Skip to main content

Advertisement

Log in

Coupling fire behaviour modelling and stand characteristics to assess and mitigate fire hazard in a maritime pine landscape in Portugal

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Silvicultural models are often developed and applied without due consideration of fire modelling. Yet, this information is important for designing treatment options to lower fire hazard. We used the FlamMap software to assess potential fire behaviour under extreme fire weather conditions within a 10,881-ha maritime pine landscape in central Portugal, the Leiria National Forest. Models describing fire hazard and providing information to assess potential benefits of stand-level fuel treatments were developed based on fire behaviour simulation. These models use as predictors stand variables and may assist forest managers in identifying hazardous areas in pine forests. Models were built from a database comprising 94,207 unique combinations of variables to detect significant fire-landscape interactions between stand-level features and fire behaviour. A set of compatible models that express crown fire likelihood and tree mortality were fitted using logistic regression. Additionally, classification tree analysis was used to model the type of fire, fire suppression difficulty, and tree mortality. The results highlight the potential of this methodology to explain the influences of fuel- and stand-related variables on fire hazard. This approach allowed the identification of straightforward discrimination rules to implement fuel treatments that prevent crown fires, enhancing the effectiveness of fire suppression and thereby reducing fire damage in fire-prone forest stands. Results further allow developing specific hazard-reduction prescriptions based on common forest metrics without resorting to advanced simulation modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • AFN (2010) Inventário Florestal Nacional. Portugal Continental. IFN5, 2005–2006. Autoridade Florestal Nacional. Lisboa, Portugal (in Portuguese)

  • Agee J (1996) The influence of forest structure on fire behaviour. In: Proceedings of the 17th annual forest vegetation management conference, Redding, CA, USA, 16–18 Jan, pp 52–68

  • Agee JK, Skinner CN (2005) Basic principles of forest fuel reduction treatments. For Ecol Manag 211(1–2):83–96

    Article  Google Scholar 

  • Agee JK, Bahro B, Finney MA, Omi PN, Sapsis DB, Skinner CN, Wagtendonk JW, Weatherspoon CP (2000) The use of shaded fuelbreaks in landscape fire management. For Ecol Manag 127:55–66

    Article  Google Scholar 

  • Alexander ME, Cruz MG (2012) Graphical aids for visualizing Byram’s fireline intensity in relation to flame length and crown scorch height. For Chron 88:185–190

    Article  Google Scholar 

  • Alexander ME, Cruz MG (2013) Are the applications of wildland fire behaviour models getting ahead of their evaluation again? Environ Model Softw 41:65–71

    Article  Google Scholar 

  • Alexander ME, Lanoville RA (1989) Predicting fire behaviour in the black spruce-lichen woodland fuel type of western and northern Canada. For. Can., North. For. Cent., Edmonton, Alberta, and Gov. Northwest Territ., Dep. Renewable Resour., Territ. For. Fire Cent., Fort Smith, Northwest Territories

  • Alvarez A, Gracia M, Vayreda J, Retana J (2012) Patterns of fuel types and crown fire potential in Pinus halepensis forests in the Western Mediterranean Basin. For Ecol Manag 270:282–290

    Article  Google Scholar 

  • Beck JA (1995) Equations for the forest fire behaviour tables. CALMScience 1(3):325–348

    Google Scholar 

  • Botequim B, Garcia-Gonzalo J, Marques S, Ricardo A, Borges JG, Tomé M, Oliveira MM (2013) Developing wildfire risk probability models for Eucalyptus globulus stands in Portugal. ifor-Biogeosciences For 6:217–227. doi:10.3832/ifor0821-006

    Article  Google Scholar 

  • Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Chapman & Hall, New York

    Google Scholar 

  • Burrows N, Ward B, Robinson A (2000) Behaviour and some impacts of a large wildfire in the Gnangara maritime pine (Pinus pinaster) plantation, Western Australia. CALM Sci 3:251–260

    Google Scholar 

  • Burnham KP, Anderson DR (2003) Model selection and multi model inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Byram GM (1959) Combustion of forest fuels. In: Davis KP (ed) ‘Forest fire: control and use’. pp 61–89

