Skip to main content

Advertisement

Log in

Effect of hybridization in the firs: artificial hybridization may lead to higher survival rate

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Hybridization experiments among fir (Abies) species contribute to clarification of both crossability and evolutionary relationships of organisms at least from the second half of the nineteenth century. The main aim of our study was to find possible effects of hybridization on survival rate and two growth parameters (height and diameter at the breast height) of fir trees at various levels of complexity in the Czech Republic. We compared (1) pure species consisting of seven fir taxa, (2) open pollinated hybrids comprising of twenty-one hybrid progenies of Greek Fir (A. cephalonica), Cilician Fir (A. cilicica) and Algerian Fir (A. numidica) and (3) artificial complex hybrids of Korean Fir (A. koreana) × (A. cilicica × A. cephalonica). For our analyses, we used combination of so-called traditional statistical methods and spatial modelling. Our results revealed that a higher level of hybridization and introgression may lead to a higher survival rate and furthermore, that neglecting of spatial autocorrelation in randomized complete block design might lead to wrong conclusions—because our analyses on height showed contrasting results between traditional and spatial modelling. The results of this study appear to be a good message for scientists dealing with forest tree breeding and facing a lack of confidence by practice. They might be also a good news for forestry practice, where foresters face high mortality during afforestation, e.g. in extreme environmental conditions. Our study highlighted that neglecting spatial autocorrelation could possibly lead to wrong conclusions in studies of similar spatial scale level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Birchler JA, Auger DL, Riddle NC (2003) In search of the molecular basis of heterosis. Plant Cell 15:2236–2239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruce AB (1910) The Mendelian theory of heredity and the augmentation of vigor. Science 32:627–628

    Article  CAS  PubMed  Google Scholar 

  • Christersson L (1996) Future research on hybrid aspen and hybrid poplar cultivation in Sweden. Biomass Bioenergy 11:109–113

    Article  Google Scholar 

  • Cressie NAC (1993) Statistics for spatial data. Wiley, New York

    Google Scholar 

  • Critchfield WB (1988) Hybridization of the California firs. For Sci 34:139–151

    Google Scholar 

  • Crow JF (1948) Alternative hypotheses of hybrid vigor. Genetics 33:477–487

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dale MR, Fortin MJ (2002) Spatial autocorrelation and statistical tests in ecology. Ecoscience 9:162–167

    Article  Google Scholar 

  • Dan Z, Liu P, Huang W, Zhou W, Yao G et al (2014) Balance between a higher degree of heterosis and increased reproductive isolation: a strategic design for breeding inter-subspecific hybrid rice. PLoS ONE 9(3):e93122. doi:10.1371/journal.pone.0093122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dormann CF, McPherson JM, Araujo MB, Bivand R, Bolliger J et al (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609–628

    Article  Google Scholar 

  • Dungey HS (2000) Pine hybrids—a review of their use performance and genetics. For Ecol Manag 148:243–258

    Article  Google Scholar 

  • Dutilleul P, Legendre P (1993) Spatial heterogeneity against heteroscedasticity: an ecological paradigm versus a statistical concept. Oikos 66:152–171

    Article  Google Scholar 

  • Dutkowski GW, Costa-Silva J, Gilmour AR, Lopez GA (2002) Spatial analysis methods for forest genetic trials. Can J For Res 32:2201–2214

    Article  Google Scholar 

  • Frutos A, Olea PP, Vera R (2007) Analyzing and modelling spatial distribution of summering lesser kestrel: the role of spatial autocorrelation. Ecol Model 200:33–44

    Article  Google Scholar 

  • Fu YB, Clarke GPY, Namkoong G, Yanchuk AD (1998) Incomplete block designs for genetic testing: statistical efficiencies of estimating family means. Can J For Res 28:977–986

    Article  Google Scholar 

  • Fu YB, Yanchuk AD, Namkoong G (1999a) Spatial patterns of tree height variations in a series of Douglas-fir progeny trials: implications for genetic testing. Can J For Res 29:714–723

    Article  Google Scholar 

  • Fu YB, Yanchuk AD, Namkoong G (1999b) Incomplete block designs for genetic testing: some practical considerations. Can J For Res 29:1871–1878

    Article  Google Scholar 

  • Galgóci M, Kormuťák A, Čamek V, Gömöry D (2008) Growth characteristics of selected interspecific Fir (Abies sp.) hybrids. In: Symposium proceedings ‘‘Dendrological Days in Mlýňany Arboretum SAS 2008: autochthonous and allochthonous woody plants in the changing environment”, p 83 (in Slovak)

  • Galgóci M, Kormuťák A, Kuna R (2009) Anatomical structure of needles of Greek Fir (Abies cephalonica Loud.) hybrids. In: Progress in biology 2009—proceedings of the international scientific conference 5. Biological Days 8th–9th October 2009, Nitra, pp 43–47 (in Slovak)

