Skip to main content

Advertisement

Log in

Variability in growth of trees in uneven-aged stands displays the need for optimizing diversified harvest diameters

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

This study presents economically optimal management of uneven-aged mixed mountain forests that takes into account tree growth variability. We divided 9846 silver fir (Abies alba), beech (Fagus sylvatica), and spruce (Picea abies) trees measured on 898 forest inventory plots in the Snežnik and Leskova dolina management units (4905 ha, Dinaric mountains, Slovenia) into three growth classes (slow-, medium-, and fast-growing trees) to simulate optimal forest management over a period of 100 years with respect to changing tree growth, stand density, diameter distribution, and tree species composition. We developed a density-dependent and stage and growth-structured matrix transition model which—simultaneous to the long-term stand dynamics projection—scheduled optimal harvesting to maximize the net present value using a nonlinear approach. The ecology of tree species was considered by using tree species-specific and stand-density and diameter-dependent logistic functions for ingrowth, transition, and mortality. The model projected a shift in tree species composition from fir-dominated to beech-dominated forests within 100 years. A change from harvesting slow- and fast-growing trees as if they all had medium growth to growth-sensitive harvesting increased the net revenue and maintained the uneven-aged stand structure. Optimal harvest diameters varied among growth classes, time periods, and tree species according to the economic maturity of individual trees and ranged from 12 (pre-commercial thinning) to 72 cm (target diameter). The simulation highlights the potential of improved bio-economic models for increasing yield from uneven-aged forests and scheduling optimal management regimes with multiple objectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Armstrong CW (2007) A note on the ecological–economic modelling of marine reserves in fisheries. Ecol Econ 62:242–250

    Article  Google Scholar 

  • Biolley HE (1922) Die Forsteinrichtung: auf der Grundlage der Erfahrung und insbesondere das Kontrollverfahren. Attinger Verlag

  • Boncina A (2011) History, current status and future prospects of uneven-aged forest management in the Dinaric region: an overview. For Int J For Res 84:467–478

    Google Scholar 

  • Brienen RJW, Zuidema PA (2007) Incorporating persistent tree growth differences increases estimates of tropical timber yield. Front Ecol Environ 5:302–306

    Article  Google Scholar 

  • Bright G, Price C (2000) Valuing forest land under hazards to crop survival. For Int J For Res 73:361–370

    Google Scholar 

  • Bühl A (2008) SPSS 16, Einführung in die moderne Datenanalyse. Pearson Studium, München

    Google Scholar 

  • Bulte EH, van Kooten GC (1999) Meta population dynamics and stochastic bioeconomic modeling. Ecol Econ 30:293–299

    Article  Google Scholar 

  • Buongiorno J, Michie BR (1980) A matrix model of uneven-aged forest management. For Sci 26:609–625

    Google Scholar 

  • Buongiorno J, Dahir S, Lu H, Lin C (1994) Tree size diversity an economic returns in uneven-aged forest stands. For Sci 40:83–104

    Google Scholar 

  • Buongiorno J, Peyron JL, Houllier L, Bruciamacchie M (1995) Growth and management of mixed-species, uneven-aged forests in the French jura: implications for economic returns and tree diversity. For Sci 41:397–429

    Google Scholar 

  • Buongiorno J, Halvorsen EA, Bollandsås OM, Gobakken T, Hofstad O (2012) Optimizing management regimes for carbon storage and other benefits in uneven-aged stands dominated by Norway spruce, with a derivation of the economic supply of carbon storage. Scand J For Res 27:460–473

    Article  Google Scholar 

  • Caswell H (2006) Matrix population models. Construction, analysis, and interpretation, 2nd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Collet C, Chenost C (2006) Using competition and light estimates to predict diameter and height growth of naturally regenerated beech seedlings growing under changing canopy conditions. For Int J For Res 79:489–502

    Google Scholar 

  • Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) Nature 387:253–260

  • Cotta H (1828) Anweisung zum Waldbau. Carl Heinrich Edmund von Berg

  • Didion M, Kupferschmid AD, Wolf A, Bugmann H (2011) Ungulate herbivory modifies the effects of climate change on mountain forests. Clim Change 109:647–669

    Article  Google Scholar 

  • Dieter M (2001) Land expectation values for spruce and beech calculated with Monte Carlo modelling techniques. For Policy Econ 2:157–166

    Article  Google Scholar 

  • Fabrika M, Ďurský J (2005) Algorithms and software solution of thinning models for SIBYLA growth simulator. J For Sci 51:431–445

