Skip to main content
Log in

The Varnes classification of landslide types, an update

  • Review Article
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

The goal of this article is to revise several aspects of the well-known classification of landslides, developed by Varnes (1978). The primary recommendation is to modify the definition of landslide-forming materials, to provide compatibility with accepted geotechnical and geological terminology of rocks and soils. Other, less important modifications of the classification system are suggested, resulting from recent developments of the landslide science. The modified Varnes classification of landslides has 32 landslide types, each of which is backed by a formal definition. The definitions should facilitate backward compatibility of the system as well as possible translation to other languages. Complex landslides are not included as a separate category type, but composite types can be constructed by the user of the classification by combining two or more type names, if advantageous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37

Similar content being viewed by others

References

  • Antoine P, Camporota A, Giraud A, Rochet L (1987) La menace d’écroulement aux Ruines de Séchillienne. Bulletin, Liaison Laboratoire des Pontes et Causées 150:55–64

    Google Scholar 

  • Avelar AS, Coelho Netto AL, Lacerda WL, Becker LB, Mendonça MB (2011) Mechanisms of the recent catastrophic landslides in the mountainous range of Rio de Janeiro, Brazil. Procs., 2nd World Lansdlides Forum, Rome

  • Baltzer A (1875) Über bergstürze in den Alpen. Verlag der Schabelitz’schen buchhandlung (C. Schmidt), Zurich, 50p

  • Bates RL, Jackson JA (eds) (1984) Glossary of geology. American Geological Institute, Falls Church, Virginia, 788p

    Google Scholar 

  • Benko B, Stead D (1998) The frank slide: a reexamination of the failure mechanism. Canadian Geotech J 35:299–311

    Article  Google Scholar 

  • Bertolini G, Guida M, Pizziolo M (2005) Landslides in Emilia-Romagna region (Italy): strategies for hazard assessment and risk management. Landslides 2:302–312

    Article  Google Scholar 

  • Bishop AW (1973) The stability of tips and spoil heaps. Q J Eng Geol 6:335–376

    Article  Google Scholar 

  • Bjerrum L (1971) Subaqueous slope failures in Norwegian fjords. In: Proceedings of the First International Conference on Port and Ocean Engineering Under Arctic Conditions, 1:24–47

  • Blight GE (1997) Destructive mudflows as a consequence of tailings dyke failures: geotechnical engineering. In: Proceedings, Institution of Civil Engineers 125:9–18

  • Bourrier F, Dorren L, Hungr O (2013) The use of ballistic trajectory and granular flow models in predicting rockfall propagation. Earth Surface Processes and Landforms 38:435–440

    Google Scholar 

  • Bovis MJ (1985) Earthflows in the interior plateau: southwest B.C. Canadian Geotech J 22:313–334

  • Bozzano F, Lenti L, Martino S, Paciello A, Scarascia MG (2008) Self-excitation process due to local seismic amplification responsible for the 31st October 2002 reactivation of the Salcito landslide (Italy). J Geophys Res 113, B10312

  • Bull WB (1964) Alluvial fans and near-surface subsidence in Western Fresno County, California, U.S. Geological Survey Professional Paper 437-A. U.S. Geological Survey, Denver, CO

  • Cannon SH (1993) An empirical model to predict debris flow travel distance. In: Shem, H.W. and Wen, F. (eds) Proceedings, ASCE Hydraulic Engineering, '93. Pp. 1768–1773

  • Cannon SH, Gartner JE (2005) Wildfire related debris flow from a hazards perspective. Chapter 15. In: Jacob, M., and Hungr, O. (eds) Debris-flow hazards and related phenomena: Springer, Berlin. pp. 321–344

  • Canuti P, Casagli N, Garzonio CA, Vannocci P (1990) Lateral spreads and landslide hazards in the Northern Apennine: the example of the Mt. Fumaiolo (Emilia-Romagna) and Chiusi della Verna (Tuscany). In: Proceedings 6th Congr. IAEG, Amsterdam, 3:1525–1533

  • Cascini L, Cuomo S, Guida D (2008) Typical source areas of May 1998 flow-like mass movements in the Campania region, Southern Italy. Eng Geol 96:107–125

    Article  Google Scholar 

  • Casagrande A (1940) Characteristics of cohesionless soils affecting the stability of slopes and earth fills. Contributions to soil mechanics, 1925 to 1940. Boston Society of Civil Engineers, pp. 257–276

