Skip to main content
Log in

In vitro-Untersuchung einer möglichen fungistatischen Wirkung des Sekrets der Weinbergschnecke (Helix pomatia, Helix aspersa) auf Botrytis cinerea

In vitro study of a possible fungistatic effect of the body surface mucus from garden snail (Helix pomatia, Helix aspersa) on plant pathogen Botrytis cinerea

  • Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Zusammenfassung

Zur Bekämpfung des Grauschimmels Botrytis cinerea werden im Weinbau kulturtechnische Maßnahmen ergriffen und spezielle Botrytizide eingesetzt. Derartige Fungizide sind im ökologischen Weinbau nicht zugelassen. Das Auftreten von spezifischen und multi-drug-resistenten-Botrytisstämmen (MDR) unterstreicht die Relevanz, alternative Behandlungssysteme zu erforschen. Die Beobachtung eines Winzers in einem deutschen Weinberg deutete darauf hin, dass Schneckensekret möglicherweise fungistatische Eigenschaften besitzt. Daher wurde in vitro Weinbergschneckensekret, ein Lektin (Helix aspersa Agglutinin, HAA) der Weinbergschnecke sowie Bakterienisolate aus dem Schneckensekret auf ihre Wirkung gegen B. cinerea getestet. Zur Identifizierung einer spezifischen Bindungsstelle auf der Botrytis-Zellwand (N-Acetyl-Galactosamin; GalNAc), wurde Fluoresceinisothiocyanat (FITC) markiertes Helix-Lektin (Helix pomatia Agglutinin, HPA) eingesetzt. Ein Agardiffusionstest und ein in-vitro-Keimungstest konnten keine fungistatische Wirkung des Sekrets, des Helix-Lektins oder der Bakterienisolate feststellen. Die Lektin-histochemische Untersuchung zeigte, je nach Nährmedium und Alter des Pilzes, nur teilweise eine Fluoreszenz der Pilzzellwand.

Abstract

In viticulture practices, technical cultivation practices and application of fungicides, specifically named botryticides, are important to control the grey mold, Botrytis cinerea. While conventional disease control is based upon applications of fungicides, options for controlling of grey mold in organic viticulture is limited. Resistance of the fungus and multiple drug resistance (MDR) require development of new disease control strategies. In vivo observation showed a reduced grey mold infection of grapes if covered with slime from garden snail. Hence, snail slime, commercial lectin (Helix aspersa agglutinin, HAA) from garden snail and bacteria isolated from snail slime were tested for antifungal or antagonistic activities against B. cinerea in vitro. Furthermore, fluorescein isothiocyanate labeled Helix-lectin (FITC-HPA) was used to detect terminal N‑acetyl-galactosamine residues (GalNAc) on fungal cell wall surface. In our experiments, neither slime (after sterile filtration) nor commercial lectin nor slime bacteria were found to affect spore germination and mycelial growth. Binding of lectin was found to depend on media and age of the fungal mycelium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  • Bowman S, Free S (2006) The structure and synthesis of the fungal cell wall. Bioessays 28(8):799–808. doi:10.1002/bies.20441

    Article  PubMed  Google Scholar 

  • Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (2006) Zugelassene Pflanzenschutzmittel, Auswahl für den ökologischen Landbau nach der Verordnung (EG) Nr. 834/2007, Januar 2016. Bundesamt für Verbraucherschutz und Lebensmittelsicherheit, Braunschweig

  • Cantu D, Greve C, Powell J, Labavitch A (2009) Characterization of the cell wall of the ubiquitous plant pathogen Botrytis cinerea. Mycol Res 113(12):1396–1403. doi:10.1016/j.mycres.2009.09.006

    Article  PubMed  CAS  Google Scholar 

  • Carlini CR, Grossi-de-Sá MF (2002) Plant toxic proteins with insecticidal properties, A review on their potentialities as bioinsecticides. Toxicon 40(11):1515–1539. doi:10.1016/S0041-0101(02)00240-4

    Article  PubMed  CAS  Google Scholar 

  • Crook EM, Johnston IR (1962) The Qualitative Analysis of the Cell Walls of Selected Species of Fungi. Biochem J 83(2):325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dolashka P, Dolashka A, Velkova L, Stevanovic S, Molin L, Traldi P, Velikova R, Voelter W (2015) Bioactive compounds isolated from garden snails. J Bio Sci Biotechnol 147–155

