Skip to main content
Log in

Rapid detection of stand density, tree positions, and tree diameter with a 2D terrestrial laser scanner

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Harvester operators that decide about tree removal during thinnings have currently no instruments to measure stand density continuously before and after the operation. We tested whether basal area can be measured rapidly for this purpose with a 2D terrestrial laser scanner. An algorithm was developed, which automatically detects trees from laser scanner point clouds, measures their position and diameter, and calculates basal area. A field test included 18 laser scans in two Norway spruce stands with a wide range of stand densities, representing situations before and after thinning. Occlusion is a problem of single laser scans, and about one-third of the trees within the scanning range were not detected. Occlusion varies with stem density and branchiness. We therefore applied a flexible scanning range, which is detected automatically based on the laser hit density distribution for each scan. Scanning ranges were between 5.5 and 8.4 m (mean = 7.3 m) in the test scans, which is below the reach of the harvester crane, but still large enough to estimate local stand density. Basal area measured with the laser scanner was unbiased only in one of the two stands. Trees not detected or trees falsely detected caused only small bias of the basal area measurement in one of the two stands. Measurement errors for individual scans were, however, often around 10 m2 ha−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aschoff T, Spiecker H (2004) Algorithms for the automatic detection of trees in laser scanner data. Int Arch Photogramm Remote Sens Spatial Inf Syst XXXVI-8/W2:66–70

  • Bienert A, Scheller S, Keane E, Mohan F, Nugent C (2007) Tree detection and diameter estimations by analysis of forest terrestrial laserscanner point clouds. Int Arch Photogramm Remote Sens Spat Inf Syst XXXVI-3/W52:50–55

  • Eide E, Langsæter A (1954) Avsmalningstabell for granskog [Table of taper for Norway spruce forests]. Meddelelser fra det norske Skogsforsøksvesen 3:1–62

    Google Scholar 

  • Erikson M, Vestlund K (2003) Finding tree-stems in laser range images of young mixed stands to perform selective cleaning. In: ScandLaser scientific workshop of airborne laser scanning of forests, Umeå, 2003. Swedish Unviersity of Agricultural Sciences, Department of Forest Resource Management and Geomatics, pp 245–251

  • Forsman P, Halme A (2005) 3-D mapping of natural environments with trees by means of mobile perception. IEEE Trans Robot 21(3):482–490. doi:10.1109/tro.2004.838003

    Article  Google Scholar 

  • Gellerstedt S (2002) Operation of the single-grip harvester: motor sensory and cognitive work. Int J For Eng 13(2):35–47

    Google Scholar 

  • Gizachew B, Brunner A (2011) Density-growth relationships in thinned and unthinned Norway spruce and Scots pine stands in Norway. Scand J For Res 26(6):543–554. doi:10.1080/02827581.2011.611477

    Article  Google Scholar 

  • Gizachew B, Brunner A, Øyen B-H (2012) Stand responses to initial spacing in Norway spruce plantations in Norway. Scand J For Res 27(7):637–648

    Article  Google Scholar 

  • Haveraaen O (1981) Vekstutvikling i et 20-årig forbandsforsøk med gran, Picea abies (L.) Karst. [Growth development in a 20 years old planting spacing with spruce, Picea abies (L.) Karst.]. Meldinger fra Norges Landbrukshøgskole 60(13):1–12

  • Henning JG, Radtke PJ (2006a) Detailed stem measurements of standing trees from ground-based scanning lidar. For Sci 52(1):67–80

    Google Scholar 

  • Henning JG, Radtke PJ (2006b) Ground-based laser imaging for assessing three-dimensional forest canopy structure. Photogramm Eng Remote Sens 72(12):1349–1358

    Article  Google Scholar 

  • Henning JG, Radtke PJ (2008) Multiview range-image registration for forested scenes using explicitly-matched tie points estimated from natural surfaces. ISPRS J Photogramm Remote Sens 63(1):68–83. doi:10.1016/j.isprsjprs.2007.07.006

    Article  Google Scholar 

  • Hopkinson C, Chasmer L, Young-Pow C, Treitz P (2004) Assessing forest metrics with a ground-based scanning lidar. Can J For Res 34(3):573–583

    Article  Google Scholar 

  • Huang P, Pretzsch H (2010) Using terrestrial laser scanner for estimating leaf areas of individual trees in a conifer forest. Trees Struct Funct 24(4):609–619. doi:10.1007/s00468-010-0431-z

    Article  Google Scholar 

  • Inoue K (1996) Operator’s mental strain in operating the high proficient forestry machine. J For Res 1:195–197

    Article  Google Scholar 

  • Jupp DLB, Culvenor DS, Lovell JL, Newnham GJ, Strahler AH, Woodcock CE (2009) Estimating forest LAI profiles and structural parameters using a ground-based laser called ‘Echidna (R)’. Tree Physiol 29(2):171–181. doi:10.1093/treephys/tpn022