  • Chernomorec CC (2005) Selevoye ochagi do i posle katastrof (Mud flows during and after catastrophic outbursts) Nauchnii Mir (World of Science), Moscow, 184p (in Russian)

  • Chigira M, Kiho K (1994) Deep-seated rockslide-avalanches preceded by mass rock creep of sedimentary rocks in the Akaishi Mountains, central Japan. Eng Geol 38:221–230

    Article  Google Scholar 

  • Coelho Netto AL, Sato AM, Avelar AS, Vianna LGG, Araujo IS, Croix D, Lima P, Silva AP, Pereira R (2011) The extreme landslide disater in Brazil. In: Proc. 2nd World Lansdlides Forum, Rome

  • Costa JE (1984) Physical geomorphology of debris flows. In: Costa JE, Fleisher PJ (eds) Developments and Applications in Geomorphology: Springer, Berlin, pp. 268–317

  • Crosta GB, Frattini P, Fugazza F, Caluzzi L (2005) Cost-benefit analysis for debris avalanche risk management. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) Landslide risk management. Proceedings Vancouver Conference. Taylor and Francis Group, London, pp 517–524

    Google Scholar 

  • Crozier MJ (2005) Multiple-occurrence regional landslide events in New Zealand. Hazard management issues. Landslides 2:247–256

    Google Scholar 

  • Cruden DM (1989) Limits to common toppling. Canadian Geotech J 26:737–742

    Article  Google Scholar 

  • Cruden DM, Antoine P (1984) The slide from Mt. Granier, Isére and Savoie, France on Nov. 24, 1248. In: Proc. 4th. International Symposium on Landslides, Toronto, vol. 1, pp. 475–481

  • Cruden DM, Hu XQ (1992) Rock mass movements across bedding in Kananaskis country, Alberta. Canadian Geotech J 29:675–685

    Article  Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides investigation and mitigation. Transportation research board, US National Research Council. Special Report 247, Washington, DC, Chapter 3, pp. 36–75

  • Dai FC, Lee CF (2003) Landslide characteristics and slope instability modeling using GIS, Lantau Island. Hong Kong. Geomorphology 42:213–228

    Article  Google Scholar 

  • D’Alessandro GR, Berti M, Urbani A, Tecca PR (2002) Geomorphology, stability analyses and the stabilization works on the Montepiano travertinous cliff (Central Italy). In: Allison RJ (ed) Applied geomorphology—theory and practice. Wiley, New York, pp. 21–38

  • Davies TRH (1986) Large debris flows: a macroviscous phenomena. Acta Mechanica 63:161–178

    Article  Google Scholar 

  • Delaney KB, Evans SG (2013) The 1997 mount Munday landslide, British Columbia; behaviour, dynamic analysis, and fragmentation of a rock avalanche on a glacier surface. Landslides 13 (in press)

  • Deline P, Alberto W, Broccolato D, Hungr O, Noetzli J, Ravanel L, Tamburini A (2011) The December 2008 Crammont rock avalanche, Mont Blanc massif area, Italy. Nat Hazards Earth Syst Sci 11:3307–3318

    Article  Google Scholar 

  • Derbyshire E, Wang J, Jin Z, Billard A, Egles Y, Kasser M, Jones DKC, Muxart T, Owen L (1991) Landslides in the Gansu Loess of China. Catena, Cremlingen, Supplement 20, p. 119–145

  • Dijkstra TA, Rogers CDF, Smalley IJ, Derbyshire E, Li YJ, Meng XM (1994) The loess of north-central China: geotechnical properties and their relation to slope stability. Eng Geol 36:153–171

    Article  Google Scholar 

  • Dikau R, Brunsden D, Schrott L, Ibsen M-L (Editors) (1996) Landslide recognition: Identification, movement, and causes. Wiley, New York, 1996, 210p

  • Discenza ME, Esposito C, Martino S, Petitta M, Prestininzi A, Scarascia Mugnozza G (2011) The gravitational slope deformation of Mt. Rocchetta ridge (central Apennines, Italy): geological-evolutionary model and numerical analysis. Bulletin of Eng Geol Environ 70:559–575

    Google Scholar 

  • Dykes AP, Warburton J (2007) Mass movements in peat: a formal classification scheme. Geomorphology 86:73–93

    Article  Google Scholar 

  • Eberhardt E (2008) Twenty-Ninth Canadian Geotechnical Colloquium: the role of advanced numerical methods and geotechnical field measurements in understanding complex deep-seated rock slope failure mechanisms. Canadian Geotech J 45:484–510