    Google Scholar 

  • Faustmann M (1849) Berechnung des Werthes, welchen Waldboden, sowie noch nicht haubare Holzbestände für die Waldwirtschaft besitzen. Allgemeine Forst- und Jagdzeitung 15:441–451

    Google Scholar 

  • Ficko A, Poljanec A, Boncina A (2011) Do changes in spatial distribution, structure and abundance of silver fir (Abies alba Mill.) indicate its decline? For Ecol Manag 261:844–854

    Article  Google Scholar 

  • Gayer K (1886) Der gemischte Wald: seine Begründung und Pflege, insbesondere durch Horst- und Gruppenwirtschaft. Paul Parey, Berlin

    Google Scholar 

  • Griess VC, Knoke T (2011) Growth performance, wind-throw, and insects: meta-analyses of parameters influencing performance of mixed-species stands in boreal and northern temperate biomes. Can J For Res 41:1141–1159

    Article  Google Scholar 

  • Griess VC, Knoke T (2013) Bioeconomic modelling of mixed Norway spruce—European beech stands: Economic consequences of considering ecological effects. Eur J For Res 132:511–522

    Article  Google Scholar 

  • Griess VC, Acevedo R, Härtl F, Staupendahl K, Knoke T (2012) Does mixing tree species enhance stand resistance against natural hazards? A case study for spruce. For Ecol Manag 267:284–296

    Article  Google Scholar 

  • Hanewinkel M, Cullmann DA, Schelhaas MJ, Nabuurs GJ, Zimmermann NE (2013) Climate change may cause severe loss in the economic value of European forest land. Nat Clim Change 3:203–207

    Article  Google Scholar 

  • Hanewinkel M, Kuhn T, Bugmann H, Lanz A, Brang P (2014) Vulnerability of uneven-aged forests to storm damage. For Int J For Res 87:525–534

    Google Scholar 

  • Hao Q, Meng F, Zhou Y, Wang J (2005) Determining the optimal selective harvest strategy for mixed-species stands with a transition matrix growth model. New For 29:207–219

    Article  Google Scholar 

  • Jübner D (2006) Ökonomische Modellanalyse zur Bewirtschaftung eines Plenterwaldes am Beispiel einer Versuchsfläche im Emmental, Schweiz. Diplomarbeit TU Dresden

  • Klemperer WD (1996) Forest resource economics and finance. McGraw Hill, New York

    Google Scholar 

  • Knoke T (2003) Predicting red heartwood formation in beech trees (Fagus sylvatica L.). Ecol Model 169:295–312

    Article  Google Scholar 

  • Knoke T (2012) The economics of continuous cover forestry. In: Pukkala T, von Gadow K (eds) Continuous cover forestry, vol 23, 2nd edn. Springer, Dordrecht, pp 167–193

    Chapter  Google Scholar 

  • Knoke T, Seifert T (2008) Integrating selected ecological effects of mixed European beech-Norway spruce stands in bioeconomic modeling. Ecol Model 210:487–498

    Article  Google Scholar 

  • Knoke T, Ammer C, Stimm B, Mosandl R (2008) Admixing broadleaved to coniferous tree species—a review on yield, ecological stability and economics. Eur J For Res 127:89–101

    Article  Google Scholar 

  • Kolmanic S, Guid N, Diaci J (2014) ForestMAS—A single tree based secondary succession model employing Ellenberg indicator values. Ecol Model 279:100–113

    Article  Google Scholar 

  • Kraft G (1884) Beiträge zur Lehre von den Durchforstungen, Schlagstellungen und Lichtungshieben. Klindworth Verlag, Hannover

    Google Scholar 

  • Kunstler G, Allen RB, Coomes DA, Canham CD, Wright EF (2011) SORTIE/NZ model development. Landcare Research Manaaki Whenua New Zealand Ltd 2011

  • Kunstler G, Allen RB, Coomes DA, Canham CD, Wright EF (2013) Sustainable management, earthquake disturbances, and transient dynamics: modelling timber harvesting impacts in mixed-species forests. Ann For Sci 70:287–298

    Article  Google Scholar 

  • Leibundgut H (1986) Ziele und Wege der naturnahen Waldwirtschaft. Schweizerische Zeitschrift für Forstwesen 137:245–250

    Google Scholar 

  • Lin CR, Buongiorno J, Vasievich M (1996) A multi-species, density-dependent matrix growth model to predict tree diversity and income in northern hardwood stands. Ecol Model 91:193–211

    Article  Google Scholar 

  • Lindenmayer D, Burgmann M (2005) Practical conservation biology. Csiro Publishing. ISBN: 0643090894

  • Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolström M, Lexer MJ, Marchetti M (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manag 259:698–709

    Article  Google Scholar 

  • Lindo Systems Inc (2012) “What’s Best”® version 12.0.1.5

  • Linkevičius E (2014) Single Tree Level Simulator for Lituanian Pine Forests. Dissertation Technische Universität Dresden. Institute of Forest Growth and Forest Computer Sciences. Tharandt. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-150330

  • Lotka AJ (1931) The structure of a growing population. Hum Biol 3:459–493

    Google Scholar 

  • Mendoza G, Önal H, Soetjipto W (2000) Optimising tree diversity and economic returns from managed mixed forests in Kalimantan, Indonesia. J Trop For Sci 12:298–319

    Google Scholar 

  • Merganič J, Fabrika M (2011) Modelling natural regeneration in SYBILA tree growth simulator. Deutscher Verband Forstlicher Versuchsanstalten Sektion Ertragskunde. Beiträge zur Jahrestagung 6 bis 8. Juni 2011 Cottbus, herausgegeben von J. Nagel

  • Microsoft Corporation (2010) Microsoft Excel®

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Island Press, Washington, DC

    Google Scholar 

  • Möhring B, Rüping U, Leefken G, Ziegeler M (2006) Die Annuität—ein “missing link” der Forstökonomie. Allgemeine Forst- und Jagdzeitung 177:21–29

    Google Scholar 

  • Monserud RA, Sterba H, Hasenauer H (1997) The single-tree stand growth simulator PROGNAUS. In: Teck R, Moeur M, Adams J (eds) Proceedings: forest vegetation simulator conference. Fort Collins, CO, USDA Forest Service Intermountain Research Station, Intermountain Research Station INT-GTR-373 pp 50–56

  • Müller M (2009) Ein Matrix-Modell zur Prognose der Entwicklung ungleichaltriger Mischbestände im Stadtwald München. Diplomarbeit TU München

  • Neuner S, Albrecht A, Cullmann D, Engels F, Griess VC, Hahn A, Hanewinkel M, Härtl F, Kölling C, Staupendahl K, Knoke T (2015) Survival of Norway spruce remains higher in mixed stands under a dryer and warmer climate. Glob Change Biol 21:935–946

    Article  Google Scholar 

  • Pretzsch H (2000) From yield tables to simulation models for pure and mixed stands. J For Sci 46:97–113

    Google Scholar 

  • Pretzsch H, Schütze G (2009) Transgressive overyielding in mixed compared with pure stands of Norway spruce and European beech in Central Europe: evidence on stand level and explanation on individual tree level. Eur J For Res 128:183–204

    Article  Google Scholar 

  • Pretzsch H, Biber P, Dursky J (2002) The single tree-based stand simulator SILVA: construction, application and evaluation. For Ecol Manag 162:3–21

    Article  Google Scholar 

  • Pretzsch H, Biber P, Schütze G, Bielak K (2013) Changes of forest stand dynamics in Europe. Facts from long-term observational plots and their relevance for forest ecology and management. For Ecol Manag 316:65–77

    Article  Google Scholar 

  • Prodan M (1949) Die theoretische Bestimmung des Gleichgewichtszustandes im Plenterwalde. Schweizische Zeitschrift für. Forstwesen 100:81–99

    Google Scholar 

  • Rämö J, Tahvonen O (2014) Economics of harvesting uneven-aged forest stands in Fennoscandia. Scand J For Res 29:777–792

    Article  Google Scholar 

  • Roessiger J, Griess VC, Knoke T (2011) May risk aversion lead to near-natural forestry? A simulation study. For Int J For Res 84:527–537

    Google Scholar 

  • Roessiger J, Griess VC, Härtl F, Clasen C, Knoke T (2013) How economic performance of a stand increases due to decreased failure risk associated with the admixing of species. Ecol Model 255:58–69

    Article  Google Scholar 

  • Saje R, Saražin J, Šeber R (2014) Žledolomi v slovenskih gozdovih. Gozdarski vestnik 72:204–210

    Google Scholar 

  • Schober R (1953) Ertragstafel und Forsteinrichtung. Forstwissenschaftliches Centralblatt 72:1–13

    Article  Google Scholar 

  • Schröder J, Röhle H, Münder K (2005) Simulation und Bewertung von Managementoptionen mit dem Waldwachstumssimulator BWINPro-S. Forst und Holz 60:411–415

