Skip to main content

Advertisement

Log in

Geology, permafrost, and lake level changes as factors initiating landslides on Olkhon Island (Lake Baikal, Siberia)

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Permafrost decline, observed in the last few decades as a result of climate change, causes an activation of cryogenic landslide processes. This study on Olkhon Island in Lake Baikal (Eastern Siberia), located within the discontinuous permafrost zone, was aimed to determine how strongly the landslide forms found there are associated with climatic conditions and if they can react to climate change. It was also important to identify which type of landslides in this area is the most sensitive indicator of the observed changes and to what extent they can react to them. For this purpose, landslides were identified, and their morphology, geological structure, and thermal parameters were assessed. The results show that the key process is the increase in thickness of the active layer, partly due to the presence of Miocene lake clays and changes in water level in Lake Baikal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Anisimov OA, Lobanov VA, Reneva SA (2007) Analysis of changes in air temperature in Russia and empirical forecast for the first quarter of the 21st century. Russ Meteorol Hydrol 32(10):620–626. doi:10.3103/s1068373907100020

    Article  Google Scholar 

  • Ballantyne CK, Harris C (1994) The periglaciation of Great Britain. Cambridge University Press, Cambridge

    Google Scholar 

  • Benedict JB (1976) Frost creep and gelifluction features: a review. Quat Res 6(1):55–76. doi:10.1016/0033-5894(76)90040-5

    Article  Google Scholar 

  • Berkin NS, Makarov AA, Rusinek OT (2009) Introduction to the study of Lake Baikal: textbook (in Russian). Irkutsk University, Irkutsk

    Google Scholar 

  • Couture N, Pollard W (2007) Modelling geomorphic response to climatic change. Clim Chang 85(3–4):407–431. doi:10.1007/s10584-007-9309-5

    Article  Google Scholar 

  • Crozier MJ (2010) Deciphering the effect of climate change on landslide activity: a review. Geomorphology 124(3–4):260–267. doi:10.1016/j.geomorph.2010.04.009

    Article  Google Scholar 

  • Czudek T, Demek J (1970) Thermokarst in Siberia and its influence on the development of lowland relief. Quat Res 1(1):103–120. doi:10.1016/0033-5894(70)90013-X

    Article  Google Scholar 

  • Dyke LD (2004) Stability of frozen and thawing slopes in the Mackenzie Valley, Northwest Territories. In: Proceedings of the 57th Canadian Geotechnical Conference, Quebec City, Quebec, Session 1G, pp. 31-38

  • Dyke LD, Brooks GR (eds) (2000) The physical environment of the Mackenzie Valley, Northwest Territories: a base line for the assessment of environmental change. Geological Survey of Canada, Bulletin 547

  • Frauenfeld OW, Zhang T, Barry RG, Gilichinsky D (2004) Interdecadal changes in seasonal freeze and thaw depths in Russia. J Geophys Res Atmos 109(D5):D05101. doi:10.1029/2003JD004245

    Article  Google Scholar 

  • Galaziy GI (ed) (1993) Baikal Atlas (in Russian). Nauka, Moscow

  • Galaziy GI, Lut BF (2000) Baikal earthquake (one of possible causes) (in Russian). Geogr Nat Resour 2:37–42

    Google Scholar 

  • Gavrilova M (2007) Air temperature change in permafrost regions: East Siberia–Mongolia–China. Proceedings of the International Symposium, Asian Collaboration in IPY 2007-2008, 1st March 2007, Tokyo, Japan

  • Grosse G, Romanovsky V, Jorgenson T, Anthony KW, Brown J, Overduin PP (2011) Vulnerability and feedbacks of permafrost to climate change. Eos, Transactions American

  • Harris C, Rea B, Davies M (2001) Scaled physical modelling of mass movement processes on thawing slopes. Permafr Periglac Process 12(1):125–135. doi:10.1002/ppp.373

    Article  Google Scholar 

  • Harris C, Kern-Luetschg M, Murton J, Font M, Davies M, Smith F (2008) Solifluction processes on permafrost and non-permafrost slopes: results of a large-scale laboratory simulation. Permafr Periglac Process 19(4):359–378. doi:10.1002/ppp.630

    Article  Google Scholar 

  • Hughes OL (1972) Surficial geology and land classification, Mackenzi Valley transportation coridor. In: Proceedings of the Canadian North Pepeline Research Conference, Ottawa, February 1972, Associate Committee on Geotechnical Research, National Research Council of Canada, Technical Memorandum 104, pp. 17-24

