Skip to main content

Advertisement

Log in

Effects of thinning and canopy type on growth dynamics of Pinus sylvestris: inter-annual variations and intra-annual interactions with microclimate

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

We assessed the effects of thinning (0, 20 and 30 % extraction of basal area) and canopy type (pine–beech vs. pine plots, beech accounting for 12 % of total basal area) on radial growth of dominant and codominant Scots pine at inter-annual scale and on microclimatic conditions, radial growth and xylogenesis 9 years after thinning at intra-annual scale. Thinning weakly affected pine growth, which was enhanced 3 years after harvesting. Over time, a gradual reduction in pine growth in mixed canopy relative to pure canopy occurred only in unthinned plots apparently due to beech expansion. Indeed, 9 years after thinning, a higher seasonal radial increment and a greater number of tracheids were produced under pine canopy in the unthinned plots, whereas no differences between canopy types were observed in the thinned plots. Radial increment and tracheid production were mainly affected by tree water status (air and soil humidity, throughfall). The differences of tree water status caused by treatments, and plausibly disparities in tree size and tree-to-tree competition, were the main drivers explaining the patterns observed for radial increment and xylogenesis. Our results suggest that the negative effects of beech competition on Scots pine growth in similar mixed forest may be controlled to some extent by thinning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andrew I (1986) Simple experimental design for forestry trials. FRI Bull, vol 71. Forest Research Institute, Roturua

    Google Scholar 

  • Antonova GF, Stasova VV (1993) Effects of environmental factors on wood formation in Scots pine stems. Trees 7(4):214–219

    Article  Google Scholar 

  • Antonova GF, Shebeko VV, Malyutina ES (1983) Seasonal dynamics of cambial activity and tracheid differentiation in the stem of Scots pine. Chem Wood 1:16–22

    Google Scholar 

  • Assman E (1970) The principles of forest yield study. Pergamon Press, Oxford

    Google Scholar 

  • Aussenac G (2000) Interactions between forest stands and microclimate: ecophysiological aspects and consequences for silviculture. Ann For Sci 57(3):287–301

    Article  Google Scholar 

  • Blanco JA (2004) La práctica de las claras forestales y su influencia en el ciclo interno de nutrientes en dos bosques de pino silvestre de los Pirineos Navarros. Dissertation, Universidad Pública de Navarra, Pamplona

  • Blanco JA, Zavala MA, Imbert JB, Castillo FJ (2005) Sustainability of forest management practices: evaluation through a simulation model of nutrient cycling. For Ecol Manag 213:209–228

    Article  Google Scholar 

  • Bréda N, Granier A, Aussenac G (1995) Effects of thinning on soil and tree water relations, transpiration and growth in an oak forest (Quercus-petraea (Matt) Liebl). Tree Physiol 15(5):295–306

    Article  PubMed  Google Scholar 

  • Brix H, Mitchell AK (1980) Effects of thinning and nitrogen fertilization on xylem development in Douglas-fir. Can J For Res 10(2):121–128

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multi-model inference: a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Camarero JJ, Guerrero-Campo J, Gutiérrez E (1998) Tree-ring growth and structure of Pinus uncinata and Pinus sylvestris in the Central Spanish Pyrenees. Arct Alp Res 30(1):1–10

    Article  Google Scholar 

  • Camarero JJ, Olano JM, Parras A (2010) Plastic bimodal xylogenesis in conifers from continental Mediterranean climates. New Phytol 185(2):471–480

    Article  PubMed  Google Scholar 

  • Cescatti A, Piutti E (1998) Silvicultural alternatives, competition regime and sensitivity to climate in a European beech forest. For Ecol Manag 102:213–223

    Article  Google Scholar 

  • Corcuera L, Camarero JJ, Sisó S, Gil-Pelegrín E (2006) Radial-growth and wood-anatomical changes in overaged Quercus pyrenaica coppice stands: functional responses in a new Mediterranean landscape. Trees 20(1):91–98

    Article  Google Scholar 

  • Cregg BM, Dougherty PM, Hennessey TC (1988) Growth and wood quality of young loblolly-pine trees in relation to stand density and climatic factors. Can J For Res 18(7):851–858

    Article  Google Scholar 

  • Curt T, Prevosto B (2003) Rooting strategy of naturally regenerated beech in Silver birch and Scots pine woodlands. Plant Soil 255(1):265–279

    Article  CAS  Google Scholar 

  • Daniels RF, Burkhart HE, Clason TR (1986) A comparison of competition measures for predicting growth of loblolly-pine trees. Can J For Res 16(6):1230–1237

    Article  Google Scholar 

  • Del Río M, Calma R, Cañellas I, Roig D, Montero G (2008) Thinning intensity and growth response in SW-European Scots pine stands. Ann For Sci 3:308–318

    Google Scholar 

  • Denne MP (1989) Definition of latewood according to Mork (1928). IAWA Bull 10(1):59–62