    Google Scholar 

  • Schütz JP, Götz M, Schmid W, Mandallaz D (2006) Vulnerability of spruce (Picea abies) and beech (Fagus sylvatica) forest stands and consequences for silviculture. Eur J For Res 125:291–302

    Article  Google Scholar 

  • Seidl R, Rammer W, Jäger D, Lexer MJ (2008) Impact of bark beetle (Ips typographus L.) disturbances on timber production and carbon sequestration in different management strategies under climate change. For Ecol Manag 256:209–220

    Article  Google Scholar 

  • SFS (1992/2003) Slovenia forest service. Forest inventory data. Permanent sample plot databases Ploskdv.dbf and Ploskev.dbf. Ljubljana

  • SFS (2004) Slovenia Forest Service. Logging register 1995–2004. Database Timber.dbf. Slovenia Forest Service, Ljubljana

  • SFS (2011) Regional forest management plan Postojna 2011–2020. Slovenia Forest Service, Slovenia, Postojna

    Google Scholar 

  • Smith DM, Larson BC, Kelty MJ, Ashton PMS (1997) The practice of silviculture: applied forest ecology, 9th edn. Wiley, New York

    Google Scholar 

  • Sonnemann D (2008) Das ideale Plentergleichgewicht—Leitbild oder Luxus? Essay. Schweizerische Zeitschrift für Forstwesen 159:1–7

    Article  Google Scholar 

  • SPSS Inc (2012) IBM® SPSS® Statistics Version 21

  • Stancioiu PT, O’Hara KL (2006) Regeneration growth in different light environments of mixed species, multiaged, mountainous forests of Romania. Eur J For Res 125:151–162

    Article  Google Scholar 

  • Tahvonen O, Pukkala T, Laiho O, Lähde E, Niinimäki S (2010) Optimal management of uneven-aged Norway spruce stands. For Ecol Manag 260:106–115

    Article  Google Scholar 

  • Temperli C, Bugmann H, Elkin C (2013) Cross-scale interactions among bark beetles, climate change, and wind disturbances: a landscape modeling approach. Ecol Monogr 83:383–402

    Article  Google Scholar 

  • Thomson TA (1991) Efficient combinations of timber and financial market investments in single-period and multiperiod portfolios. For Sci 37:461–480

    Google Scholar 

  • Thorpe HC, Thomas SC, Caspersen JP (2008) Tree mortality following partial harvests determined by skidding proximity. Ecol Appl 18:1652–1663

    Article  CAS  PubMed  Google Scholar 

  • Tregubov V (1957) Gozdne rastlinske združbe. In: Tregubov V, Čokl M (eds.). Prebiralni gozdovi na Snežniku, Inštitut za gozdno in lesnogospodarstvo, Strokovna in znanstvena dela 4, Ljubljana, pp 23–65

  • Utschig H, Neufanger M, Zanker T (2011) Das 100-Baum-Konzept als Einstieg für Durchforstungsregeln in Mischbeständen. Allgemeine Forstzeitschrift für Waldwirtschaft und Umweltvorsorge AFZ-Der Wald AFZ 21:4–6

  • Valkonen S, Valsta L (2001) Productivity and economics of mixed two-storied spruce and birch stands in Southern Finland simulated with empirical models. For Ecol Manag 140:133–149

    Article  Google Scholar 

  • Vítková L, Dhubháin AN (2013) Transformation to continuous cover forestry: a review. Irish For 130:119–140

    Google Scholar 

Download references

Acknowledgments

This study resulted from the collaboration between Technische Universität München and University of Ljubljana within the framework of the project “Uncertainty and the bioeconomics of near-natural silviculture” (KN 586/7-2) funded by the German Research Foundation (DFG) and the project “ARANGE—Advanced multifunctional forest management in European mountain ranges” (FP7-KBBE-2011-5) funded by the European Commission, FP7. J. R. thanks National Forest Center—Forest Research Institute Zvolen—for the support by Operational Programme Research and Development Fund (Project ITMS 26220120069, 3 % contribution). A. F. thanks the Pahernik Foundation for financial support. The authors thank the Slovenia Forest Service for providing valuable inventory and price data, Elizabeth Gosling and Laura Carlson for language editing of the manuscript, and two anonymous reviewers for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joerg Roessiger.

Additional information

Handling editor: Peter Biber.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 615 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roessiger, J., Ficko, A., Clasen, C. et al. Variability in growth of trees in uneven-aged stands displays the need for optimizing diversified harvest diameters. Eur J Forest Res 135, 283–295 (2016). https://doi.org/10.1007/s10342-015-0935-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-015-0935-6

Keywords

Navigation