Skip to main content
Log in

Ruinon landslide (Valfurva, Italy) activity in relation to rainfall by means of GBInSAR monitoring

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

The active Ruinon rockslide is located on the left bank of the Frodolfo River valley (Valfurva, Italian Alps) and is developed on the Confinale deep-seated gravitational slope deformation. Ruinon landslide is a major hazard for valley inhabitants in that rapid movement might dam the stream and create a debris flow. The landslide is strongly controlled by preexisting structural features and is believed to have been triggered by postglacial debuttressing. Ground-based radar interferometry has been used to map surface deformation over time of the entire unstable zone of Ruinon landslide with high spatial resolution and at a very high temporal acquisition rate (about five images per hour). The activity of the landslide shows strong periodicity, with summer and autumn accelerations and winter deceleration. From a correlation between the landslide acceleration and a class of rainfall event, we deduce the specific rainfall conditions that accelerate the instability of the landslide area. The study results suggest an improved tool for early warning of events of potentially catastrophic landslide instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Agliardi F, Crosta G, Zanchi A (2001) Structural constraints on deep-seated slope deformation kinematics. Eng Geol 59:83–102

    Article  Google Scholar 

  • Agostoni S, Laffi R, Sciesa E (1997) Centri abitati stabili della Provincia di Sondrio. Progetto SCAI. Regione Lombardia, Pubbl. CNR-GNDCI n.1580

  • Antonello G, Casagli N, Farina P, Leva D, Nico G, Sieber AJ, Tarchi D (2004) Ground-based SAR interferometry for monitoring mass movements. Landslides 1:21–28

    Article  Google Scholar 

  • Bonsignore G, Borgo A, Gelati R, Montrasio A, Potenza R, Pozzi R, Ragni U, Schiavinato G (1969) Note illustrative della Carta Geologica d’Italia, Foglio 8—Bormio. Servizio Geologico d’Italia, Roma

    Google Scholar 

  • Caine N (1980) The rainfall intensity–duration control of shallow landslides and debris flows. Geogr Ann Ser A 62:23–27

    Article  Google Scholar 

  • Canuti P, Siebert AJ, Tarchi D, Leva D, Farina P, Basso M, Casagli N, Del Piccolo A, Moretti S, Mannucci G, Tavelli S (2000) Applicazione dell’interferometria radar da terra per il controllo dei movimenti franosi: la frana del Ruinon in Valfurva (SO). Pubblicazione CNR-GNDCI n. 2543

  • Canuti P, Casagli N, Leva D, Moretti S, Sieber AJ, Tarchi D (2002a) Some applications of ground-based radar interferometry to monitor slope movements. Proc. International Symposium Landslide Risk Mitigation and Protection of Cultural and Natural Heritage Kyoto, Japan, 21–25 January 2002, 357–374

  • Canuti P, Casagli N, Moretti S, Leva D, Sieber AJ, Tarchi D (2002b) Landslide monitoring by using ground-based radar differential interferometry. In: Rybàr J, Stemberg J, Wegner P (eds) Landslides—First European Conference on Landslides. Balkema, Prague, pp 523–528

    Google Scholar 

  • Carnec C, Massonnet D, King C (1996) 2 examples of the use of SAR interferometry on displacement-fields of small spatial extent. Geophys Res Lett 23(24):3579–3582

    Article  Google Scholar 

  • Casagli N, Tibaldi A, Merri A, Del Ventisette C, Apuani T, Guerri L, Fortuny-Guasch J, Tarchi D (2009) Deformation of Stromboli Volcano (Italy) during the 2007 crisis by radar interferometry, numerical modeling and field structural data. J Volcanol Geotherm Res 182:182–200

    Article  Google Scholar 

  • Casagli N, Catani F, Del Ventisette C, Luzi G (2010) Monitoring, prediction, and early warning using ground-based radar interferometry. Landslides 7:291–301

    Article  Google Scholar 

  • Ceriani M, Carelli M (1999) Carta delle precipitazioni medie, minime e massime annue del territorio alpino lombardo (registrate nel periodo 1891–1990). Regione Lombardia technical report

  • Conti P (1997) La falda austroalpina dell’Ortles e l’evoluzione tettonica delle Dolomiti dell’Engadina (Svizzera-Italia). Mem Descr Carta Geol d’Italia 53:5–102

    Google Scholar 

  • Crosta GB, Agliardi F (2002) How to obtain alert velocity threshold for large rockslides. Phys Chem Earth A/B/C 36:1557–1565

    Article  Google Scholar 

  • Crosta GB, Agliardi F (2003) Failure forecast for large rock slides by surface displacement measurements. Can Geotech J 40:176–191

    Article  Google Scholar 

  • Crosta G, Agliardi F, Frattini P (1999) Convenzione di studio per effettuazione di verifiche di stabilità e la modellazione dello scendimento di masse rocciose potenzialmente instabili della frana del Ruinon. Settembre 1999

  • Curlander JC, McDonough RN (1991) Synthetic aperture radar: systems and signal processing. Wiley, New York, p 672