  • Huscroft CA, Lipovsky P, Bond JD (2004) Permafrost and landslide activity: case studies from southwestern Yukon Territory. In: Emond DS, Lewis LL (eds), Yukon Exploration and Geology 2003, Yukon Geological Survey, pp. 107-119

  • Ivanov AV, Gladkochub DP, Déverchère J, Ernst RE (2013) Introduction to special issue: geology of the Lake Baikal region. J Asian Earth Sci 62(0):1–3. doi:10.1016/j.jseaes.2012.12.010

    Article  Google Scholar 

  • Khomutov A, Leibman M (2014) Assessment of landslide hazards in a typical tundra of Central Yamal, Russia. In: Shan W, Guo Y, Wang F, Marui H, Strom A (eds) Landslides in Cold Regions in the Context of Climate Change. Environmental Science and Engineering. Springer International Publishing, pp 271-290. doi:10.1007/978-3-319-00867-7_20

  • Konoplev SP (ed) (1964) Geology map of SSSR, 1:200000 scale, Baikal Region (in Russian). State Geological Committee SSSR, Nedra, Moskow

    Google Scholar 

  • Koven CD, Riley WJ, Stern A (2012) Analysis of permafrost thermal dynamics and response to climate change in the CMIP5 earth system models. J Clim 26(6):1877–1900. doi:10.1175/JCLI-D-12-00228.1

    Article  Google Scholar 

  • Kozyreva EA, Radziminovich JB (2008) Landslides deformation of Olkhon Island shore zone and methods their study (in Russian). Geoinformatica 3:29–36

    Google Scholar 

  • Lake level (2012) In: On the state of Lake Baikal and the measures for its protection in 2011 year—state report (in Russian), Moskow, pp. 11-16. Available at http://geol.irk.ru/baikal/baikal.htm

  • Leibman MO (1995) Cryogenic landslides on the Yamal Peninsula, Russia: preliminary observations. Permafr Periglac Process 6(3):259–264. doi:10.1002/ppp.3430060307

    Article  Google Scholar 

  • Leibman MO (1997) Cryolithological peculiarities of the active layer on slopes in relation to cryogenic landslides (in Russian). Earth Cryosphere 1(2):50–55

    Google Scholar 

  • Leibman MO, Egorov IP (1996) Climatic and environmental controls of cryogenic landslides, Yamal, Russia. In: Senneset K (ed) Proceedings of the 7th International Symposium on Landslides. Balkema, Trondheim, pp 1941–1946

    Google Scholar 

  • Lewkowicz AG (1988) Slope Processes. In: Clark MJ (ed) Advances in periglacial geomorphology. Wiley, Chichester, UK, pp 325–368

    Google Scholar 

  • Lewkowicz AG (2007) Dynamics of active-layer detachment failures, Fosheim Peninsula, Ellesmere Island, Nunavut, Canada. Permafr Periglac Process 18(1):89–103. doi:10.1002/ppp.578

    Article  Google Scholar 

  • Lunina OV, Gladkov AS, Szerstiankin PP (2010) The new electronic map of active faults in southern East Siberia (in Russian). Doklady RAN 433(5):662–667

    Google Scholar 

  • Lyle RR, Hutchinson DJ (2006) Influence of degrading permafrost on landsliding processes: Little Salmon Lake, Yukon Territory, Canada. In: Proceedings of Geohazards International Engineering Conferences, June 18-21, 2006 - Lillehammer, Norway

  • Lyle RR, Hutchinson DJ, Preston Y (2005) Landslide processes in discontinuous permafrost, Little Salmon Lake (NTS 105 L/1 and 2), south-central Yukon. In: Emond DS, Lewis LL, Bradshaw GD (eds) Yukon Exploration and Geology 2004. Yukon Geological Survey, pp. 193-204

  • Matsuoka N (2011) Climate and material controls on periglacial soil processes: toward improving periglacial climate indicators. Quat Res 75(2):356–365. doi:10.1016/j.yqres.2010.12.014

    Article  Google Scholar 

  • Mel’nikova VI, Gileva NA, Radziminovich NA, Masal’skii OK, Chechel’nitskii VV (2010) Seismicity of the Baikal rift zone for the digital recording period of earthquake observation (2001–2006). Seism Instr 46(2):193–206. doi:10.3103/S0747923910020076

