 84:80–97

    Article  Google Scholar 

  • Guo XJ, Xiang LZ, Zhou XJ, Yang W (2012) Research on the debris flow hazards in Gaojia Gully and Shenxi Gully in 2011. J Catastrophology 27(3):81–85 (in Chinese)

    Google Scholar 

  • Guo XJ, Li Y, Cui P (2013) Exponential amplification effect of rainfall on slope failures in debris flow source region. J Mt Sci 31(4):406–412

    Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark C (2007) Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorog Atmos Phys 98:239–267

    Article  Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark C (2008) The rainfall intensity–duration control of shallow landslides and debris flows: an update. Landslides 5:3–17

    Article  Google Scholar 

  • Hu KH, Cui P, You Y, Zhuang JQ, Chen XQ (2010) Nonlinear modified flood method for calculating the debris-flow peak discharge in Wenchuan Earthquake region. J Sichuan Univ (Eng Sci Ed) 42(5):52–56 (in Chinese)

    Google Scholar 

  • Huang CC, Ju YJ, Hwu LK, Lee JL (2009) Internal soil moisture and piezometric responses to rainfall-induced shallow slope failures. J Hydrol 370:39–51

    Article  Google Scholar 

  • Innes JL (1983) Debris flows. Prog Phys Geogr 7:469–501

    Article  Google Scholar 

  • Iverson RM (1997) The physics of debris flows. Rev Geophys 35(3):245–296

    Article  Google Scholar 

  • Iverson RM, Reid ME, LaHusen RG (1997) Debris-flow mobilization from landslides. Annu Rev Earth Planet Sci 25:85–138

    Article  Google Scholar 

  • Kang ZC (1987) A velocity research of debris flow and its calculating method in China. Mt Res 5(4):247–259 (in Chinese)

    Google Scholar 

  • Kang ZC, Zhang J (1991) Study and calculation of debris-flow peak discharge. Soil Water Conserv China 2:15–18 (in Chinese)

    Google Scholar 

  • Li Y, Hu KH, Cui P, Chen XQ, Yue ZQ (2002) Morphology of basin of debris flow. J Mt Sci 20(1):1–11

    Google Scholar 

  • Li Y, Zhou XJ, Su PC, Kong YD, Liu JJ (2013) A scaling distribution for grain composition of debris flow. Geomorphology 192:30–42

    Article  Google Scholar 

  • Martin Y, Rood K, Schwab JW, Church M (2002) Sediment transfer by shallow landsliding in the Queen Charlotte Islands, British Columbia. Can J Earth Sci 39:189–205

    Article  Google Scholar 

  • Saito S, Daichi N, Hiroshi M (2010) Relationship between the initiation of a shallow landslide and rainfall intensity-duration thresholds in Japan. Geomorphology 118:167–175

    Article  Google Scholar 

  • Su PC, Wei FQ, Cheng ZL (2012) Debris flow activity of Mozi Gully after Wenchuan Earthquake on May 12. J Yangtze River Sci Res Inst 29(2):16–22 (in Chinese)

    Google Scholar 

  • Takahashi T (1978) Mechanical characteristics of debris flow. J Hydraul Div ASCE 104(8):1153–1169

    Google Scholar 

  • Tan WP, Han QY (1992) Study on regional critical rainfall indices of debris flow in Sichuan Province. J Catastrophology 7(2):37–42 (in Chinese with English abstract)

    Google Scholar 

  • Tang C, Van Asch TWJ, Chang M, Chen GQ, Zhao XH, Huang XC (2012) Catastrophic debris flows on 13 August 2010 in the Qingping area, southwestern China: the combined effects of a strong earthquake and subsequent rainstorms. Geomorphology 139–140:559–576

    Article  Google Scholar 

  • Xu MD, Feng QH (1979) Roughness of debris flows. Proceeding of the First Conference of Chinese Research of Debris Flows, pp 51–52 (in Chinese)

  • Yan Y, Ge YG, Zhang JQ, Zeng C (2014) Research on the debris flow hazards in Cutou Gully, Wenchuan County on July 10, 2013. J Catastrophology 29(3):229–234 (in Chinese)

    Google Scholar 

  • Zeng C, Cui P, Ge YG, Zhang JQ, Lei Y, Yan Y (2014) Characteristics and mechanism of buildings damaged by debris flows on 11 July, 2013 in Qipangou of Wenchuan, Sichuan. J Earth Sci Environ 36(2):81–91 (in Chinese)

    Google Scholar 

  • Zhou W, Tang C (2013) Rainfall thresholds for debris flow initiation in the Wenchuan earthquake-stricken area, southwestern China. Landslides. doi:10.1007/s10346-013-042

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Meteorological Bureau of Sichuan Province, for providing the rainfall data. This study was supported by the National Natural Science Foundation (grant no. 41301008), the Key Deployment Project of Chinese Academy of Sciences (grant no. KZZD-EW-05-01) and the National Key Technologies R&D Program of China (grant no. 2012BAK10B04). We also acknowledge Dr. William B. Mahoney for improving the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Cui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Cui, P., Li, Y. et al. The formation and development of debris flows in large watersheds after the 2008 Wenchuan Earthquake. Landslides 13, 25–37 (2016). https://doi.org/10.1007/s10346-014-0541-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-014-0541-6

Keywords

Navigation