    Article  Google Scholar 

  • Eden WJ, Mitchell RJ (1970) The mechanics of landslides in Leda Clay. Canadian Geotech J 7:285–296

    Article  Google Scholar 

  • ERM-Hong Kong Ltd (1998) Feasibility study for QRA of boulder fall hazards in Hong Kong (GEO Report No. 80). Geotechnical Engineering Office, Hong Kong Government

  • Evans SG, Scarascia Mugnozza G, Strom A, Hermanns RL (2006) Landslides from massive rock slope failure. Proceedings, Celano Workshop, NATO Science Series, Series VI, 49:53–73

  • Evans SG, Hungr O (1993) The assessment of rockfall hazards at the base of talus slopes. Canadian Geotech J 30:620–636

    Article  Google Scholar 

  • Evans SG, Clague JJ (1994) Recent climatic change and catastrophic geomorphic processes in mountain environments. Geomorphology 10:107–128

    Article  Google Scholar 

  • Evans SG, Tutubalina OV, Drobyshev VN, Chernomorets SS, McDougall S, Petrakov DA, Hungr O (2009) Catastrophic detachment and high-velocity long-runout flow of Kolka Glacier, Caucasus Mountains, Russia in 2002. Geomorphology 105:314–321

    Article  Google Scholar 

  • Evans SG, Delaney KB, Hermanns RL, Strom A, Scarascia Mugnozza G (2011) Formation and behaviour of natural and artificial rockslide dams. In: Evans SG, Hermanns RL, Strom A, Scarascia Mugnozza G (eds) Natural and artificial rockslide dams. Springer, Berlin, pp 1–76

    Chapter  Google Scholar 

  • Fine IV, Rabinovich AB, Bornhold BD, Thomson RE, Kulikov EA (2005) The Grand Banks landslide-generated tsunami of November 18, 1929: preliminary analysis and numerical modeling. Marine Geology 215:45–57

    Article  Google Scholar 

  • Fletcher L, Hungr O, Evans SG (2002) Contrasting failure behaviour of two large landslides in clay and silt. Canadian Geotech J 39:46–62

    Article  Google Scholar 

  • Follacci JP (1987) Les mouvements du versant de la Clapiére a Saint Étienne de Tinée (Alpes Maritimes). In: Bull. Liaison Laboratoire des Ponts et Chausées, Paris, 151: 39–54 (in French)

  • Forlati F, Lancellotta R, Scavia C, Simeoni L (1998) Swelling processes in sliding marly layers in the Langhe region, Italy. In: Evangelista E, Picarelli L (eds) The geotechnics of hard soils-soft rocks. Balkema, Rotterdam, pp 1089–1099

    Google Scholar 

  • Froese CR, Moreno F, Jaboyedoff M, Cruden DM (2009) 25 years of monitoring on Southe Peak, Turtle Mountain: understanding the hazard. Canadian Geotech J 46:256–269

    Article  Google Scholar 

  • Gerath RF, Hungr O (1993) Landslide terrain, Scatter River valley, north-eastern British Columbia. Geoscience Canada 10:30–32

    Google Scholar 

  • Goguel J, Pachoud A (1972) Geology and dynamics of the rockfall of the Granier Range which occurred in November 1248. Bulletin, Bureau de Récherches Geologiques et Miniéres, Hydrogeologie, Lyon, 1:29–38

  • Goguel J, Pachoud A (1981) Les mouvements de terrain du versant sud du Massif de Platé, Haute Savoie, France. Bull. Liaison Laboratoire des Pontes et Chausées, Spécial X:15-25

  • Goodman RE, Bray JW (1976) Toppling of rock slopes. Procs., ASCE specialty conference on rock engineering for foundation and Slopes, Boulder, Colo., Vol.2

  • Guadagno FM, Forte R, Revellino P, Fiorillo F, Focareta M (2005) Some aspects of the initiation of debris avalanches in the Campania Region: the role of morphological slope discontinuities and the development of failure. Geomorphology 66:237–254

    Article  Google Scholar 

  • Guerricchio A, Doglioni A, Fortunato G, Galeandro A, Guglielmo EA, Versace P, Simeone V (2012) Landslide hazard connected to deep seated gravitational slope deformations and prolonged rainfall: Maierato landslide case history. Società Geologica Italiana 21:574–576, Roma

