Skip to main content

Advertisement

Log in

Modeling the effects of climate change and management on the dead wood dynamics in boreal forest plantations

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

The present research examines the joint effects of climate change and management on the dead wood dynamics of the main tree species of the Finnish boreal forests via a forest ecosystem simulator. Tree processes are analyzed in stands subject to multiple biotic and abiotic environmental factors. A special focus is on the implications for biodiversity conservation thereof. Our results predict that in boreal forests, climate change will speed up tree growth and accumulation ending up in a higher stock of dead wood available as habitat for forest-dwelling species, but the accumulation processes will be much smaller in the working landscape than in set-asides. Increased decomposition rates driven by climate change for silver birch and Norway spruce will likely reduce the time the dead wood stock is available for dead wood-associated species. While for silver birch, the decomposition rate will be further increased in set-aside in relation to stands under ordinary management, for Norway spruce, set-asides can counterbalance the enhanced decomposition rate due to climate change thereby permitting a longer persistence of different decay stages of dead wood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–372. doi:10.1111/j.1469-8137.2004.01224.x

    Article  PubMed  Google Scholar 

  • Alam A, Kilpeläinen A, Kellomäki S (2008) Impacts of thinning on growth, timber production and carbon stocks in Finland under changing climate. Scand J Forest Res 23:501–512

    Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim J, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage 259:660–684. doi:10.1016/j.foreco.2009.09.001

    Article  Google Scholar 

  • Axelsson R, Angelstam P (2011) Uneven-aged forest management in boreal Sweden: local forestry stakeholders’ perceptions of different sustainability dimensions. Forestry 84:567–579. doi:10.1093/forestry/cpr034

    Article  Google Scholar 

  • Bergh J, Freeman M, Sigurdsson B, Kellomäki S, Laitinen K, Niinistö S, Peltola H, Linder S (2003) Modelling the short-term effects of climate change on the productivity of selected tree species in Nordic countries. For Ecol Manage 183:327–340. doi:10.1016/S0378-1127(03)00117-8

    Article  Google Scholar 

  • Briceño-Elizondo E, Garcia-Gonzalo J, Peltola H, Matala H, Kellomäki S (2006) Sensitivity of growth of Scots pine, Norway spruce and silver birch to climate change and forest management in boreal condition. For Ecol Manage 232:152–167

    Article  Google Scholar 

  • Cajander AK (1949) Forest types and their significance. Suomen metsätieteellinen seura. Acta Forestalia Fennica 56(5):1–71

    Google Scholar 

  • Coates KD, Burton PJ (1997) A gap-based approach for development of silvicultural systems to address ecosystem management objectives. For Ecol Manage 99:337–354. doi:10.1016/S0378-1127(97)00113-8

    Article  Google Scholar 

  • Cramer W, Bondeau A, Woodward FI, Prentice IC, Betts RA, Brovkin V, Cox PM, Fisher V, Foley JA, Friend AD, Kucharik C, Lomas MR, Ramankutty N, Sitch S, Smith B, White A, Young-Molling C (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biol 7:357–373

    Article  Google Scholar 

  • Dudley N (1998) Forests and climate change. A Report for World Wildlife Fund International, Gland, Switzerland. url: http://www.equilibriumresearch.com/upload/document/climatechangeandforests. pdf

  • Edman M, Möller R, Ericson L (2006) Effects of enhanced tree growth rate on the decay capacities of three saprotrophic wood-fungi. For Ecol Manage 232:12–18. doi:10.1016/j.foreco.2006.05.001

    Article  Google Scholar 

  • Ehnström B (2001) Leaving dead wood for insects in boreal forests: suggestions for the future. Scand J For Res 16:91–98. doi:10.1080/028275801300090681

    Article  Google Scholar 

  • Evans KL, Warren PH, Gaston KJ (2005) Species–energy relationships at the macroecological scale: a review of the mechanisms. Biol Rev 80:1–25. doi:10.1017/S1464793104006517

    Article  PubMed  Google Scholar 

  • Franklin J, Shugart H, Harmon M (1987) Tree Death as an Ecological Process. Bioscience 37:550–556. doi:10.2307/1310665

    Article  Google Scholar 

  • Garcia-Gonzalo J, Peltola H, Briceño-Elizondo E, Kellomäki S (2007) Changed Thinning regimes may increase carbon stock under climate change: a case study from a Finnish boreal forest. Clim Change 81:431–454

