Skip to main content
Log in

Biofumigation with Fresh Manure or Brassicaceae Residuals could be a Promising Methyl Bromide Alternative in Head Lettuce Production

Biofumigation mit Frischmist oder Resten von Brassicaceae könnte in der Kopfsalatproduktion eine vielversprechende Alternative zu Methylbromid sein

  • Original Article
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

The current study investigates the natural alternatives of methyl bromide on head lettuce plants grown in greenhouse. Lettuce (Lactuca sativa L.) seedlings (cv. “Big Bell”) were treated with six different MBr alternatives which are, Biofumigation with fresh cow manure, fresh chicken manure, or Brassicaceae residuals plus Bio-Compost application (using disease suppressive compost) in comparison with chemical control with one of MBr chemical alternatives (Basamid) and finally negative control (which is the standard farmer treatment). Despite that chemical control with Basamid recorded the highest survival rate, biofumigation with fresh chicken manure gave the best head length, diameter, fresh weight, dry weight, total and marketable yield. Also, highest head quality characteristics such as TSS, SPAD reading, and nitrogen content were recorded with biofumigation with fresh chicken manure. Regardless of the superiority of Biofumigation with fresh chicken manure, Biofumigation with fresh cow manure or Brassicaceae residuals showed a better vegetative growth and quality parameters than farmer treatment (control), and they had significantly less effect than chemical control treatment. Bio-Compost fortified with Trichoderma harzianum and Bacillus subtilis (disease suppressive compost) recorded survival rate similar to biofumigation treatments but were significantly lower than chemical control treatment. Bio-Compost treatment did not result in a good result regarding total and marketable yield head fresh and dry weight. There was no detected significant effect of the studied treatments on stem diameter, L‑ascorbic acid (vitamin C), phosphorus and potassium content

Zusammenfassung

In der vorliegenden Studie werden die natürlichen Alternativen zu Methylbromid für Kopfsalatpflanzen in der Treibhauszucht untersucht. Kopfsalatsetzlinge (Lactuca sativa L.) (vgl. „Big Bell“) wurden mit sechs unterschiedlichen MBr-Alternativen behandelt, und zwar Biofumigation mit frischem Kuhmist, frischem Hühnermist oder Brassicaceae-Resten plus (Krankheiten supprimierender) Biokompost im Vergleich zur chemischen Kontrolle mit einer chemischen MBr-Alternative (Basamid) und schließlich einer Negativkontrolle (Standardbehandlung des Landwirts). Obwohl die chemische Kontrolle mit Basamid die höchste Überlebensrate brachte, ergab die Biofumigation mit frischem Hühnermist die besten Ergebnisse, was die Länge des Salatkopfs, den Durchmesser, das Frischgewicht, das Trockengewicht und den marktfähigen Ertrag angeht. Auch wurden mit Biofumigation mit frischem Hühnermist die besten Kopfsalatqualitätsmerkmale erzielt, wie Gesamtgehalt löslicher Feststoffe (Total Soluble Solids, TSS), Chlorophyllgehalt (SPAD-Test) und Stickstoffgehalt. Unabhängig von der Überlegenheit der Biofumigation mit frischem Hühnermist ergab die Biofumigation mit frischem Kuhmist oder Brassicaceae-Resten ein besseres vegetatives Wachstum und bessere Qualitätsparameter als die Behandlung des Landwirts (Kontrolle), allerdings war die Wirkung signifikant geringer als in der chemischen Kontrollbehandlung. Mit Trichoderma harzianum und Bacillus subtilis angereicherter Biokompost (Krankheiten supprimierender Kompost) brachte Überlebensraten ähnlich der Biofumigationsbehandlungen, aber signifikant geringer als bei der chemischen Kontrollbehandlung. Die Biokompostbehandlung führte zu keinen guten Ergebnissen, was den Gesamtertrag und den marktfähigen Ertrag sowie das Frisch- und das Trockengewicht der Salatköpfe angeht. Es gab keine nachgewiesene signifikante Auswirkung der untersuchten Behandlungen auf den Strunkdurchmesser oder den Gehalt an L‑Ascorbinsäure (Vitamin C), Phosphor oder Kalium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abd-El Moity TH (2001) A Complete system to produce high quality and quantity strawberries under organic farming conditions. Proceedings of International symposium Organic Agriculture, Agadir, 7.–10. Oct. 2001, pp 318–325p

    Google Scholar 

  • Abdel-Monaim MF, Abdel-Gaid MA, Zayan SA, Nassef DMT (2014) Enhancement of growth parameters and yield components in eggplant using antagonism of Trichoderma spp. against Fuasrium wilt disease. Int J Phytopathol 3(1):33–40

    Google Scholar 

  • Angus JF, Gardner PA, Kirkegaard JA, Desmarchelier JM (1994) Biofumigation: isothiocyanates released from Brassica roots inhibit growth of the take-all fungus. Plant Soil 162:107–112

    Article  CAS  Google Scholar 

  • Bello A, López JA, Sanz R, Escuer M, Herrero J (2000) Biofumigation and organic amendments. In: Regional workshop on methyl bromide alternatives for North Africa and southern European countries. UNEP, Nairobi, pp 113–141