  • Galgóci M, Kormuťák A, Braná M (2010) Anatomical structure of needles of interspecific hybrids Abies cephalonica × Abies numidica and Abies cephalonica × Abies nordmanniana. In: Young Scientists 2010—proceedings dedicated to Ph.D. students and young researchers Nitra, pp 48–52 (in Slovak)

  • Galgóci M, Manka P, Kormuťák A, Kuna R, Boleček P, Gömöry D (2011) Height growth of selected interspecific hybrid fir seedlings (Abies sp.). In: Symposium proceedings ‘‘dendrological days in Arboretum Mlýňany SAS’’, pp 53–59 (in Slovak)

  • Galgóci M, Maňka P, Kormuťák A, Čamek V, Gömöry D (2012) Differentiation of selected interspecific fir hybrids (Abies sp.) according to the length of primary branches and number of secondary branches. In: Symposium proceedings “Dendrological Days in Mlýňany Arboretum SAS 2012: recent results from woody plants research and application”, p 35 (in Slovak)

  • Galgóci M, Maňka P, Kormuťák A, Čamek V, Gömöry D (2013) Differentiation of some interspecific hybrids of firs (Abies sp.) according to the length of primary branches and number of their secondary branches. Folia Oecol 40:176–180

    Google Scholar 

  • Greguss L (1988) Interspecific hybridization of fir. Replacement of the fading Silver fir. Lesn For J 34:797–808 (in Slovak)

    Google Scholar 

  • Greguss L (1992) Evaluation of early growth of interspecific hybrids of firs on the example of permanent testing plot Drieňova. Lesn For J 38:223–238 (in Slovak)

    Google Scholar 

  • Greguss L (1995) Hybridization of forest trees under the changing environmental conditions. Lesn For J 41:531–540 (in Slovak)

    Google Scholar 

  • Hamann A, Namkoong G, Koshy MP (2002) Improving precision of breeding values by removing spatially autocorrelated variation in forestry field experiments. Silvae Genet 51:210–215

    Google Scholar 

  • Hawley GJ, DeHayes DH (1985) Hybridization among several North American firs. I. Crossability. Can J For Res 15:42–49

    Article  Google Scholar 

  • Horak J (2013) Effect of site level environmental variables, spatial autocorrelation and sampling intensity on arthropod communities in an ancient temperate lowland woodland area. PLoS ONE 8(12):e81541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnsen KH, Major JE, Loo J, McPhee D (1997) Negative heterosis not apparent in 22-year-old hybrids of Picea mariana and Picea rubens. Can J Bot 76:434–439

    Google Scholar 

  • Joyce DG, Ford R, Fu YB (2002) Spatial patterns of tree height variations in a black spruce farm-field progeny test and neighbors-adjusted estimations of genetic parameters. Silvae Genet 51:13–18

    Google Scholar 

  • Klaehn FU, Winieski JA (1962) Interspecific hybridization in the genus Abies. Silvae Genet 11:130–142

    Google Scholar 

  • Kobliha J, Škorpík P, Stejskal J, Češka P (2014) Hybridization results using the hybrid Abies cilicica × Abies cephalonica. Acta Sci Pol Hortoru 13(4):23–31

    Google Scholar 

  • Koenig WD (1999) Spatial autocorrelation of ecological phenomena. Trends Ecol Evol 14:22–26

    Article  PubMed  Google Scholar 

  • Kormuťák A (1985) Study on species hybridization within the genus Abies. Veda, Bratislava

    Google Scholar 

  • Kormuťák A, Vooková B (2001) Early growth characteristics of some Abies hybrids. In: Müller-Starck G, Schubert R (eds) Genetic response of forest systems to changing environmental conditions. Kluwer Academic Publishers, Dodrecht, pp 331–337

    Chapter  Google Scholar 

  • Kormuťák A, Galgóci M, Vooková B, Gömöry D (2008) Contribution to fertility assessment of Fir interspecific (Abies sp.) hybrids. In: Symposium proceedings ‘‘Dendrological Days in Mlýňany Arboretum SAS 2008: autochthonous and allochthonous woody plants in the changing environment”, pp 205–213 (in Slovak)

  • Kormuťák A, Galgóci M, Vooková B, Salaj T, Gömöry D (2010) Longevity of Abies pollen under deep-freeze storage. Acta Pruhoniciana 94:35–38

    Google Scholar 

  • Kormuťák A, Vooková B, Salaj T, Čamek V, Galgóci M, Maňka P, Boloček P, Kuna R, Kobliha J (2012) Crossability relationships between noble, manchurian and caucasian firs. Acta Biol Crac Bot 54:1–4