    Article  Google Scholar 

  • Nadim F, Kjekstad O, Peduzzi P, Herold C, Jaedicke C (2006) Global landslide and avalanche hotspots. Landslides 3(2):159–173. doi:10.1007/s10346-006-0036-1

    Article  Google Scholar 

  • Palshin GВ (ed) (1968) Engineering geology of Prebaikale (in Russian). Publishing House Nauka, Moskow

    Google Scholar 

  • Pavlov AV, Malkova GV (2008) Regional geocryological dangers associated with contemporary climate change. In: Proceedings of the Ninth International Conference on Permafrost, University of Alaska Fairbanks, June 29–July 3, 2008, 2, pp. 1375 - 1379

  • Romanovsky VE, Sazonova TS, Balobaev VT, Shender NI, Sergueev DO (2007) Past and recent changes in air and permafrost temperatures in eastern Siberia. Global and Planetary Change 56(3–4):399–413. doi:10.1016/j.gloplacha.2006.07.022

    Article  Google Scholar 

  • Sherstyukov AB (2008) Correlation of soil temperature with air temperature and snow cover depth in Russia (in Russian). Earth’s Cryosphere 12(1):79–87

    Google Scholar 

  • Smith LC, Sheng Y, MacDonald GM, Hinzman LD (2005) Disappearing arctic lakes. Science 308(5727):1429. doi:10.1126/science.1108142

    Article  Google Scholar 

  • Trofimova IE (2006) Current status and trends of long-term changes in permafrost thermal regime of soils in the Baikal Region (in Russian). Geogr Nat Resour 4:38–45

    Google Scholar 

  • Trzchinskij JB, Kozyriewa EA, Szczypek T (2009) Fluctuations of Lake Baikal level and process of swamping of its shores (a case study of Chivyrkyj Isthmus—the Myagkaya Karga—and its neibourhood) (in Polish). In: Jankowski AT, Absalon D, Machowski R, Ruman M (eds) Przeobrażenia stosunków wodnych w warunkach zmieniającego się środowiska. Sosnowiec University, Sosnowiec, pp 279–291

    Google Scholar 

  • van Everdingen R (ed) (1998, revised May 2005) Multi-language glossary of permafrost and related ground-ice terms. Boulder, CO: National Snow and Ice Data Center

  • Voropay NN, Maksyutova EV, Balybina AS (2011) Contemporary climatic changes in the Predbaikalie region. Environ Res Lett 6(4):045209. doi:10.1088/1748-9326/6/4/045209

    Article  Google Scholar 

  • Wang B, Paudel B, Li H (2009) Retrogression characteristics of landslides in fine-grained permafrost soils, Mackenzie Valley, Canada. Landslides 6(2):121–127. doi:10.1007/s10346-009-0150-y

    Article  Google Scholar 

  • Washburn AL (1967) Instrumental observations of mass-wasting in the Mesters Vig district, Northeast Greenland. Meddelelserom Grønland 166(4)

  • Wei M, Fujun N, Satoshi A, Dewu J (2006) Slope instability phenomena in permafrost regions of Qinghai-Tibet Plateau, China. Landslides 3(3):260–264. doi:10.1007/s10346-006-0045-0

    Article  Google Scholar 

Download references

Acknowledgments

This study was part of the project “Exogenous processes as human pressure indicators in water bodies and their zone of influence—continuation” (2011–2013). It was partly supported by the Ministry of Science and Higher Education, Warsaw, Poland (grants N N306 033033 in 2007–2009, N N306 086037, and N N306 085037 in 2009–2012) and by the Virtual Institute for Integrated Climate and Landscape Evolution (ICLEA) of the Helmholtz Association. Authors would like to thank V. A. Pellinen from the Institute of the Earth’s Crust, Russian Academy of Science, for the help in obtaining weather data from the weather station in Khuzhir at Olkhon. Authors would also like to thank anonymous reviewers from Landslides for reviewing the paper, which has helped to improve it significantly, and they wish to express their appreciation for the kind support received from the Editor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Tyszkowski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyszkowski, S., Kaczmarek, H., Słowiński, M. et al. Geology, permafrost, and lake level changes as factors initiating landslides on Olkhon Island (Lake Baikal, Siberia). Landslides 12, 573–583 (2015). https://doi.org/10.1007/s10346-014-0488-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-014-0488-7

Keywords

Navigation