    Google Scholar 

  • Guerriero L, Revellino P, Coe JA, Focareta M, Grelle G, Albanese V, Corazza A, Guadagno FM (2013) Multi-temporal Maps of the Montaguto Earth Flow in Southern Italy from 1954 to 2010. J Maps 9(1):135–145

    Article  Google Scholar 

  • Guthrie RH, Evans SG (2004) Magnitude and frequency of landslides triggered by a storm event, Loughborough Inlet, British Columbia. Nat Hazards Earth Syst Sci 4:475–483

    Article  Google Scholar 

  • Haug MD, Sauer EK, Fredlund DG (1977) Retrogressive slope failures at Beaver Creek, south of Saskatoon, Saskatchewan. Canadian Geotech J 14:288–301

    Article  Google Scholar 

  • Heim A (1932) Landslides and human lives (Bergsturz and Menschenleben). In: Skermer, N. (ed) Bi-Tech Publishers, Vancouver, BC, 196p

  • Hendron AJ, Patton FD (1985) The Vaiont Slide, a geotechnical analysis based on how geologic observations of the failure surface. U.S. Army Corps of Engineers. Technical Report 85, Number 5, 104p

  • Highland LM, Bobrowsky P (2008) The landslide handbook: a guide to understanding landslides; U.S. Geological Survey, Circular 1325, 129p

  • Hoek E, Bray J (1981) Rock slope engineering, 3rd edn. Inst. Mining and Metallurgy, London

    Google Scholar 

  • Hübl J, Suda J, Proske D, Kaitna R, Scheidl C (2009) Debris flow impact estimation. Proceedings, International Symposium on Water Management and Hydraulic Engineering, Ohrid/Macedonia, Paper: A5

  • Hungr O (1981) Dynamics of rock avalanches and other types of slope movements. Ph.D. thesis, University of Alberta, Edmonton, 500p

  • Hungr O (2000) Analysis of debris flow surges using the theory of uniformly progressive flow. Earth Surface Processes and Land-forms 25:1–13

    Article  Google Scholar 

  • Hungr O, Evans SG, Bovis M, Hutchinson JN (2001) Review of the classification of landslides of the flow type. Environ Eng Geosci VII:221–238

    Google Scholar 

  • Hungr, O., Dawson, R., Kent, A., Campbell, D. and Morgenstern, N.R. (2002) Rapid flow slides of coal mine waste in British Columbia, Canada. In: Catastrophic Landslides Geological Society of America Reviews in Engineering Geology 15, pp. 191–208

  • Hungr O, Evans SG (2004a) The occurrence and classification of massive rock slope failure. Felsbau, Vienna, Austria 22:16–23

    Google Scholar 

  • Hungr O, Evans SG (2004b) Entrainment of debris in rock avalanches; an analysis of a long run-out mechanism. Bulletin, Geological Society of America, no. 9/10, 116:1240–1252

  • Hungr O, McDougall S, Bovis M (2005) Entrainment of material by Debris Flows. In: Jakob M, Hungr O (eds) Debris flow hazards and related phenomena Chapter 7. Springer, Heidelberg, pp. 135–158 (in association with Praxis Publishing Ltd)

  • Hutchinson JN (1961) A landslide on a thin layer of quick clay at Furre, Central Norway. Géotechnique 11:69–94

    Article  Google Scholar 

  • Hutchinson JN (1968) Mass movement. In: Fairbridge RW (ed) Encyclopedia of geomorphology. Reinhold Publishers, New York, pp 688–695

    Chapter  Google Scholar 

  • Hutchinson JN (1988) General report: morphological and geotechnical parameters of landslides in relation to geology and hydrogeology. In: Proceedings of the 5th International Symposium on Landslides, Lausanne, 1:3–35

  • Hutchinson JN (1991) Periglacial and slope processes. In: Forster A, Culshaw MG, Cripps JC, Little JA, Moon CF (eds) Quaternary engineering geology (Edinburgh, 1989). Geological Society Engineering Geology Special Publication No. 7, 283–331

  • Hutchinson JN (1992a) Landslide hazard assessment. In: Bell DH (ed) Proc. 6th Inter. Sym. on Landslides. Christchurch, N.Z. pp. 1805–1842

  • Hutchinson JN (1992b) Flow slides from natural slopes and waste tips, in Proceedings, 3rd National Symposium on Slopes and Landslides. La Coruna, Spain, pp 827–841