  • Calbk ME, White D, Kiester AR (2002) Assessment of spatial autocorrelation in empirical models of ecology. In: Scott JM, Heglund PJ, Morrison ML, Haufler JB, Raphael MG, Wall WA, Samson FB (eds) Predicting species occurrences: issues of scale and accuracy. Island Press, Washington, pp 429–440

    Google Scholar 

  • Castedo-Dorado F, Gómez-Vázquez I, Fernandes PM, Crecente-Campo F (2012) Shrub fuel characteristics estimated from overstory variables in NW Spain pine stands. For Ecol Manag 275:130–141

    Article  Google Scholar 

  • Castro FX, Tudela A, Sebastià MT (2003) Modeling moisture content in shrubs to predict fire risk in Catalonia (Spain). Agric For Meteorol 116:49–59

    Article  Google Scholar 

  • Cruz MG (2007) Guia Fotográfico para identificação de combustíveis florestais - Região Centro, Centro de Estudos sobre Incêndios Florestais, associação para o desenvolvimento da Aerodinâmica Industrial versão 2, Junho, Coimbra. ADAI (in Portuguese)

  • Cruz MG, Alexander ME (2010) Assessing crown fire potential in coniferous forests of western North America: a critique of current approaches and recent simulation studies. Int J Wildland Fire 19:377–398

    Article  Google Scholar 

  • Cruz MG, Fernandes PM (2008) Development of fuel models for fire behaviour prediction in maritime pine (P. pinaster Ait) stands. Int J Wildland Fire 17:194–204

    Article  Google Scholar 

  • Cruz MG, Alexander ME, Wakimoto HR (2003) Assessing canopy fuel stratum characteristics in crown fire prone fuel types of western North America. Int J Wildland Fire 12(1):39

    Article  Google Scholar 

  • Cruz MG, Alexander ME, Wakimoto RH (2004) Modeling the likelihood of crown fire occurrence in conifer forest stands. For Sci 50(5):640–658

    Google Scholar 

  • Cruz MG, Butler BW, Alexander ME (2006) Predicting the ignition of crown fuels above a spreading surface fire. Part II: model evaluation. Int J Wildland Fire 15:61–72

    Article  Google Scholar 

  • Cruz MG, Alexander ME, Fernandes PM (2008) Development of a model system to predict wildfire behaviour in pine plantations. Aust For 71:113–121. doi:10.1080/00049158.2008.10676278

    Article  Google Scholar 

  • Cumming SG (2001) Forest type and wildfire in the Alberta boreal mixedwood: what do fires burn? Ecol Appl 11:97–110

    Article  Google Scholar 

  • De’ath G, Fabricius E (2000) Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81:3178–3192

    Article  Google Scholar 

  • Faias MP (2009) Analysis of Biomass Expansion Factors for the most important tree species in Portugal. Dissertação de Mestrado de Engenharia Florestal e dos Recursos Naturais. ISA, Lisboa (in Portuguese)

  • Fernandes PM (2009) Combining forest structure data and fuel modelling to classify fire hazard in Portugal. Ann For Sci 66:415

    Article  Google Scholar 

  • Fernandes PM, Loureiro C (2013) Fine fuels consumption and CO2 emissions from surface fire experiments in maritime pine stands in northern Portugal. For Ecol Manag 291:344–356

    Article  Google Scholar 

  • Fernandes PM, Rigolot E (2007) The fire ecology and management of maritime pine (Pinus pinaster Ait.). For Ecol Manag 241:1–13

    Article  Google Scholar 

  • Fernandes PM, Loureiro C, Botelho HS (2004) Fire behaviour and severity in a maritime pine stand under differing fuel conditions. Ann For Sci 61:537–544

    Article  Google Scholar 

  • Fernandes PM, Vega JA, Jimenez E, Rigolot E (2008) Fire resistance of European pines. For Ecol Manag 256:246–255

    Article  Google Scholar 

  • Fernandes P, Gonçalves H, Loureiro C, Fernandes M, Costa T, Cruz M, Botelho HS (2009) Modelos de combustível florestal para Portugal. In: Procedings Congresso Florestal Nacional, Açores (in Portuguese)

  • Fernandes P, Luz A, Loureiro C (2010) Changes in wildfire severity from maritime pine woodland to contiguous forest types in the mountains of northwestern Portugal. For Ecol Manag 260:883–892