    Google Scholar 

  • Dei Cas L (2006) An example of data’s analysis coming from the geological monitoring: Ruinon landslide in upper Valtellina (Sndrio). J Tech Env Geol 3–4:5–19

    Google Scholar 

  • Del Piccolo A (1998) Frana del Ruinon (Valfurva, Sondrio): Aspetti geomorfologici e geotecnici. Tesi di laurea. Università degli Studi di Firenze, Dipartimento di Scienze della Terra

  • Froitzheim N, Schmid SM, Conti P (1994) Repeated change from crustal shortening to orogen-parallel extension in the Austroalpine units of Graubünden. Eclogae Geol Helv 87:559–612

    Google Scholar 

  • Gregnanin A, Valle M (1995) Deformation and metamorphism in Austroalpine Otztal-Stubai complex (part I): the basement. Boll Soc Geol It 114:373–392

    Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark CP (2008) The rainfall intensity–duration control of shallow landslides and debris flows: an update. Landslides 5:3–17. doi:10.1007/s10346-007-0112-1

    Article  Google Scholar 

  • Laffi R, Mazzoccola D, Presbitero M, Sciesa E (1998) An active landslide within a deep-seated gravitational slope deformation. Proceedings of the 8th International Association of Engineering Geologists (IAEG) Congress, Vancouver, B.C., A.A. Balkema, Rotterdam, pp 1217–1225, 2

    Google Scholar 

  • Luzi G, Pieraccini M, Mecatti D, Noferini L, Guidi G, Moia F, Atzeni C (2004) Ground-based radar interferometry for landslides monitoring: atmospheric and instrumental decorrelation sources on experimental data. IEEE Trans Geosci Remote Sens 42:2454–2466

    Article  Google Scholar 

  • Massonnet D, Feigl KL (1995) Discrimination of geophysical phenomena in satellite radar interferograms. Geophys Res Lett 22:1537–1540

    Article  Google Scholar 

  • Massonnet D, Rabaute T (1993) Radar interferometry: limits and potential. IEEE Trans Geosci Remote Sens 31:455–464

    Article  Google Scholar 

  • Massonnet D, Rossi M, Carmona C, Adragna F, Peltzer G, Feigl K, Rabaute T (1993) The displacement field of the Landers earthquake mapped by radar interferometry. Nature 364:138–142

    Article  Google Scholar 

  • Pipia L, Fabregas X, Aguasca A, Mallorqui J (2006) A comparison of different techniques for atmospheric artefact compensation in GBSAR differential acquisitions. In: Proceedings of IGARSS 2006, 3739–3742

  • Rudolf H, Tarchi D (1999) LISA: the linear SAR instrument. DG JRC, European Commission, Technical Note No. I.99.126. July 1999

  • Strozzi T (2005) Survey and monitoring of landslide displacements by means of L-band satellite SAR interferometry. Landslides 2:193–201

    Article  Google Scholar 

  • Tarchi D, Leva D, Sieber AJ (2000) SAR Interferometric techniques from ground based system for the, onitoring of landslides. Proc. IGARSS 2000

  • Tarchi D, Casagli N, Leva D, Moretti S, Sieber AJ (2003a) Monitoring landslide displacements by using ground-based SAR interferometry: application to the Ruinon landslide in the Italian Alps. J Geophys Res 108:2387–2401

    Article  Google Scholar 

  • Tarchi D, Casagli N, Fanti R, Leva D, Luzi G, Pasuto A, Pieraccini M, Silvano S (2003b) Landslide monitoring by using ground-based SAR interferometry: an example of application to the Tessina landslide in Italy. Eng Geol 68:15–30

    Article  Google Scholar 

  • Tarchi D, Antonello G, Casagli N, Farina P, Fortuny-Guasch J, Guerri L, Leva D, (2005) On the use of ground-based SAR interferometry for slope failure early warning: the Cortenova rock slide, Italy. In: Sassa et al (eds) Landslides, risk analysis and sustainable disaster management. Springer, 337–342

  • Zebker HA, Rosen PA, Goldstein RM, Gabriel A, Werner CL (1994) On the derivation of coseismic displacement fields using differential radar interferometry: the Landers earthquake. J Geophys Res 99:19617–19634

    Article  Google Scholar 

Download references

Acknowledgements

This work has been sponsored by the Valfurva municipality. Dr. Mannucci (ARPA Lombardia) is acknowledged for providing rainfall data, temperature data and in situ monitoring data. The authors are grateful to the Ellegi-Lisalab for providing the systems used for data acquisition and for the data processing, and to Dr. Luzi and Dr. Garfagnoli for the critical review of the manuscript. We also thank anonymous reviewers for the constructive revisions that helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Del Ventisette.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Del Ventisette, C., Casagli, N., Fortuny-Guasch, J. et al. Ruinon landslide (Valfurva, Italy) activity in relation to rainfall by means of GBInSAR monitoring. Landslides 9, 497–509 (2012). https://doi.org/10.1007/s10346-011-0307-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-011-0307-3

Keywords

Navigation