    Article  CAS  Google Scholar 

  • Ge Z-M, Kellomäki S, Peltola H, Zhou X, Väisänen H, Strandman H (2013) Impact of climate change on primary production and carbon sequestration of boreal Norway spruce forests: Finland as a model. Climatic Change 118:259–273

    Article  CAS  Google Scholar 

  • Gossner MM, Lachat T, Brunet J, Isacsson G, Bouget C, Brustel H, Brandl R, Weisser WW, Müller J (2013) Current near-to-nature forest management effects on functional trait composition of saproxylic beetles in beech forests. Conserv Biol. doi:10.1111/cobi.12023

    PubMed  Google Scholar 

  • Griffin DM (1977) Water potential and wood-decay fungi. Annu Rev Phytopathol 15:319–329

    Article  Google Scholar 

  • Hakkila (1971) Coniferous branches as a raw material source. A subproject of the joint Nordic research programme for the utilization of the logging residues. Seloste: Havupuun oksat raaka-ainelähteenä. Yhteispohjoismainen hakkuutähdetutkimuksen alaprojecti. Comun Inst For Fenn 75(1):1–60

    Google Scholar 

  • Hardin JW, Hilbe JM (2003) Generalized estimating equations. Chapman and Hall/CRC, Boca Raton, FL

    Google Scholar 

  • Harmon ME, Franklin JF, Swanson FJ, Sollins P, Gregory SV, Lattin JD, Anderson NH, Cline SP, Aumen NG, Sedell JR, Lienkaemper GW, Cromack Jr. K, Cummins KW (1986) Ecology of coarse woody debris in temperate ecosystems. In: Advances in Ecological Research. Academic Press, pp 59–234

  • Harmon ME (2009) Woody detritus mass and its contribution to carbon dynamics of old-growth forests. Wirth C, Gleixner G; HM Old-growth forests: function, fate and value. Springer-Verlag, Berlin, pp 159–190

    Chapter  Google Scholar 

  • Hartmann H (2011) Will a 385 million year-struggle for light become a struggle for water and for carbon? How trees may cope with more frequent climate change-type drought events. Glob Change Biol 17(1):642–655

    Article  Google Scholar 

  • Hillis WE (1977) Secondary changes in wood. Rec Adv Phytochem 11:247–309

    CAS  Google Scholar 

  • Hjältén J, Stenbacka F, Pettersson RB, Gibb H, Johansson T, Danell K, Ball JP, Hilszczański (2012) Micro and Macro-Habitat Associations in Saproxylic Beetles: Implications for Biodiversity Management. PLoS ONE 7(7):e41100. doi:10.1371/journal.pone.0041100

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Honkanen M, Roberge J, Rajasärkkä A, Mönkkönen M (2010) Disentangling the effects of area, energy and habitat heterogeneity on boreal forest bird species richness in protected areas. Global Ecol Biogeogr 19:61–71. doi:10.1111/j.1466-8238.2009.00491.x

    Article  Google Scholar 

  • Huang J, Tardif JC, Bergeron Y, Denneler B, Berninger F, Girardin MP (2010) Radial growth response of four dominant boreal tree species to climate along a latitudinal gradient in the eastern Canadian boreal forest. Glob Change Biol 16(2):711–731

    Article  Google Scholar 

  • Hynynen J (2002) Models for predicting stand development in MELA system. Finnish Forest Research Institute, Vantaa Research Centre, Vantaa

    Google Scholar 

  • IBM Corp (2011) IBM SPSS Statistics for Windows, Version 20.0. IBM Corp, Armonk, NY

    Google Scholar 

  • Johnston M, Campagna M, Gray P, Kope H, Loo J, Ogden A, O’Neill GA, Price D, Williamson T (2009) Vulnerability of Canada’s tree species to climate change and management options for adaptation: An overview for policy makers and practitioners. Canadian Council of Forest Ministers, Ottawa 40 pp

    Google Scholar 

  • Junninen K, Komonen A (2011) Conservation biology of boreal polypores: a review. Biol Conserv 144:11–20

    Article  Google Scholar 

  • Jylhä K (2009) Arvioita Suomen muuttuvasta ilmastosta sopeutumistutkimuksia varten. ACCLIM-hankkeen raportti 2009. Rapoetteja _ Rapporter _ Reports. (The changing climate in Finland: estimates for adaptation studies. ACCLIM project report 2009.) Ilmatieteen laitos, Raportteja 2009: 4, 102 s. In Finnish, abstract, extended abstract and captions for figures and tables in English)