    Article  Google Scholar 

  • Fernandes PM, Fernandes M, Loureiro C (2015) Post-fire live residuals of maritime pine plantations in Portugal: structure, burn severity, and fire recurrence. For Ecol Manag 347:170–179

    Article  Google Scholar 

  • Fernández-Alonso JM, Alberdi I, Álvarez-González JG, Vega JA, Cañellas I, Ruiz-González AD (2013) Canopy fuel characteristics in relation to crown fire potential in pine stands: analysis, modelling and classification. Eur J For Res 132:363–377

    Article  Google Scholar 

  • Ferreira L, Constantino M, Borges J, Garcia-Gonzalo J (2012) A stochastic dynamic programming approach to optimize short-rotation coppice systems management scheduling: an application to eucalypt plantations under wildfire risk in Portugal. For Sci 58(4):353–365. doi:10.5849/forsci.10-084

    Google Scholar 

  • Ferreira L, Constantino M, Borges JG (2014) A stochastic approach to optimize Maritime pine (Pinus pinaster Ait.) stand management scheduling under fire risk: an application in Portugal. Ann Oper Res 219(1):359–377. doi:10.1007/s10479-011-0845z

    Article  Google Scholar 

  • Finney MA (2004) FARSITE: fire area simulator-model development and evaluation. Research Paper RMRS-RP-4 Revised. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Ogden, UT

  • Finney MA (2006) An overview of FlamMap fire modeling capabilities. In: Fuel management—how to measure success: conference proceedings RMRS-P-41. 28–30 March, Portland, Oregon, pp 213–220

  • Finney MA, Andrews PL (1999) FARSITE—a program for fire growth simulation. Fire Manag Notes 59(2):13–15

    Google Scholar 

  • Ganio LM, Progar RA (2017) Mortality predictions of fire-injured large Douglas-fir and ponderosa pine in Oregon and Washington, USA. For Ecol Manag 390:47–67

    Article  Google Scholar 

  • Garcia-Gonzalo J, Marques S, Borges JG, Botequim B, Oliveira MM, Tomé J, Tomé M (2011) A three-step approach to post-fire mortality modelling in Maritime pine (Pinus pinaster Ait) stands for enhanced forest planning in Portugal. Forestry 84(2):197–206. doi:10.1093/forestry/cpr006

    Article  Google Scholar 

  • Garcia-Gonzalo J, Palma JHN, Freire JPA, Tome M, Mateus R, Rodriguez LCE, Bushenkov V, Borges JG (2013) A decision support system for a multi stakeholder’s decision process in a Portuguese National Forest. For Syst 22(2):359–373

    Google Scholar 

  • Garcia-Gonzalo J, Pukkala T, Borges JG (2014) Integrating fire risk in stand management scheduling. An application to Maritime pine stands in Portugal. Ann Oper Res 219:379–395. doi:10.1007/s10479-011-0908-1

    Article  Google Scholar 

  • Gómez-Vázquez I, Fernandes PM, Arias-Rodil M, Barrio-Anta M, Castedo-Dorado F (2014) Using density management diagrams to assess crown fire potential in Pinus pinaster Ait. stands. Ann For Sci 71:473–484. doi:10.1007/s13595-013-0350-4

    Article  Google Scholar 

  • González JR, Pukkala T, Palahí M (2005a) Optimising the management of Pinus sylvestris L. stand under risk of fire in Catalonia (northeast of Spain). Ann For Sci 62:493–501

    Article  Google Scholar 

  • González JR, Palia M, Pukkala T (2005b) Integrating fire risk considerations in forest management planning in Spain—a landscape level perspective. Landsc Ecol 20:957–970

    Article  Google Scholar 

  • González JR, Palahí M, Trasobares A, Pukkala T (2006) A fire probability model for forest stands in Catalonia (north-east Spain). Ann For Sci 63:169–176

    Article  Google Scholar 

  • González JR, Trasobares A, Palahí M, Pukkala T (2007) Predicting stand damage and tree survival in burned forests in Catalonia (North-East Spain). Ann For Sci 64:733–742

    Article  Google Scholar 

  • He HS, Mladenoff DJ (1999) spatially explicit and stochastic simulation of forest landscape fire disturbance and succession. Ecology 80:81–99