    Article  PubMed  Google Scholar 

  • Jutila J, Kannas K, Visala A (2007) Tree measurement in forest by 2D laser scanning. In: IEEE 2007 international symposium on computational intelligence in robotics and automation, pp 125–130

  • Kelbe D, Romanczyk P, van Aardt J, Cawse-Nicholson K, Krause K (2012) Automatic extraction of tree stem models from single terrestrial lidar scans in structurally heterogeneous forest environments. In: SilviLaser 2012

  • Liang X, Litkey P, Hyyppä J, Kukko A, Kaartinen H, Holopainen M (2008) Plot-level trunk detection and reconstruction using one-scan-mode terrestrial laser scanning data. In: IEEE 2008 international workshop on earth observation and remote sensing applications, pp 136–140

  • Liang XL, Litkey P, Hyyppä J, Kaartinen H, Vastaranta M, Holopainen M (2012) Automatic stem mapping using single-scan terrestrial laser scanning. IEEE Trans Geosci Remote Sens 50(2):661–670. doi:10.1109/tgrs.2011.2161613

    Article  Google Scholar 

  • Lovell JL, Jupp DLB, Newnham GJ, Culvenor DS (2011) Measuring tree stem diameters using intensity profiles from ground-based scanning lidar from a fixed viewpoint. ISPRS J Photogramm Remote Sens 66(1):46–55. doi:10.1016/j.isprsjprs.2010.08.006

    Article  Google Scholar 

  • Maas HG, Bienert A, Scheller S, Keane E (2008) Automatic forest inventory parameter determination from terrestrial laser scanner data. Int J Remote Sens 29(5):1579–1593. doi:10.1080/01431160701736406

    Article  Google Scholar 

  • Magnussen S (2012) A new composite k-tree estimator of stem density. Eur J For Res 131(5):1513–1527. doi:10.1007/s10342-012-0619-4

    Article  Google Scholar 

  • Mäkinen H, Isomäki A (2004a) Thinning intensity and long-term changes in increment and stem form of Norway spruce trees. For Ecol Manag 201(2–3):295–309

    Article  Google Scholar 

  • Mäkinen H, Isomäki A (2004b) Thinning intensity and long-term changes in increment and stem form of Scots pine trees. For Ecol Manag 203(1–3):21–34

    Article  Google Scholar 

  • Miettinen M, Öhman M, Visala A, Forsman P (2007) Simultaneous localization and mapping for forest harvesters. In: Proceedings of the 2007 IEEE international conference on robotics and automation, vols 1–10. IEEE international conference on robotics and automation, pp 517–522. doi:10.1109/robot.2007.363838

  • Miettinen M, Kulovesi J, Kalmari J, Visala A (2010) New measurement concept for forest harvester head. In: Howard A, Iagnemma K, Kelly A (eds) Field and service robotics, vol 62. Springer Tracts in Advanced Robotics, Berlin, pp 35–44

  • Nilsson U, Ekö P-M, Elfving B, Fahlvik N, Johansson U, Karlsson K, Lundmark T, Wallentin C (2010) Thinning of Scots pine and Norway spruce monocultures in Sweden: effects of different thinning programmes on stand level gross- and net stem volume production. Studia Forestalia Suecica 219:46

    Google Scholar 

  • Öhman M, Miettinen M, Kannas I, Jutila J, Visala A, Forsman P (2008) Tree measurement and simultaneous localization and mapping system for forest harvesters. In: Laugier C, Siegwart R (eds) Field and service robotics: results of the 6th international conference, vol 42. Springer Tracts in Advanced Robotics, Berlin, pp 369–378

  • Ovaskainen H, Heikkilä M (2007) Visuospatial cognitive abilities in cut-to-length single-grip timber harvester work. Int J Ind Ergon 37(9–10):771–780. doi:10.1016/j.ergon.2007.06.004

    Article  Google Scholar 

  • Ovaskainen H, Uusitalo J, Väätäinen K (2004) Characteristics and significance of a harvester operators’ working technique in thinnings. Int J For Eng 15(2):67–77

    Google Scholar 

  • Ovaskainen H, Uusitalo J, Sassi T (2006) Effect of edge trees on harvester positioning in thinning. For Sci 52(6):659–669

    Google Scholar 

  • Parker GG, Harding DJ, Berger ML (2004) A portable LIDAR system for rapid determination of forest canopy structure. J Appl Ecol 41(4):755–767

    Article  Google Scholar 

  • Ringdahl O, Lindroos O, Hellström T, Bergström D, Athanassiadis D, Nordfjell T (2011) Path tracking in forest terrain by an autonomous forwarder. Scand J For Res 26(4):350–359. doi:10.1080/02827581.2011.566889

    Article  Google Scholar 

  • Ringdahl O, Hohnloser P, Hellström T, Holmgren J, Lindroos O (2013) Enhanced algorithms for estimating tree trunk diameter using 2D laser scanner. Remote Sens 5:4836–4856. doi:10.3390/rs5104839