    Google Scholar 

  • Hutchinson JN (2002) Chalk flows from the coastal cliffs of north-west Europe. In: Catastrophic Landslides, Evans SG, DeGraff JV (eds) Geological Society of America, Reviews in Engineering Geology XV, pp. 257–312

  • Hutchinson JN, Bhandari RK (1971) Undrained loading, a fundamental mechanism of mudflows and other mass movements. Geotechnique 21:353–358

    Article  Google Scholar 

  • Hutchinson JN, Prior DB, Stephens N (1974) Potentially dangerous surges in an Antrim mudslide. Q J Eng Geol 7:363–376

    Article  Google Scholar 

  • Hutchinson JN, Bromhead EN, Lupini JF (1980) Additional observations on the Folkestone Warren landslides. Q J Eng Geol London 13:1–31

    Article  Google Scholar 

  • ICIMOD (2011) Glacial lakes and glacial lake outburst floods in Nepal. International Centre for Integrated Mountain Development, Kathmandu, 109p

    Google Scholar 

  • International Geotechnical Society’s UNESCO Working Party on World Landslide Inventory (WP/WLI) (1990) A suggested method for reporting a landslide. Bull Inter Assoc Eng Geol 41:5–12

    Article  Google Scholar 

  • International Geotechnical Society’s UNESCO Working Party on World Landslide Inventory (WP/WLI) (1991) A suggested method for a landslide summary. Bull Intern Assoc Eng Geol 43:101–110

    Article  Google Scholar 

  • International Geotechnical Society’s UNESCO Working Party on World Landslide Inventory (WP/WLI) (1993a) A suggested method for describing the activity of a landslide. Bull Intern Assoc Eng Geol 47:53–57

    Article  Google Scholar 

  • International Geotechnical Society’s UNESCO Working Party on World Landslide Inventory (WP/WLI) (1993b) A multi-lingual landslide glossary. Bitech Publishers, Vancouver, 59p

    Google Scholar 

  • International Geotechnical Society’s UNESCO Working Party on World Landslide Inventory (WP/WLI) (1994) A suggested method for describing the causes of a landslide. Bull Intern Assoc Eng Geol 50:71–74

    Article  Google Scholar 

  • International Geotechnical Society’s UNESCO Working Party on World Landslide Inventory (WP/WLI) (1995) A suggested method for describing the rate of movement of a landslide. Bull Inter Assoc Eng Geol 52:75–78

    Article  Google Scholar 

  • Jakob M (2000) The impacts of logging on landslide activity at Clayoquot Sound, British Columbia. Catena 38:279–300

    Article  Google Scholar 

  • Jibson RW (2005) Landslide hazards at La Conchita, California. U.S. Geological Survey Open-File Report 2005–1067

  • Keefer DK, Johnson AM (1983) Earthflows: morphology, mobilization and movement. USGS Professional Paper 1264

  • Kieffer DS (2003) Rotational instability of hard rock slopes. Felsbau 21:31–38

    Google Scholar 

  • King JP, Loveday I, Schuster RL (1989) The 1985 Bairaman landslide dam and resulting debris flow Papua New Guinea. Q J Eng Geol Hydrogeol 22:257–270

    Article  Google Scholar 

  • Koppejan AW, van Wamelen BM, Weinberg LJH (1948) Coastal flow slides in the Dutch Province of Zeeland. Procs., 2nd International Conference on Soil Mechanics and Foundation Engineering, Rotterdam, Holland, 5:89–96

  • Lacerda WA (2007) Landslide initiation in saprolite and colluvium in southern Brazil: field and laboratory observations. Geomorphology 87:104–119

    Article  Google Scholar 

  • Larsen MC, Wieczorek GF (2006) Geomorphic effects of large debris flows and flash floods, northern Venezuela, 1999. Z. Geomorph. N.F. suppl.-vol. 145:147–175. Stuttgart, Berlin

    Google Scholar 

  • Lavigne F, Suwa H (2004) Contrasts between debris flows, hyperconcentrated flows and stream flows at a channel of Mount Semeru, East Java, Indonesia. Geomorphology 61:41–58

    Article  Google Scholar 

  • Lefebvre G (1995) Collapse mechanisms and design considerations for some partly saturated and saturated soils. In: Derbyshire E. et al. (eds) Genesis and properties of collapsible soils. Kluver Academic Publishers, pp.361–374. Nelson, J.D. and Miller, D.J., 1992.. Expansive Soils. John Wiley, NY