    Google Scholar 

  • Deslauriers A, Morin H (2005) Intra-annual tracheid production in balsam fir stems and the effect of meteorological variables. Trees 19(4):402–408

    Article  Google Scholar 

  • Deslauriers A, Rossi S, Anfodillo T, Saracino A (2008) Cambial phenology, wood formation and temperature thresholds in two contrasting years at high altitude in southern Italy. Tree Physiol 28(6):863–871

    Article  PubMed  Google Scholar 

  • Government of Navarre (2010) Memoria del Mapa de Cultivos y Aprovechamientos de Navarra 1/200.000. Departamento de Agricultura, Ganadería y Alimentación del Gobierno de Navarra, Pamplona

  • Gracia CA, Sabaté S, Martínez JM, Alveza E (1999) Functional responses to thinning. In: Rodà F, Retana J, Gracia CA, Bellot J (eds) Ecology of Mediterranean evergreen forests. Springer, Berlin, pp 328–329

    Google Scholar 

  • Granier A, Loustau D, Bréda N (2000) A generic model of forest canopy conductance dependent on climate, soil water availability and leaf area index. Ann For Sci 57(8):755–765

    Article  Google Scholar 

  • Gruber A, Baumgartner D, Zimmermann J, Oberhuber W (2009) Temporal dynamic of wood formation in Pinus cembra along the alpine treeline ecotone and the effect of climate variables. Trees 23(3):623–635

    Article  PubMed  Google Scholar 

  • Gruber A, Strobl S, Veit B, Oberhuber W (2010) Impact of drought on the temporal dynamics of wood formation in Pinus sylvestris. Tree Physiol 30(4):490–501

    Article  PubMed  Google Scholar 

  • Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree Ring Bull 43:68–78

    Google Scholar 

  • Horacek P, Slezingerova J, Gandelova L (1999) Effects of environment on the xylogenesis of Norway Spruce (Picea abies (L.) Kartst.). In: Wimmer R, Vetter RE (eds) Tree-ring analysis: biological, methodological and environmental aspects. CAB International Publishing, New York, pp 33–54

    Google Scholar 

  • Horn HS (1971) The adaptive geometry of trees, Monographs in population biology, vol 3. Princeton University Press, Princeton

    Google Scholar 

  • Jaakkola T, Mäkinen H, Sarén MP, Saranpää P (2005) Does thinning intensity affect the tracheid dimensions of Norway spruce? Can J For Res 35(11):2685–2697

    Article  Google Scholar 

  • Jyske T, Höltta T, Mäkinen H, Nöjd P, Lumme I, Spiecker H (2010) The effect of artificially induced drought on radial increment and wood properties of Norway spruce. Tree Physiol 30(1):103–115

    Article  PubMed  Google Scholar 

  • Kelty MJ (1992) Comparative productivity of monocultures and mixed-species stands. In: Kelty MJ, Larson BC, Oliver CD (eds) The ecology and silviculture of mixed-species forests. Kluwer, Dordrecht, pp 125–141

    Google Scholar 

  • Lagergren F, Lankreijer H, Kucera J, Cienciala E, Molder M, Lindroth A (2008) Thinning effects on pine-spruce forest transpiration in central Sweden. For Ecol Manag 255(7):2312–2323

    Article  Google Scholar 

  • Larson PR (1994) The vascular cambium, development and structure. Springer, Berlin

    Book  Google Scholar 

  • Linares JC, Camarero JJ, Carreira JA (2009) Plastic responses of Abies pinsapo xylogenesis to drought and competition. Tree Physiol 29(12):1525–1536

    Article  PubMed  Google Scholar 

  • Ma SY, Concilio A, Oakley B, North M, Chen JQ (2010) Spatial variability in microclimate in a mixed-conifer forest before and after thinning and burning treatments. For Ecol Manag 259(5):904–915

    Article  Google Scholar 

  • Mäkinen H, Isomäki A (2004) Thinning intensity and growth of Scots pine stands in Finland. For Ecol Manag 201:311–325

    Article  Google Scholar 

  • Mäkinen H, Seo JW, Nöjd P, Schmitt U, Jalkanen R (2008) Seasonal dynamics of wood formation: a comparison between pinning, microcoring and dendrometer measurements. Eur J For Res 127(3):235–245

    Article  Google Scholar 

  • Martín-Benito D, Del Río M, Heinrich I, Helle G, Cañellas I (2010) Response of climate-growth relationships and water use efficiency to thinning in a Pinus nigra afforestation. For Ecol Manag 259(5):967–975

    Article  Google Scholar 

  • Morikawa Y, Hattori S, Kiyono Y (1986) Transpiration of a 31-year-old Chamaecyparis obtusa Endl. stand before and after thinning. Tree Physiol 2(1–3):105–114

    Article  PubMed  Google Scholar 

  • Mörling T (2002) Evaluation of annual ring width and ring density development following fertilisation and thinning of Scots pine. Ann For Sci 59(1):29–40