  • Kellomäki S, Väisänen H, Hänninen H, Kolström T, Lauhanen R, Mattila U, Pajari B (1992a) A simulation model for the succession of the boreal forest ecosystem. Silva Fenn 26:1–18

    Article  Google Scholar 

  • Kellomäki S, Väisänen H, Hänninen H, Kolström T, Lauhanen R, Mattila U, Pajari B (1992b) SIMA: A model for forest succession based on the carbon and nitrogen cycles with application to silvicultural management of the forest ecosystem. Joensuun yliopisto, [Joensuu]

  • Kellomäki S, Peltola H, Nuutinen T, Korhonen KT, Strandman H (2008) Sensitivity of managed boreal forests in Finland to climate change, with implications for adaptive management. Philos Trans R Soc B: Biol Sci 363:2339–2349. doi:10.1098/rstb.2007.2204

    Article  Google Scholar 

  • Koivisto P (1959) Growth and yield tables. Communicationes Instituti Forestalis Fenniae 51: 47 pp

    Google Scholar 

  • Kolström M (1998) Ecological simulation model for studying diversity of stand structure in boreal forests. Ecol Model 111:17–36. doi:10.1016/S0304-3800(98)00102-1

    Article  Google Scholar 

  • Krankina ON, Harmon ME (1995) Dynamics of the Dead Wood Carbon Pool in Northwestern Russian Boreal Forests. In: Apps MJ, Price DT, Wisniewski J, Northwestern Russian Boreal Forests, pp 227–238

  • Laasasenaho J (1982) Taper curve and volume functions for pine, spruce and birch. Commun Inst For Fenn 108:1–74

  • Laiho R, Prescott CE (2004) Decay and nutrient dynamics of coarse woody debris in northern coniferous forests: a synthesis. Can J For Res 34:763–777. doi:10.1139/x03-241

    Article  CAS  Google Scholar 

  • Landsberg (2003) Modelling forest ecosystems: state of the art, challenges, and future directions. Can. J. For. Res. 33:385–397

  • LeMay V, Marshall P (2001) Proceedings of forest modelling for ecosystem management, forest certification and sustainable management conference, 12–17 Aug 2001, Vancouver BC

  • Mäkinen H, Hynynen J, Siitonen J, Sievänen R (2006) Predicting the decomposition of Scots pine, Norway spruce and birch stems in Finland. Ecol Appl 16:1865–1879. doi:10.1890/1051-0761(2006)016

    Article  PubMed  Google Scholar 

  • Mälkönen E (1974) Annual primary production and nutrient cycle in some Scots pine stands. Seloste: Vuotuinen primäärituotos ja ravinteiden kiertokulku männikössä. Comun Inst For Fenn 84(5):1–87

    Google Scholar 

  • Mälkönen E (1977) Annual primary production and nutrient cycle in a birch stand. Seloste: Vuotuinen primäärituotos ja ravinteiden kiertokulku eräässä koivikossa. Comun Inst For Fenn 91(5):1–28

    Google Scholar 

  • Matala J, Kellomäki S, Nuutinen T (2008) Litterfall in relation to volume growth of trees: analysis based on literature. Scand J Forest Res 23:194–202

    Article  Google Scholar 

  • McDowell NG, Beerling DJ, Breshears DD, Fisher RA, Raffa KF, Stitt M (2011) The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends Ecol Evol 26:523–532. doi:10.1016/j.tree.2011.06.003

    Article  PubMed  Google Scholar 

  • Meentemeyer V (1978) Macroclimate and lignin control of litter decomposition rates. Ecology 59:465–472

    Article  CAS  Google Scholar 

  • Meentemeyer V, Berg B (1986) Regional variation in rate of mass loss of Pinus sylvestris needle litter in Swedish pine forests as influenced by climate and litter quality. Scan J Forest Res 1:167–180

    Article  Google Scholar 

  • Mönkkönen M, Reunanen P, Kotiaho JS, Juutinen A, Tikkanen O-P, Kouki J (2011) Cost-effective strategies to conserve boreal forest biodiversity and long-term landscape-level maintenance of habitats. Eur J Forest Res 130:717–727

    Article  Google Scholar 

  • Mönkkönen M, Juutinen J, Mazziotta A, Miettinen K, Podkopaev D, Reunanen P, Salminen H,  Tikkanen O-P (2014) Spatially dynamic forest management to sustain biodiversity and economic returns. J Environ Manage (In press)

  • Müller J, Bütler R (2010) A review of habitat thresholds for dead wood: a baseline for management recommendations in European forests. Eur J Forest Res 129:981–992