  • Leroueil S, Locat J, Vaunat J, Picarelli L, Lee H, Faure R (1996) Geotechnical characterization of slope movements. In: Senneset K (ed) Landslides. Balkema, Rotterdam 1:53–74

  • Leroueil S, Locat A, Eberhardt E, Kovacevic N (2012) Progressive failure in natural and engineered slopes. In: Eberhardt E, Froese C, Turner AK, Leroueil S (eds) Landslides and Engineered Slopes. Proceedings, 11th International Symposium on Landslides, Banff, 1:31, CRC Press, Boca Raton

  • Locat A, Leroueil S, Bernander S, Demers D, Jostad HP, Ouehb L (2011) Progressive failures in eastern Canadian and Scandinavian sensitive clays. Canadian Geotech J 48:1696–1712

    Article  Google Scholar 

  • Locat J, Lee HJ (2002) Submarine landslides: advances and challenges. Canadian Geotech J 39:193–212

    Google Scholar 

  • Londe P (1965) Une méthode d’analyse à trois dimensions de la stabilité d’une rive rocheuse. Annales des Ponts et Chaussées, Paris, pp 37–60

    Google Scholar 

  • Lutton RJ, Banks DC, Strohm WE (1978) Panama Canal slides. In: Voight B (ed) Rockslides and avalanches, vol. 2. Elsevier, Amsterdam

  • McKenna GT, Luternauer JL, Kostaschuk RA (1992) Large-scale mass-wasting events on the Fraser River delta front near Sandheads, British Columbia. Canadian Geotech J 29:151–156

    Article  Google Scholar 

  • McRoberts EC, Morgenstern NR (1974) The stability of thawing slopes. Canadian Geotech J 11:447–469

    Article  Google Scholar 

  • Matheson DS, Thomson S (1973) Geological implications of valley rebound. Can J Earth Sci 20:961–978

    Article  Google Scholar 

  • Meyerhof GG (1957) The mechanism of flow slides in cohesive soils. Géotechnique 7:1–9

    Article  Google Scholar 

  • Mencl V (1966) Mechanics of landslides with non-circular sliding surfaces with special reference to the Vaiont Slide. Gétechnique 16:329–337

    Article  Google Scholar 

  • Mollard JD, Janes JR (1984) Airphoto interpretation and the Canadian landscape. Energy, Mines and Resources, Toronto, Canada

    Google Scholar 

  • Montgomery DR, Dietrich WE (1994) A physically based model for the topoographic control on shallow landsliding. Water Resour Res 30:1153–1171

    Article  Google Scholar 

  • Morgenstern NR (1967) Submarine slumping and the initiation of turbidity currents. In: Marine Geotechnique, Richards AF (ed) University of Illinois Press: 189–220

  • Morgenstern NR (1992) The evaluation of slope stability: a 25 year perspective. In: Seed RB, Boulanger RW (eds) Stability and performance of slopes and embankments, ASCE Geotechnical Special Publication 31, 1:1–26

  • Morgenstern NR, Tschalenko JS (1967) Microscopic structures in kaolin subjected to direct shear. Géotechnique 17:309–328

    Article  Google Scholar 

  • Moser M (1996) The time-dependent behaviour of sagging slopes (talzuschübe). In: Senneset K (ed) Proceedings, 7th. International Symposium on Landslides. Balkema, Rotterdam, 2:809–814

  • Nemčok A (1982) Zosuvy v Slovenskych Karpatov (Landslides in the Slovak Carpathians). Slovak Academy of Sciences, Bratislava

    Google Scholar 

  • Nichol S, Hungr O (2002) Brittle and ductile toppling of large rock slopes. Canadian Geotech J 39:1–16

    Article  Google Scholar 

  • O’Loughlin CL (1972) A preliminary study of landslides in the coast mountains of southwestern British Columbia. In: Slaymaker HO, McPherson HJ (eds) Mountain geomorphology, geomorphological processes in the Canadian Cordillera. B.C. Geographical Ser. 14:101–11. Tantalus Research Limited, Vancouver, BC

  • Picarelli L, Olivares L, Comegna L, Damiano E (2008) Mechanical aspects of flow-like movements in granular and fine-grained soils. Rock Mech Rock Eng 41(1):179–197

    Article  Google Scholar 

  • Picarelli L, Russo C (2004) Mechanics of slow active landslides and interaction with man-made works. Landslides. Evaluation & Stabilization, 9th International Symposium on Landslides. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Rio de Janeiro (28 June −2 July, 2004), 1141–1176. A.A. Balkema, Rotterdam