    Article  Google Scholar 

  • Oberhuber W, Gruber A (2010) Climatic influences on intra-annual stem radial increment of Pinus sylvestris (L.) exposed to drought. Trees 24(5):887–898

    Article  PubMed  Google Scholar 

  • Oliver CD, Larson BC (1990) Forest stand dynamics. McGraw-Hill, Inc., New York

    Google Scholar 

  • Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Statistics and Computing Series. Springer, New York

  • Piutti E, Cescatti A (1997) A quantitative analysis of the interactions between climatic response and intraspecific competition in European beech. Can J Bot 27:277–284

    Google Scholar 

  • Pretzsch H (2005) Diversity and productivity in forests: evidence from long-term experimental plots. In: Scherer-Lorenzen M, Körner C, Schulze ED (eds) Forest diversity and function: temperate and boreal systems, ecological studies-analysis and synthesis, vol 176. Springer, Berlin, pp 41–64

    Google Scholar 

  • Puertas F (2001) Sitios de ensayo de claras de masas de pino silvestre en Navarra, Garde y Aspurz., Pamplona, Navarra, Spain

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, 2.13.0 edn. R Development Core Team, Vienna

    Google Scholar 

  • Rambo TR, North MP (2009) Canopy microclimate response to pattern and density of thinning in a Sierra Nevada forest. For Ecol Manag 257:435–442

    Article  Google Scholar 

  • Rathgeber CBK, Rossi S, Bontemps J-D (2011) Cambial activity related to tree size in a mature silver-fir plantation. Ann Bot 108(3):429–438

    Article  PubMed  Google Scholar 

  • Rossi S, Anfodillo T, Menardi R (2006a) Trephor: a new tool for sampling microcores from tree stems. IAWA J 27(1):89–97

    Google Scholar 

  • Rossi S, Deslauriers A, Anfodillo T, Morin H, Saracino A, Motta R, Borghetti M (2006b) Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length. New Phytol 170(2):301–310

    Article  PubMed  Google Scholar 

  • Schmitt U, Jalkanen R, Eckstein D (2004) Cambium dynamics of Pinus sylvestris and Betula spp. in the northern boreal forest in Finland. Silva Fennica 38(2):167–178

    Google Scholar 

  • Spiecker H (2003) Silvicultural management in maintaining biodiversity and resistance of forests in Europe-temperate zone. J Environ Manage 67(1):55–65

    Article  PubMed  Google Scholar 

  • Vaganov EA, Hughes MK, Shaskin AV (2006) Growth dynamics of conifer tree rings: images of past and future environments. Springer, Berlin

    Google Scholar 

  • Vesala T, Suni T, Rannik U, Keronen P, Markkanen T, Sevanto S, Gronholm T, Smolander S, Kulmala M, Ilvesniemi H, Ojansuu R, Uotila A, Levula J, Makela A, Pumpanen J, Kolari P, Kulmala L, Altimir N, Berninger F, Nikinmaa E, Hari P (2005) Effect of thinning on surface fluxes in a boreal forest. Glob Biogeochem Cycles 19, GB2001(2)

  • von Ende CN (2001) Repeated-measures analysis: growth and other time dependent measures. In: Scheiner S, Gurevitch I (eds) The design and analysis of ecological experiments. Oxford University Press, New York, pp 134–157

    Google Scholar 

  • von Wilpert K (1991) Intraannual variation of radial tracheid diameters as monitor of site specific water stress. Dendrochronol 9:95–113

    Google Scholar 

  • Yasue K, Funada R, Kobayashi O, Ohtani J (2000) The effects of tracheid dimensions on variations in maximum density of Picea glehnii and relationships to climatic factors. Trees 14(4):223–229

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

  • Zweifel R, Item H, Hasler R (2001) Link between diurnal stem radius changes and tree water relations. Tree Physiol 21(12–13):869–877

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the GLOBIMED thematic network for making possible the collaboration between the ARAID-IPE and the “UPNA Ecology & Environment Research Group.” The “Departamento de Medio Ambiente” of the Government of Navarre for the experimental setting of silvicultural treatments and, in particular, Fernando Puertas, Carmen Traver and Ana Iriarte and the “Concejo” of Aspurz for permitting the access to the plots. The research has been carried out in the framework of the AGL2006-08288 project (“Ministerio de Economía y Competitividad” of the Spanish Government). I. Primicia was financially supported by the FPI program from the “Ministerio de Economía y Competitividad” of the Spanish Government and the European Social Fund (ESF). J. J. Camarero thanks the support of ARAID. We also thank the two anonymous reviewers for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bosco Imbert.

Additional information

Communicated by Christian Ammer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Primicia, I., Camarero, J.J., Imbert, J.B. et al. Effects of thinning and canopy type on growth dynamics of Pinus sylvestris: inter-annual variations and intra-annual interactions with microclimate. Eur J Forest Res 132, 121–135 (2013). https://doi.org/10.1007/s10342-012-0662-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-012-0662-1

Keywords

Navigation