  • Fountain DW (1985) The lectin-like activity of Helix aspersa mucus. Comp Biochem Physiol 80(4):795–800. doi:10.1016/0305-0491(85)90463-8

    Google Scholar 

  • Hammarström S, Kabat EA (1969) Purification and characterization of a blood-group A reactive Hemagglutinin from the snail Helix pomatia and a study of its combining site. Biochemistry 8(7):2696–2705. doi:10.1021/bi00835a002

    Article  PubMed  Google Scholar 

  • Hammarström S, Westöö A, Björk J (1972) Subunit structure of Helix pomatia A Hemagglutinin. Scand J Immun 1(4):295–309. doi:10.1111/j.1365–3083.1972.tb03295.x

    Article  Google Scholar 

  • Iguchi SM, Akawa T, Matsumoto JJ (1981) Antibacterial Activity of Snail Mucus Mucin. Comp Biochem Physiol 72(3):571–574. doi:10.1016/0300-9629(82)90123-2

    Article  Google Scholar 

  • Ishiyama I, Uhlenbruck G (1972) Further studies on the specificity of the anti-A agglutinin from Helix pomatia. Comp Biochem Physiol 42(2):269–276. doi:10.1016/0300-9629(72)90108-9

    Article  CAS  Google Scholar 

  • Krämer J (2007) Lebensmittel-Mikrobiologie, 5. Aufl. Ulmer, Stuttgart

    Google Scholar 

  • Kubota Y, Watanabe Y, Otsuka H, Tamiya T, Tsuchiya T, Matsumoto JJ (1985) Purification and characterization of an antibacterial factor from snail mucus. Comp Biochem Physiol 82(2):345–348. doi:10.1016/0742-8413(85)90173-2

    Article  CAS  Google Scholar 

  • Liener IE, Sharon N, Goldstein IJ (1986) The Lectins, properties, functions, and applications in biology and medicine. Mol Nutr 32(2):212–213. doi:10.1002/food.19880320251

    Google Scholar 

  • Lima-Neto RG, Beltrão EIC, Oliveira PC, Neves RP (2009) Adherence of Candida albicans and Candida parapsilosis to epithelial cells correlates with fungal cell surface carbohydrates. Mycoses 45(1):23–29. doi:10.1111/j.1439-0507.2009.01757.x

    Google Scholar 

  • Liu C, Sheng J, Chen L, Zheng Y, Lee DY, Yang Y, Xu M, Shen L (2015) Biocontrol Activity of Bacillus subtilis Isolated from Agaricus bisporus Mushroom Compost Against Pathogenic Fungi. J Agric Food Chem 63(26):6009–6018. doi:10.1021/acs.jafc.5b02218.

    Article  PubMed  CAS  Google Scholar 

  • Maachia B, Rafik E, Chérif M, Nandal P, Mohapatra T, Bernard P (2015) Biological control of the grapevine diseases „grey mold“ and „powdery mildew“ by Bacillus B27 and B29 strains. Indian J Exp Biol 53(2):109–115

    PubMed  Google Scholar 

  • Mirelman D, Galun E, Sharon N, Lotan R (1975) Inhibition of fungal growth by wheat germ agglutinin. Nature 256:414–416. doi:10.1038/256414a0

    Article  PubMed  CAS  Google Scholar 

  • Nakajima M, Akutsu K (2014) Virulence factors of Botrytis cinerea. J Gen Plant Pathol 80(1):15–23

    Article  CAS  Google Scholar 

  • Paiva PMG, Napoleão TH, Sá RA, Coelho LCBB (2012) Insecticide activity of Lectins and secondary metabolites. Adv Integr Pest Manag. doi:10.5772/29785

    Google Scholar 

  • Paul B, Chereyathmanjiyil A, Masih I, Chapuis L, Benoit A (1998) Biological control of Botrytis cinerea causing grey mould disease of grapevine and elicitation of stilbene phytoalexin (resveratrol) by a soil bacterium. Fems Microbiol 165(1):65–70. doi:10.1016/S0378-1097(98)00259-6

    Article  CAS  Google Scholar 

  • Petatán-Sagahón I, Anducho-Reyes MA, Silva-Rojas HV, Arana-Cuenca A, Tellez-Jurado A, Cárdenas-Álvarez IO, Mercado-Flore Y (2011) Isolation of Bacteria with Antifungal Activity against the Phytopathogenic Fungi Stenocarpella maydis and Stenocarpella macrospora. Int J Mol Sci 12(9):5522–5537. doi:10.3390/ijms12095522