    Article  Google Scholar 

  • Rosell JR, Llorens J, Sanz R, Arno J, Ribes-Dasi M, Masip J, Escola A, Camp F, Solanelles F, Gracia F, Gil E, Val L, Planas S, Palacin J (2009) Obtaining the three-dimensional structure of tree orchards from remote 2D terrestrial LIDAR scanning. Agric For Meteorol 149(9):1505–1515. doi:10.1016/j.agrformet.2009.04.008

    Article  Google Scholar 

  • Rossmann J, Schluse M, Schlette C, Buecken A, Krahwinkler P, Emde M (2009) Realization of a highly accurate mobile robot system for multi purpose precision forestry applications. In: ICAR 2009, 14th international conference on advanced robotics, vols 1 and 2, pp 544–549

  • Rossmann J, Schluse M, Waspe R, Moshammer R (2011) Simulation in the woods: from remote sensing based data acquisition and processing to various simulation applications. In: Jain S, Creasey R, Himmelspach J (eds) Proceedings of the 2011 winter simulation conference. Winter simulation conference proceedings, pp 984–996

  • Simonse M, Aschoff T, Spiecker H, Thies M (2003) Automatic determination of forest inventory parameters using terrestrial laserscanning. In: ScandLaser scientific workshop on airborne laser scanning of forests, Umeå, Sweden, pp 251–257

  • Strahler AH, Jupp DLB, Woodcock CE, Schaaf CB, Yao T, Zhao F, Yang XY, Lovell J, Culvenor D, Newnham G, Ni-Miester W, Boykin-Morris W (2008) Retrieval of forest structural parameters using a ground-based lidar instrument (Echidna (R)). Can J Remote Sens 34:S426–S440

    Article  Google Scholar 

  • Strand L (1967) Avsmalingstabeller for furu sønnafjells [Taper tabels for Scots pine in southern Norway]. Meddelelser fra det norske Skogsforsøksvesen 22:431–482

    Google Scholar 

  • Thies M, Spiecker H (2004) Evaluation and future prospects of terrestrial laser scanning for standardized forest inventories. Int Arch Photogramm Remote Sens Spat Inf Sci XXXVI-8/W2:192–197

  • Thies M, Pfeifer N, Winterhalder D, Gorte BGH (2004) Three-dimensional reconstruction of stems for assessment of taper, sweep and lean based on laser scanning of standing trees. Scand J For Res 19(6):571–581

    Article  Google Scholar 

  • Tveite B (1977) Bonitetskurver for gran [Site-index curves for Norway spruce (Picea abies (L.) Karst)]. Meddelelser fra Norsk Institutt for Skogforskning 33.1:84

  • Van der Zande D, Hoet W, Jonckheere I, van Aardt J, Coppin P (2006) Influence of measurement set-up of ground-based LiDAR for derivation of tree structure. Agric For Meteorol 141(2–4):147

    Article  Google Scholar 

  • van Leeuwen M, Coops NC, Newnham GJ, Hilker T, Culvenor DS, Wulder MA (2011) Stem detection and measuring DBH using terrestrial laser scanning. In: Silvilaser 2011 conference proceedings, 2011

  • Vestlund K, Hellström T (2006) Requirements and system design for a robot performing selective cleaning in young forest stands. J Terramech 43(4):505–525. doi:10.1016/j.jterra.2005.07.001

    Article  Google Scholar 

  • Watt PJ, Donoghue DNM (2005) Measuring forest structure with terrestrial laser scanning. Int J Remote Sens 26(7):1437–1446

    Article  Google Scholar 

  • Wei J, Salyani M (2004) Development of a laser scanner for measuring tree canopy characteristics. Presentation at the 2004 ASAE/CSAE annual meeting, pp 1–12

  • Yao T, Yang XY, Zhao F, Wang ZS, Zhang QL, Jupp D, Lovell J, Culvenor D, Newnham G, Ni-Meister W, Schaaf C, Woodcock C, Wang JD, Li XW, Strahler A (2011) Measuring forest structure and biomass in New England forest stands using Echidna ground-based lidar. Remote Sens Environ 115(11):2965–2974. doi:10.1016/j.rse.2010.03.019

    Article  Google Scholar 

  • Zheng YL, Liu JH, Wang DA, Yang RX (2012) Laser scanning measurements on trees for logging harvesting operations. Sensors 12(7):9273–9285. doi:10.3390/s120709273

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was financed by a grant from The Research Council of Norway and Skogtiltaksfondet under the title “Optimizing silviculture for bioenergy production in Norway”. We would like to thank the reviewers who helped to improve the quality of our manuscript with their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Brunner.

Additional information

Communicated by A. Weiskittel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brunner, A., Gizachew, B. Rapid detection of stand density, tree positions, and tree diameter with a 2D terrestrial laser scanner. Eur J Forest Res 133, 819–831 (2014). https://doi.org/10.1007/s10342-014-0799-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-014-0799-1

Keywords

Navigation