    Google Scholar 

  • Brown PD, Morra MJ (1997) Control of soil-borne plant pests using glucosinolate-containing plants. Adv Agron 61:167–231

    Article  CAS  Google Scholar 

  • Bulluck LR, Ristaino JB (2002) Effects of organic and synthetic fertility amendments on southern blight, soil biological communities, and yield of processing tomatoes. Phytopathology 92(2):181–189

    Article  CAS  PubMed  Google Scholar 

  • Central Agency for Public Mobilization and Statistics of Egypt (2014) 2014 annual environmental statistics bulletin. P 99. http://www.capmas.gov.eg/Pages/Publications.aspx?page_id=5104&YearID=23043. Accessed 25. Sep 2016 (In Arabic)

    Google Scholar 

  • De Ceuster H, Pauwels F (1993) Soil disinfestations in the Belgian horticulture- a practice view. Lecture for the Fourth International Symposium on Soil Disinfestation, University of Leuven, 13. Sep 1993. De Ceuster Meststoffen, Sint-Katelijne-Waver

    Google Scholar 

  • Chapman HD, Pratt FP (1982) Determination of minerals by titration method. Methods of analysis for soils, plants and water, 2nd edn. Agriculture Division, California University, Oakland, pp 169–170

    Google Scholar 

  • Civerolo EL, Narang SK, Ross R, Vick KW, Greczy L (eds) (1993) Alternatives to methyl bromide: assessment of research needs and priorities. Proceedings from the USDA Workshop on Alternatives to Methyl Bromide. USDA, Arlington, VA, USA, 29. Jun–1. Jul 1993, pp 41–50.

    Google Scholar 

  • Cohen MF, Yamasaki H, Mazzola M (2005) Modification of microbial community structure, nitric oxide production and incidence of Rhizoctonia root rot in response to Brassica napus seed meal soil amendment. Soil Biol Biochem 37:1215–1227

    Article  CAS  Google Scholar 

  • Cole RA (1976) Isothiocyanates, nitriles, and thiocyanates as products of autolysis of glucosinolates in Cruciferae. Phytochem 15:759–762

    Article  CAS  Google Scholar 

  • Dumas Y, Dadomo M, Di Lucca G, Grolier P (2003) Review: effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. Jo Sci Food Agric 83:369–382

    Article  CAS  Google Scholar 

  • El-abd SO, Zaki MF, El-Mohamedy RSR, Riad GS (2013) Improving growth, fresh pod yield and quality, and controlling root rot and damping off of pea grown in sandy soil by integration effect of phosphorus fertilizer with biological seed treatments. Middle East J Agricul Res 2(1):8–15

    Google Scholar 

  • Fact Fish (2016) Egypt: Lettuce and chicory, production quantity in 2013. http://www.factfish.com/statistic-country/egypt/lettuce%20and%20chicory,%20production%20quantity. Accessed 27. Dec.2016

    Google Scholar 

  • FAO (1980) Soil and plant testing and analysis. FAO Soil Bull 38(1):250

    Google Scholar 

  • Fenwick GR, Heaney RK, Mullin WJ (1983) Glucosinolates and their breakdown products in food and food plants. Crit Rev Food Sci Nutr 18:123–201

    Article  CAS  PubMed  Google Scholar 

  • Flores P, Lacasa A, Fernández P, Hellin P, Fenoll J (2008) Impact of biofumigation with solarization on degradation of pesticides and heavy metal accumulation. J Environ Sci Health B 43:513–518. doi:10.1080/03601230802174698

    Article  CAS  PubMed  Google Scholar 

  • Ghoname AA, Riad GS, El-Bassiony AM, Hegazi AM, El-Mohamady RS (2015) Finding natural alternatives to methyl bromide in green house cantaloupe for yield, quality and disease control. Int J Chem Tech Res 8(9):84–92

    CAS  Google Scholar 

  • Gilreath JP, Jones JP, Overman AJ (1994) Soil-borne pest control in mulched tomato with alternatives to methyl bromide. Proc Fla State Hortic Soc 107:156–159

    Google Scholar 

  • Gomez KA, Gomez AA (1984) Statistical procedure for agricultural research, 2nd edn. Wiley, Hoboken, p 680

    Google Scholar 

  • Hafez SL, Haroutunian G, Sundararaj P (2000) Biofumigation and Basamid – An alternative integrated approach to methyl bromide for vegetable and fruit production in Lebanon. Proceedings Annual International Research Conference on Methyl Bromide Alternatives and Emissions Reductions, Orlando, 6. - 8. Nov 2002. ((http:// www.mbao.org/))

    Google Scholar 

  • Kirkegaard JA, Matthiessen JN (2004) Developing and refining the biofumigation concept. Agroind 3:233–239

    Google Scholar 

  • Kirkegaard JA, Sarwar M (1998) Biofumigation potential of brassicas. I. Variation in glucosinolate profiles of diverse field-grown brassicas. Plant Soil 201:71–89