  • Picarelli L, Urciuoli G, Ramondini L, Comegna L (2005) Main features of mudslides in tectonized highly fissured clay shales. Landslides 2(1):15–30

    Article  Google Scholar 

  • Pierson TC (1986) Flow behavior of chanellized debris flows, Mount St. Helens, Washington. In: Abrahams AD (ed) Hillslope processes. Allen and Unwin, Boston, pp 269–296

    Google Scholar 

  • Pierson TC (2005) Hyperconcentrated flow—transitional process between water flow and debris flow. In: Jakob M, Hungr O (eds) Debris flows and related phenomena, vol 8. Springer, Heidelberg, pp 159–196

    Chapter  Google Scholar 

  • Pierson TC, Janda RJ, Thouret J-C, Borrero CA (1990) Perturbation and melting of snow and ice by the 13 November 1985 eruption of Nevado del Ruiz, Colombia, and consequent mobiliztion, flow, and deposition of lahars. J Volcanol Geotherm Res 41:17–66

    Article  Google Scholar 

  • Plafker G, Ericksen GE (1978) Nevados Huascarán avalanches, Peru. In: Voight B (ed) Rockslides and avalanches. Elsevier, Amsterdam, 1:277–314

  • Postma G (1986) Classification for sediment gravity-flow deposits based on flow conditions during sedimentation. Geology 14:291–294

    Article  Google Scholar 

  • Roberts NJ, Evans SG (2013) The gigantic Seymareh (Saidmarreh) rock avalanche, Zagros Fold-Thrust Belt, Iran. J Geol Soc. doi:10.1144/jgs2012-090

    Google Scholar 

  • Revellino P, Grelle G, Donnarumma A, Guadagno FM (2010) Structurally controlled earth flows of the Benevento province (Southern Italy). Bul Eng Geol Environ 69:487–500

    Article  Google Scholar 

  • Sassa, K., 1985, The mechanism of debris flows. In: Proceedings, 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, 1:1173–1176

  • Sassa K (1999) Introduction. In: Sassa K (ed) Landslides of the world. Kyoto University Press, 3–18

  • Sassa K (2000) Mechanism of flows in granular soils. In: Proceedings of the International Conference of Geotechnical and Geological Engineering, GEOENG2000, Melbourne, 1:1671–1702

  • Saunders I, Young A (1983) Rates of surface processes on slopes, slope retreat and denudation. Earth Surface Processes and Landforms 8:473-501

    Google Scholar 

  • Savigny KW, Morgenstern NR (1986) Creep behaviour of undisturbed clay permafrost. Canadian Geotech J 23:515–527

    Article  Google Scholar 

  • Schumm SA, Chorley RJ (1964) The fall of threatening rock. Am J Sci 262:1041–1064

    Article  Google Scholar 

  • Schuster RL (Editor) (1986) Landslide dams. Geotechnical special publication no. 3, American Society of Civil Engineers, New York, 164p

  • Schuster RL, Highland LM (2001) Socioeconomic and environmental impacts of landslides in the western hemisphere. U.S. Geological Survey Open-File Report 01–0276

  • Schuster RL, Salcedo DA, Valenzuela L (2002) Overview of catastrophic landslides of South America in the twentieth century. In: Evans SG, DeGraff JV (eds) Catastrophic Landslides, Geological Society of America, Reviews in Engineering Geology XV, pp.1–34

  • Seed HB, Wilson SD (1967) The Turnagain heights Landslide, Anchorage, Alaska. ASCE Journal, 95-SM4:325–353

  • Seed HB, Lee KL, Idriss IM, Makdisi F (1973) Analysis of the slides in the San Fernando Dams during the earthquake of Feb. 9, 1971, Earthquake Engineering Research Center 73–2. University of California, Berkeley

    Google Scholar 

  • Sharpe CFS (1938) Landslides and related phenomena. Columbia University Press, NY, 1370

    Google Scholar 

  • Skempton AW, Hutchinson JN (1969) Stability of natural slopes and embankment foundations. In: Proceedings, 7th. International conference of soil mechanics and foundation engineering, Mexico, State of the Art volume, 291–340

  • Slingerland RL, Voight B (1979) Occurrences, properties, and predictive models of landslide-generated impulse waves, Developments in geotechnical engineering, rockslides and avalanches, Vol. 2, In: Voight B (ed), Elsevier, Amsterdam, pp. 317–397