    Article  Google Scholar 

  • Nelson E, Mendoza G, Regetz J, Polasky S, Tallis H, Cameron DR, Chan KMA, Daily GC, Goldstein J, Kareiva PM, Lonsdorf E, Naidoo R, Ricketts TH, Shaw MR (2009) Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front Ecol Environ 7:4–11. doi:10.1890/080023

    Article  Google Scholar 

  • Nilsson C, Götmark F (1992) Protected areas in Sweden: is natural variety adequately represented? Conserv Biol 6:232–242

    Article  Google Scholar 

  • Pan W (2001) Akaike’s information criterion in generalized estimating equations. Biometrics 57:120–125. doi:10.1111/j.0006-341X.2001.00120.x

    Article  PubMed  CAS  Google Scholar 

  • Pastor J, Post W (1986) Influence of climate, soil moisture, and succession on forest carbon and nitrogen cycles. Biogeochemistry 2:3–27. doi:10.1007/BF02186962

    Article  Google Scholar 

  • Peet R, Christensen N (1987) Competition and tree death. Bioscience 37:586–595. doi:10.2307/1310669

    Article  Google Scholar 

  • Pretzsch H (2010) Forest Dynamics. From Measurement to Model, Springer, Growth and Yield, p 664

    Google Scholar 

  • Pretzsch H, Biber P, Schütze Bielak K (2013a) Changes of forest stand dynamics in Europe facts from long-term observational plots and their relevance for forest ecology and management. For Ecol Manage. doi:10.1016/j.foreco.2013.07.050

    Google Scholar 

  • Pretzsch H, Bielak K, Block J, Bruchwald A, Dieler J, Ehrhart H-P, Kohnle U, Nagel J, Spellmann H, Zasada M, Zingg A (2013b) Productivity of mixed versus pure stands of oak (Quercus petraea (Matt.) Liebl. and Quercus robur L.) and European beech (Fagus sylvatica L.) along an ecological gradient. Eur J Forest Res 132(2):263–280

    Article  Google Scholar 

  • Reich PB, Frelich LE, Voldseth RA, Bakken P, Adair C (2011) Understorey diversity in southern boreal forests is regulated by productivity and its indirect impacts on resource availability and heterogeneity. J Ecol 100(2):539–545

    Article  Google Scholar 

  • Reineke LH (1933) Perfecting a stand-density index for even-aged forests. J Agric Res 46:627–638

    Google Scholar 

  • Routa J, Kellomäki S, Peltola H, Asikainen A (2011) Impacts of thinning and fertilization on timber and energy wood production in Norway spruce and Scots pine: scenario analyses based on ecosystem model simulations. Forestry 84:159–175. doi:10.1093/forestry/cpr003

    Article  Google Scholar 

  • Schroeder LM, Ranius T, Ekbom B, Larsson S (2007) Spatial occurrence of a habitat-tracking saproxylic beetle inhabiting a managed forest landscape. Ecol Appl 17:900–909

    Article  PubMed  Google Scholar 

  • Shanin VN, Mikhailov AV, Bykhovets SS, Komarov AS (2010) Global climate change and carbon balance in forest ecosystems of boreal zones: simulation modeling as a forecast tool. Biol Bull 37:619–629

    Article  Google Scholar 

  • Shorohova E, Ignatyeva O, Kapitsa E, Kauhanen H, Kuznetsov A, Vanha-Majamaa I (2012) Stump decomposition rates after clear-felling with and without prescribed burning in southern and northern boreal forests in Finland. For Ecol Manage 263:74–84. doi:10.1016/j.foreco.2011.09.006

    Article  Google Scholar 

  • Shorohova E, Kapitsa E, Vanha-Majamaa I (2008) Decomposition of stumps in a chronosequence after clear-felling versus clear-felling with prescribed burning in a southern boreal forest in Finland. For Ecol Manage 255:3606–3612. doi:10.1016/j.foreco.2008.02.042

    Article  Google Scholar 

  • Shults J, Sun W, Tu X, Kim H, Amsterdam J, Hilbe JM, Ten-Have T (2009) A comparison of several approaches for choosing between working correlation structures in generalized estimating equation analysis of longitudinal binary data. Stat Med 28:2338–2355. doi:10.1002/sim.3622