    Article  CAS  Google Scholar 

  • Liu YJ, Tong YP, Zhu YG, Ding H, Smith FA (2006) Leaf chlorophyll readings as an indicator for spinach yield and nutritional quality with different nitrogen fertilizer applications. J Plant Nutr 29(7):1207–1217

    Article  CAS  Google Scholar 

  • Matthiessen JN, Kirkegaard JA (2006) Biofumigation and enhanced biodegradation: opportunity and challenge in soilborne pest and disease management. CRC Crit Rev Plant Sci 25:235–265. doi:10.1080/07352680600611543

    Article  CAS  Google Scholar 

  • Mattner SW, Porter IJ, Gounder RK, Shanks AL, Wren DJ, Allen D (2008) Factors that impact on the ability of biofumigants to suppress fungal pathogens and weeds of strawberry. Crop Prot 27:1165–1173. doi:10.1016/j.cropro.2008.02.002

    Article  CAS  Google Scholar 

  • Mian IH, Godoy G, Shelby RA, Rodriguez-Kabana R, Morgan-Jones G (1982) Chitin amendments for control of Meloidogyne arenaria in infested soil. Nematropica 12:71–84

    Google Scholar 

  • Miller M (1996) The technical and economic feasibility of replacing methyl bromide in developing countries. Friends of the Earth, Washington, p 173

    Google Scholar 

  • Neubauer C, Heitmann B, Muller C (2014) Biofumigation potential of Brassicaceae cultivars to Verticillium dahliae. Eur J Plant Path 140:341–352

    Article  Google Scholar 

  • Nielsen SS (1998) Food analysis, 2nd edn. Aspen Publishers, Gaithersburg, p 630

    Google Scholar 

  • Oka Y (2010) Mechanisms of nematode suppression by organic soil amendments – a review. Appl Soil Ecol 44:101–115. doi:10.1016/j.apsoil.2009.11.003

    Article  Google Scholar 

  • Ramirez-Villapudua J, Munnecke DE (1988) Effect of solar heating and soil amendments of cruciferous residues on Fusarium oxysporum f. sp. conglutinans and other organisms. Phytopathology 78(3):289–295

    Article  Google Scholar 

  • Rees HW, Chow TL, Zebarth B, Xing Z, Toner P, Lavoie J, Daigle JL (2014) Impact of supplemental poultry manure application on potato yield and soil properties on a loam soil in north-western New Brunswick. Can J Soil Sci 94:49–65. doi:10.4141/CJSS2013-009

    Article  CAS  Google Scholar 

  • Riad GS, Ghoname AA, Hegazi AM, Fawzy ZF, El-Nemr MA (2017) Cultivation in Rice Straw and Other Natural Treatments as an Eco-Friendly Methyl Bromide Alternative in Head Lettuce Production. Gesunde Pflanzen. doi:10.1007/s10343-017-0381-0

  • Rodriguez-Kabana R (1997) Alternatives to methyl bromide. In: Müller JJV (ed) Proceedings of 1st Brazilian meeting on alternatives to methyl bromide in agriculture, p 334

    Google Scholar 

  • Sances FV, Ingham ER (1997) Conventional and organic alternatives to methyl bromide on California strawberries. Compost Sci Util 5:23–37

    Article  Google Scholar 

  • Siddiquee S, Shafawati SN, Naher L (2017) Effective composting of empty fruit bunches using potential Trichoderma strains. Biotechnol Rep 13:1–7. doi:10.1016/j.btre.2016.11.001

    Article  Google Scholar 

  • Stark JC, Porter GA (2005) Potato nutrient management in sustainable cropping systems. Am J Potato Res 82:329–338

    Article  Google Scholar 

  • Toor RK, Savage GP, Heeb A (2006) Influence of different types of fertilizers on the major antioxidant components of tomatoes. J Food Compost Anal 19:20–27

    Article  CAS  Google Scholar 

  • Trankner A (1992) Use of agricultural and municipal organic wastes to develop suppressiveness to plant pathogens. In: Tjamos EC, Papavizas GC, Cook RJ (eds) Biological control of plant diseases. Plenum Press, New York, pp 35–42

    Chapter  Google Scholar 

  • Warton B, Matthiessen JN, Shackleton MA (2001) Glucosinolate content and isothiocyanate evolution-two measures of the biofumigation potential of plants. J Agric Food Chem 49:5244–5250

    Article  CAS  PubMed  Google Scholar 

  • Watanabe FS, Olsen SR (1965) Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Sci Soc Am Proc 29:677–678

    Article  CAS  Google Scholar 

  • Wei F, Passey T, Xu X (2016) Effects of individual and combined use of bio-fumigation-derived products on the viability of Verticillium dahlia microsclerotia in soil. Crop Prot 79:170–176

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdalla A. Ghoname.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghoname, A.A., Riad, G.S., El-Bassiony, A.M.M. et al. Biofumigation with Fresh Manure or Brassicaceae Residuals could be a Promising Methyl Bromide Alternative in Head Lettuce Production. Gesunde Pflanzen 69, 29–37 (2017). https://doi.org/10.1007/s10343-017-0384-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-017-0384-x

Keywords

Schlüsselwörter

Navigation