    Article  Google Scholar 

  • Hosmer DW, Lemeshow S (2000) Applied logistic regression. Wiley series in probability and mathematical statistics, 2nd edn. Wiley, New York

    Book  Google Scholar 

  • ICNF (2013) Áreas dos usos do solo e das espécies florestais de Portugal continental. Resultados preliminares. Instituto da Conservação da Natureza e das Florestas, Lisboa, Portugal, p 34 (in Portuguese)

  • Jactel H, Nicoll BC, Branco M, González-Olbararria JR, Grodzki W, Langstrom B, Moreira F, Netherer S (2009) The influences of forest stand management on biotic and abiotic risks of damage. Ann For Sci 66(701):1–18. doi:10.1051/forest/2009054

    Google Scholar 

  • Jiménez E, Vega JA, Ruiz-González AD, Guijarro M, Álvarez-González JG, Madrigal J, Cuiñas P, Hernando C, Fernández-Alonso JM (2013) Carbon emissions and vertical pattern of canopy fuel consumption in three Pinus pinaster Ait. active crown fires in Galicia (NW Spain). Ecol Eng 54:202–209

    Article  Google Scholar 

  • Keyes CR, O’Hara KL (2002) Quantifying stand targets for silvicultural prevention of crown fires. West J Appl For 17(2):101–109

    Google Scholar 

  • Marques S, Garcia-Gonzalo J, Borges JG, Botequim B, Oliveira MM, Tomé J, Tomé M (2011) Developing post-fire Eucalyptus globulus stand damage and tree mortality models for enhanced forest planning in Portugal. Silva Fenn 45(1):69–83

    Article  Google Scholar 

  • Martín A, Botequim B, Oliveira TM, Ager A, Pirotti F (2016) Temporal optimization of fuel treatment design in blue gum (Eucalyptus globulus) plantations. For Syst 25(2):eRC09

    Google Scholar 

  • Mateus P, Fernandes PM (2014) Forest fires in Portugal: dynamics, causes and policies. In: Reboredo F (ed) Forest context and policies in Portugal, present and future challenges. World forests, vol 19. Springer, Berlin, pp 219–236

    Google Scholar 

  • Moreira F, Vaz P, Catry FX, Silva JS (2009) Regional variations in wildfire susceptibility of land-cover types in Portugal: implications for landscape management to minimize fire hazard. Int J Wildland Fire 18:563–574

    Article  Google Scholar 

  • Noble IR, Gill AM, Bary GAV (1980) McArthur’s fire-danger meters expressed as equations. Aust J Ecol 5(2):201–203

    Article  Google Scholar 

  • Omi PN, Martinson EJ (2004) Effectiveness of thinning and prescribed fire in reducing wildfire severity. In: Murphy DD, Stine PA (eds) Proceedings of the Sierra Nevada science symposium: science for management and conservation. General technical report PSW-193. Albany, California, USDA Forest Service, pp 87–92

  • Peterson DL, Ryan KC (1986) Modeling postfire conifer mortality for long-range planning. Environ Manag 10:797–808

    Article  Google Scholar 

  • Peterson DL, Johnson MC, Agee JK, Jain TB, McKenzie D, Reinhardt ED (2005) Forest structure and fire hazard in dry forests of the Western United States. Gen. Tech. Rep. PNW-GTR-628. U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, OR

  • Plucinski MP, Sullivan AL, Rucinski CJ, Prakash M (2017) Improving the reliability and utility of operational bushfire behaviour predictions in Australian vegetation. Environ Model Softw 91:1–12

    Article  Google Scholar 

  • Pollet J, Omi PN (2002) Effect of thinning and prescribed burning on crown fire severity in ponderosa pine forests. Int J Wildland Fire 11(1):1–10

    Article  Google Scholar 

  • SAS Institute Inc (2008) SAS/STAT user’s guide, version, 8th edn. SAS Institute Inc., Cary

    Google Scholar 

  • Scarascia-Mugnozza G, Oswald H, Piussi P, Radoglou K (2000) Forests of Mediterranean region: gaps in knowledge and research needs. For Ecol Manag 132:97–109

    Article  Google Scholar 

  • Scott JH, Reinhardt ED (2001) Assessing crown fire potential by linking models of surface and crown fire behaviour. Research Paper RMRS–29. USDA Forest Service, Rocky Mountain Research Station, Fort Collins, Colorado, USA