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peumans WJ, Van Damme EJ (1995) Lectins as Plant Defense Proteins. Plant Physiol 109(2):347–352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raspor P, Miklič-Milek D, Avbelj M, Čadež N (2010) Biocontrol of Grey Mould Disease on Grape Caused by Botrytis cinerea with Autochthonous Wine Yeasts. Food Technol Biotechnol 48(3):336–343

    CAS  Google Scholar 

  • Renwrantz LR (1983) Involment of Agglutinins (Lectins) in invertebrate defense reactions, The immune-biological importance of carbohydrate specific binding molecules. Dev Comp Immunol 7(4):603–608. doi:10.1016/0145-305X(83)90074-5

    Article  CAS  Google Scholar 

  • Renwrantz LMA, Möck ARE (2008) Molecular properties of the partially SDS-resistant lectin from the albumen gland of Helix pomatia and demonstration of lectin-related molecules on the surface of H. pomatia haemocytes. J Mulluscan Stud 75(1):41–49. doi:10.1093/mollus/eyn037

    Article  Google Scholar 

  • Sadfi-Zouaoui N, Essghaier B, Hajlaoui MR, Fardeau ML, Cayaol JL, Ollivier B, Boudabous A (2007) Ability of Moderately Halophilic Bacteria to Control Grey Mould Disease on Tomato Fruits. J Phytopathol 156:42–52. doi:10.1111/j.1439-0434.2007.01329.x

    Google Scholar 

  • Sanchez J‑F, Lesca J, Chazalet V, Audfray A, Gagnon J, Alvarez R (2006) Biochemical and Structural Analysis of Helix pomatia Agglutinin. A Hexameric Lectin With A Novel Fold. J Biol Chem 281(29):20171–20180. doi:10.1074/jbc.M603452200

    Article  PubMed  CAS  Google Scholar 

  • Schlumbaum A, Mauch F, Vögeli U, Boller T (1986) Plant chitinases are potent inhibitors of fungal growth. Nature 324(6095):365–367

    Article  CAS  Google Scholar 

  • Schneider R, Schneider C (persönliche Mitteilung): Beobachtung von Schneckensekret überzogenen Keltertrauben und deren verminderten Grauschimmelbefall, Weingut R. & C. Schneider, Endingen a. K., Deutschland

  • Staats M, Van Baarlen P, Van Kan JAL (2004) Molecular phylogeny of the plant pathogenic genus Botrytis and the evolution of host specificity. Mol Biol Evol 22(2):333–346. doi:10.1093/molbev/msi020

    Article  PubMed  CAS  Google Scholar 

  • Topolovec-Pintarić S (2009) Resistance risk to new botryticides in Botrytis cinerea Pers. Fr. in winegrowing areas in Croatia. J Plant Dis Prot 116(2):73–77

    Article  Google Scholar 

  • Uivarosan G, Sbanca M, Jianu I (2011) Quantification of mucoproteins (glycoproteins) from snails mucus, Helix aserspaand Helix pomatia. J Agroaliment Protechnol 17(4):410–413

    Google Scholar 

  • Wanchoo A, Lewis MW, Keyhani NO (2009) Lectin mapping reveals stage-specific display of surface carbohydrates in in vitro and haemolymph-derived cells of the entomopathogenic fungus Beauveria bassiana. Microbiology 155(9):3121–3133. doi:10.1099/mic.0.029157-0.

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Yue F, Song X, Song L (2015) Maternal immune transfer in mollusc. Dev Comp Immunol 48(2):354–359. doi:10.1016/j.dci.2014.05.010.

    Article  PubMed  CAS  Google Scholar 

  • Williamson B, Tudzynsćki B, Tudzynski P, Van Kan JAL (2007) Botrytis cinerea: the cause of grey mould disease. Mol Plant Pathol 8(5):561–580. doi:10.1111/j.1364-3703.2007.00417.x

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria Schneider.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schneider, V., Lücke, FK. & Birringer, M. In vitro-Untersuchung einer möglichen fungistatischen Wirkung des Sekrets der Weinbergschnecke (Helix pomatia, Helix aspersa) auf Botrytis cinerea. Gesunde Pflanzen 68, 89–97 (2016). https://doi.org/10.1007/s10343-016-0364-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-016-0364-6

Schlüsselwörter

Keywords

Navigation