  • Stini J (1910) Die Muren. Verlag der Wagner’shen Universitätsbuchhandlung, Innsbruck (Debris flows, English translation by M. Jakob and N. Skermer, 1997, EBA Engineering Consultants, Vancouver, Canada, 106p)

  • Strouth A, Eberhardt E (2009) Integrated back and forward analysis of rock slope stability and rockslide runout at Afternoon Creek, Washington. Canadian Geotech J 46:1116–1132

    Article  Google Scholar 

  • Swanston DN (1974) Slope stability problems associated with timber harvesting in mountainous regions of the Southwestern United States, U. S. Department of Agriculture, Forest Service General Technical Report PNW-021. U. S. Department of Agriculture, Washington, DC

  • Terzaghi K (1950) Mechanics of landslides (Berkey volume). Geological Society of America, New York, pp 83–124

    Google Scholar 

  • Terzaghi K (1957) Varieties of submarine slope failures, NGI Publication No. 25. Norwegian Geotechnical Institute, Oslo

  • Terzaghi K, Peck RB (1967) Soil mechanics in engineering practice, 2nd edn. Wiley, New York, 729p

    Google Scholar 

  • Turner AK, Schuster RL (2013) Rockfall: characterization and control. Transportation Research Board, Washington, D.C., 658p

  • Vallance JW (2005) Volcanic debris flows. In: Jakob M, Hungr O (eds) Debris flows and related phenomena, vol 10. Springer, Heidelberg, pp 247–271

    Chapter  Google Scholar 

  • VanDine DF (1985) Debris flows and debris torrents in the southern Canadian Cordillera. Canadian Geotech J 22:44–68

    Article  Google Scholar 

  • Varnes DJ (1954) Landslide types and processes. In: Eckel EB (ed) Landslides and engineering practice, special report 28. Highway research board. National Academy of Sciences, Washington, DC, pp. 20–47

  • Varnes DJ (1978) Slope movement types and processes. In: Schuster RL, Krizek RJ (eds) Landslides, analysis and control, special report 176: Transportation research board, National Academy of Sciences, Washington, DC., pp. 11–33

  • Varnes DJ, Savage W (eds.) (1996) The Slumgullion earth flow: a large-scale natural laboratory. U.S. Geological Survey Bulletin 2130

  • Wang B, Paudel B, Li H (2009) Retrogression characteristics of landslides in fine-grained permafrost soils, Mackenzie Valley, Canada. Landslides 6:121–127

    Article  Google Scholar 

  • Whalley WB (1984) Rockfalls. In: Brunsden D, Prior DB (eds) Slope instability. Wiley, New York, pp. 217–256

  • Zaruba Q, Mencl V (1969) Landslides and their control. Elsevier, New York, 238p

    Google Scholar 

  • Zhang D, Wang G (2007) Study of the 1920 Haiyuan earthquake-induced landslides in loess (China). Eng Geol 94:76–88

    Article  Google Scholar 

  • Zhang ZY, Chen SM, Tao LJ (2002) The sale mountain landslide, Gansu Province, China. In: Evans SG, DeGraff JV (eds) Catastrophic landslides, Geological Society of America, Reviews in Engineering Geology XV, pp. 149–173

  • Zischinsky U (1969) Uber Sackungen. Rock Mechanics 1:30–52

    Article  Google Scholar 

  • Zweifel A, Zuccalà D, Gatti D (2007) Comparison between computed and experimentally generated impulse waves. J Hydraulic Eng 133(2):208–216

    Article  Google Scholar 

Download references

Acknowledgments

The initiative aimed at revising the landslide classification was launched in 2006 by the former Chair of JTC-1, Professor Robin Fell. He took an active part in early discussions that led to the drafting of this paper. The latest draft of the paper benefitted from constructive suggestions provided by M. Church, J. Corominas, D. Cruden, A.P. Dykes, H. Einstein, P. Flentje, F. Guadagno, W. Lacerda, V. Merrien-Soukatcheff, R. Poisel, K. Sassa, G. Scarascia-Mugnozza, S. Löw, A. Strom, K. Turner, H.N. Wong, and Y.P Yin. An Associate Editor and two reviewers provided further constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oldrich Hungr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hungr, O., Leroueil, S. & Picarelli, L. The Varnes classification of landslide types, an update. Landslides 11, 167–194 (2014). https://doi.org/10.1007/s10346-013-0436-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-013-0436-y

Keywords

Navigation