  • Stocks BJ, Alexander ME, Wotton BM, Stefner CN, Flannigan MD, Taylor SW, Lavoie N, MasonJA Hartley GR, Maffe ME, Dalrymple GN, Blake TW, Cruz MG, Lanoville RA (2004) Crown fire behaviour in a northern jack pine-black spruce forest. Can J For Res 34:1548–1560

    Article  Google Scholar 

  • Tapias R, Climent J, Pardos JA, Gil L (2004) Life histories of Mediterranean pines. Plant Ecol 171:53–68

    Article  Google Scholar 

  • Torres CL, Ordóñez-Alonso C, Bravo Oviedo F (2004) Desarrollo de ecuaciones de copas para Pinus pinaster Ait. en el Sistema Ibérico Meridional. Actas de la reunión de Modelización Forestal. Sociedad Española de Ciencias Forestales,UE, Forest fire in southern europe. Report I. Cuad. Soc. Esp. Cien. 18:173–177, ISSN 1575-2410

  • Van Wagner CE (1973) height of crown scorch in forest fire. Can J For Res 3:373–378

    Article  Google Scholar 

  • Van Wagner CE (1977) Conditions for the start and spread of crown fire. Can J For Res 7:23–34

    Article  Google Scholar 

  • Van Wagner CE (1987) Development and structure of the Canadian forest fire weather index system. In: Forestry technical report, vol 35. Canadian Forestry Service, Ottawa, p 37

  • Vega J, Jimenez E, Vega D, Ortiz L, Pérez JR (2011) Pinus pinaster Ait. tree mortality following wildfire in Spain. For Ecol Manag 261(12):2232–2242

  • Viedma O, Quesada J, Torres I, Santis AD, Moreno JM (2014) Fire severity in a large fire in a Pinus pinaster forest is highly predictable from burning conditions, stand structure, and topography. Ecosystems 1–14

  • Whitehead RJ, Russo GL, Hawkes BC, Taylor SW, Brown BN, Barclay HJ, Benton RA (2006) Effect of a spaced thinning in mature lodgepole pine on within-stand microclimate and fine fuel moisture content. In: Andrews PL, Butler BW (eds) Fuels management—how to measure success: conference proceedings. USDA For. Serv., Proc. RMRS-P-41, Fort Collins, CO, pp 523–536

Download references

Acknowledgements

This research was supported by several projects funded by the Portuguese Science Foundation: the simulation of fire behaviour in the framework of the Project “Decision support tools for integrating fire and forest management planning” (PTDC/ AGR-CFL/64146/2006) and Project FIRE-ENGINE “Flexible Design of Forest Fire Management Systems” (MIT/FSE/0064/2009), and the fire behaviour models in the frame of SADRI “Models and Decision Support Systems for Addressing Risk and Uncertainty in Forest Planning” (PTDC/AGR-FOR/4526/2012). The study was also partially supported by INTEGRAL “Future Oriented Integrated Management of European Forest Lands” (Collaborative Project No. 282887) which is funded by the European Union Seventh Framework Programme (FP7-PEOPLE-2010-IRSES), and by the SuFoRun project “Models and decision SUpport tools for integrated FOrest policy development under global change and associated Risk and Uncertainty” funded by the European Union’s H2020 research and innovation program under the Marie Sklodowska-Curie Grant Agreement No. 691149. Researcher Jordi Garcia-Gonzalo was supported by a “Ramon y Cajal” research contract from the MINECO (Ref. RYC-2013-14262) and has received funding from CERCA Programme/Generalitat de Catalunya. The authors gratefully acknowledge the Portuguese Science Foundation for funding the Ph.D. scholarship of Brigite Botequim (SFRH/BD/44830/2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Botequim.

Additional information

Communicated by Lluís Coll.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 25 kb)

Supplementary material 2 (DOCX 150 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Botequim, B., Fernandes, P.M., Garcia-Gonzalo, J. et al. Coupling fire behaviour modelling and stand characteristics to assess and mitigate fire hazard in a maritime pine landscape in Portugal. Eur J Forest Res 136, 527–542 (2017). https://doi.org/10.1007/s10342-017-1050-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-017-1050-7

Keywords

Navigation