    Google Scholar 

  • Kormuťák A, Vooková B, Čamek V, Salaj T, Galgóci M, Maňka P, Boleček P, Kuna R, Kobliha J, Lukáčik I, Gömöry D (2013) Artificial hybridization of some Abies species. Plant Syst Evol 299:1175–1184

    Article  Google Scholar 

  • Kormuťák A, Boleček P, Galgóci M, Vooková B, Gömöry D (2014) Seasonal dynamics in antioxidant enzymes activity of European silver Fir (Abies alba Mill.) interspecific hybrids. In: Proceedings “Influence of abiotic and biotic stressors on plant properties” 2014 Praha, Zvolen, pp 93–96 (in Slovak)

  • Kuhn I (2007) Incorporating spatial autocorrelation may invert observed patterns. Divers Distrib 13:66–69

    Google Scholar 

  • Li B, Howe GT, Wu R (1996) Developmental factors responsible for heterosis in aspen hybrids (Populus tremuloides × P. tremula). Tree Physiol 18:29–36

    Article  Google Scholar 

  • Lia Y, Lia Y, Maa X et al (2013) Contributions of parental inbreds and heterosis to morphology and yield of single-cross maize hybrids in China. Crop Sci 54:76–88

    Article  Google Scholar 

  • Littell RC, Milliken GA, Stroup WW, Wolfinger RD (1996) Spatial variability. SAS Institute, Cary, pp 303–330

    Google Scholar 

  • Liu TS (1971) A monograph of the genus Abies. National Taiwan University, Taipei

    Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, Inc., Sunderland

    Google Scholar 

  • Magnussen S (1990) Application and comparison of spatial models in analyzing tree-genetics field trials. Can J For Res 20:536–546

    Article  Google Scholar 

  • Manley SAM, Ledig FT (1979) Photosynthesis in black and red spruce and their hybrid derivatives: ecological isolation and hybrid adaptive inferiority. Can J Bot 57:305–314

    Article  Google Scholar 

  • Mao JF, Li Y, Wang XR (2009) Empirical assessment of the reproductive fitness components of the hybrid pine Pinus densata on the Tibetan Plateau. Evol Ecol 23:447–462

    Article  Google Scholar 

  • Mejnartowicz L (1999) Evidence for long-term heterosis phenomenon on the Alnus incana × glutinosa F1 hybrids. Silvae Genet 48:100–103

    Google Scholar 

  • Mergen F, Gregoire TC (1988) Growth of the hybrid fir trees in Connecticut. Silvae Genet 37:118–124

    Google Scholar 

  • Mergen F, Burley J, Simpson BA (1964) Artificial hybridization in Abies. Der Züchter 34:242–251

    Google Scholar 

  • Patterson HD, Thompson R (1971) Recovery of interblock information when block sizes are unequal. Biometrika 58:545–554

    Article  Google Scholar 

  • Rangel TF, Diniz-Filho JAF, Bini LM (2010) SAM: a comprehensive application for spatial analysis in macroecology. Ecography 33:46–50

    Article  Google Scholar 

  • Sargent CS (1898) The silva of North America. Houghton and Mifflin and Co., Boston

    Google Scholar 

  • Silva JC, Dutkowski GW, Gilmour AR (2001) Analysis of early tree height in forest genetic trials is enhanced by including a spatially correlated residual. Can J For Res 31:1887–1893

    Article  Google Scholar 

  • Tobler WR (1970) A computer movie simulating urban growth in the Detroit region. Econ Geogr 46:234–240

    Article  Google Scholar 

  • Tullus A, Tullus H, Vares A, Kanal A (2007) Early growth of hybrid aspen (Populus × wettsteinii Hämet-Ahti) plantations on former agricultural lands in Estonia. For Ecol Manag 245:118–129

    Article  Google Scholar 

  • Venu RC, Ma J, Jia Y, Liu G, Jia MH et al (2014) Identification of candidate genes associated with positive and negative heterosis in rice. PLoS ONE 9(4):e95178. doi:10.1371/journal.pone.0095178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White TL, Adams WT, Neale DB (2007) Forest genetics. Cabi International, Wallingford

    Book  Google Scholar 

  • Zas R (2006) Iterative kriging for removing spatial autocorrelation in analysis of forest genetic trials. Tree Genet Genomes 2:177–185

    Article  Google Scholar 

Download references

Acknowledgments

Support from the National Agency for Agriculture Research (NAZV; Grant QJ1320013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Stejskal.

Additional information

Handling Editor: Dr. Christian Ammer.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stejskal, J., Horák, J. & Typta, J. Effect of hybridization in the firs: artificial hybridization may lead to higher survival rate. Eur J Forest Res 135, 1097–1105 (2016). https://doi.org/10.1007/s10342-016-0996-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-016-0996-1

Keywords

Navigation