    Article  PubMed  Google Scholar 

  • Solomon S (2007) Intergovernmental panel on climate change. working group I. Climate change 2007: contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Stokland JN, Siitonen J, Jonsson BG (2012) Biodiversity in dead wood. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Tikkanen O-P, Martikainen P, Hyvärinen E, Junninen K, Kouki J (2006) Red-listed boreal forest species of Finland: associations with forest structure, tree species and decaying wood. Annls. Zool. Fennici 43:373–383

    Google Scholar 

  • Tikkanen O-P, Heinonen T, Kouki J, Matero J (2007) Habitat suitability models of saproxylic red-listed boreal forest species in long-term matrix management: cost-effective measures for multi-species conservation. Biol Conserv 140:359–372

    Article  Google Scholar 

  • Tikkanen O-P, Matero J, Mönkkönen M, Juutinen A, Kouki J (2012) To thin or not to thin: bio-economic analysis of two alternative practices to increase amount of coarse woody debris in managed forests. Eur J Forest Res 131:1411–1422

    Article  Google Scholar 

  • Tuomi M, Laiho R, Repo A, Liski J (2011) Wood decomposition model for boreal forests. Ecol Model 222:709–718. doi:10.1016/j.ecolmodel.2010.10.025

    Article  CAS  Google Scholar 

  • Vanclay J (2003) Realizing opportunities in forest growth modelling. Can J For Res -Rev Can Rech For. 33:536–541. doi:10.1139/X02-117

    Article  Google Scholar 

  • Venäläinen A, Tuomenvirta H, Pirinen P, Drebs A (2005) A basic Finnish climate data set 1961–1990—description and illustrations. Reports 2005:5

  • Virkkala R, Rajasärkkä A (2007) Uneven regional distribution of protected areas in Finland: consequences for boreal forest bird populations. Biol Conserv 134:361–371

    Article  Google Scholar 

  • Waring R (1987) Characteristics of trees predisposed to die. Bioscience 37:569–574. doi:10.2307/1310667

    Article  Google Scholar 

  • Weslien J, Finer L, Jonsson JA, Koivusalo H, Lauren A, Ranius T, Sigurdsson BD (2009) Effects of increased forest productivity and warmer climates on carbon sequestration, run-off water quality and accumulation of dead wood in a boreal landscape: a modelling study. Scand J For Res 24:333–347. doi:10.1080/02827580903085171

    Article  Google Scholar 

  • White J, Harper JL (1970) Correlated changes in plant size and number in plant populations. J Ecol 58:467–485

    Article  Google Scholar 

  • Wolfslehner B, Seidl R (2010) Harnessing ecosystem models and multi-criteria decision analysis for the support of forest management. Environ Manage 46:850–861. doi:10.1007/s00267-009-9414-5

    Article  PubMed  Google Scholar 

  • Woodall CW, Liknes GC (2008) Relationships between forest fine and coarse woody debris carbon stocks across latitudinal gradients in the United States as an indicator of climate change effects. Ecol Indic 8:686–690

    Article  Google Scholar 

  • Yatskov M, Harmon ME, Krankina ON (2003) A chronosequence of wood decomposition in the boreal forests of Russia. Can J For Res 33:1211–1226

    Article  Google Scholar 

  • Yin X (1999) The decay of forest woody debris: numerical modeling and implications based on some 300 data cases from North America. Oecologia 121:81–98. doi:10.1007/s004420050909

    Article  Google Scholar 

  • Yoda K, Kira T, Ogawa H, Hozumi H (1963) Self-thinning in overcrowded pure stands under cultivated and natural conditions. J Biol Osaka Cy Univ 14:107–129

    Google Scholar 

  • Yrjolä T (2002) Forest management guidelines and practices in Finland, Sweden and Norway European Forest Institute Internal Report 11

  • Zell J, Kändler G, Hanewinkel M (2009) Predicting constant decay rates of coarse woody debris—A meta-analysis approach with a mixed model. Ecol Model 220:904–912

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the Academy of Finland (Project Number: 21000012421). We are grateful to Pasi Reunanen and Maria Triviño De la Cal, for improving the manuscript with their comments. This paper was initially submitted, reviewed and revised in Peerage of Science (http://www.peerageofscience.org/), and we are grateful to an anonymous peer for constructive comments.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Mazziotta.

Additional information

Communicated by Jörg Müller.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 95 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazziotta, A., Mönkkönen, M., Strandman, H. et al. Modeling the effects of climate change and management on the dead wood dynamics in boreal forest plantations. Eur J Forest Res 133, 405–421 (2014). https://doi.org/10.1007/s10342-013-0773-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-013-0773-3

Keywords

Navigation