Skip to main content

Advertisement

Log in

Small area estimation of forest attributes in the Norwegian National Forest Inventory

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

The Norwegian National Forest Inventory (NNFI) provides estimates of forest parameters on national and regional scales by means of a systematic network of permanent sample plots. One of the biggest challenges for the NNFI is the interest in forest attribute information for small sub-populations such as municipalities or protected areas. Frequently, too few sampled observations are available for such small areas to allow estimates with acceptable precision. However, if an auxiliary variable exists that is correlated with the variable of interest, small area estimation (SAE) techniques may provide means to improve the precision of estimates. The study aimed at estimating the mean above-ground forest biomass for small areas with high precision and accuracy, using SAE techniques. For this purpose, the simple random sampling (SRS) estimator, the generalized regression (GREG) estimator, and the unit-level empirical best linear unbiased prediction (EBLUP) estimator were compared. Mean canopy height obtained from a photogrammetric canopy height model (CHM) was the auxiliary variable available for every population element. The small areas were 14 municipalities within a 2,184 km2 study area for which an estimate of the mean forest biomass was sought. The municipalities were between 31 and 527 km2 and contained 1–35 NNFI sample plots located within forest. The mean canopy height obtained from the CHM was found to have a strong linear correlation with forest biomass. Both the SRS estimator and the GREG estimator result in unstable estimates if they are based on too few observations. Although this is not the case for the EBLUP estimator, the estimators were only compared for municipalities with more than five sample plots. The SRS resulted in the highest standard errors in all municipalities. Whereas the GREG and EBLUP standard errors were similar for small areas with many sample plots, the EBLUP standard error was usually smaller than the GREG standard error. The difference between the EBLUP and GREG standard error increased with a decreasing number of sample plots within the small area. The EBLUP estimates of mean forest biomass within the municipalities ranged between 95.01 and 153.76 Mg ha−1, with standard errors between 8.20 and 12.84 Mg ha−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Global Positioning System

  2. Global Navigation Satellite System

  3. Next Generation Automatic Terrain Extraction.

  4. Due to different methods of deriving the estimators, there actually exist two area-specific MSE estimators. An alternative to the MSE estimator (13) is \(\widehat{{\rm MSE}}_{\bar{Y}_{E,i}} = C_{1,i} + C_{2,i} + 2 C^*_{3,i}\). In a pre-evaluation, both estimators gave approximately the same results. The one that frequently resulted in slightly higher MSEs is given in the main text.

References

  • Andersen HE, Breidenbach J (2007) Statistical properties of mean stand biomass estimators in a lidar-based double sampling forest survey. Vol. 36 of IAPRS: Proceedings of the ISPRS Workshop on Laser Scanning, SilviLaser 2007, pp 8–13

  • Arnevik LI (2011) Landsdekkende digital terrengmodell med 10 eller 20 meters rutenett. Tech. Rep., Statens Kartverk.

  • BAE Systems (2008) SocetSet. Tech. Rep., BAE Systems

  • Baltsavias E (1999) A comparison between photogrammetry and laser scanning. ISPRS J Photogramm Remote Sens 54(2–3):83–94

    Article  Google Scholar 

  • Baltsavias E, Gruen A, Eisenbeiss H, Zhang L, Waser LT (2008) High-quality image matching and automated generation of 3D tree models. Int J Remote Sens 29(5):1243–1259

    Article  Google Scholar 

  • Battese G, Fuller W (1981) Prediction of county crop areas using survey and satellite data. In: Proceedings of the section on survey research methods, American Statistical Association, pp 500–505

  • Battese GE, Harter RM, Fuller WA (1988) An error-components model for prediction of county crop areas using survey and satellite data. J Am Stat Assoc 83(401):28–36

    Google Scholar 

  • Bjørdal I, Bjørkelo K (2006) AR5 Klassifikasjonssystem, Klassifikasjon av arealressurser, Håndbok fra Skog og landskap. Tech. Rep., Skog og landskap

  • Breidenbach J (2011a) Comparison of a photogrammetric canopy height model (CHM) with a LiDAR derived CHM in Vestfold county. In: Breidenbach J, Astrup R (eds) Proceedings of the seminar “Creation of digital elevation models from aerial images for forest monitoring purposes”, 9 June 2011, Ås, Norway. The Norwegian forest and lanscape institute, pp 1–4

  • Breidenbach J (2011b) JoSAE: functions for unit-level small area estimators and their variances. R package version 0.2. http://cran.us.r-project.org/web/packages/JoSAE/

  • Breidenbach J, Kublin E, McGaughey R, Andersen H-E, Reutebuch S (2008) Mixed-effects models for estimating stand volume by means of small footprint airborne laser scanner data. Photogramm J Finl 21(1):4–15

    Google Scholar 

  • Breidenbach J, Næsset E, Lien V, Gobakken T, Solberg S (2010) Prediction of species specific forest inventory attributes using a nonparametric semi-individual tree crown approach based on fused airborne laser scanning and multispectral data. Remote Sens Environ 114(4):911–924

    Article  Google Scholar 

  • Breidenbach J, Nothdurft A, Kändler G (2010) Comparison of nearest neighbour approaches for small area estimation of tree species-specific forest inventory attributes in central Europe using airborne laser scanner data. Eur J Forest Res 129(5):833–846

    Article  Google Scholar 

  • Eriksen R, Tomter S, Ludahl A (2006) Statistikk over skogforhold og -ressurser i Vestfold, Landsskogtakseringen 2000–2004. NIJOS-ressursoversikt (ISBN 82-7464-368-2) 03/06, Norsk institutt for jord- og skogkartlegging, Ås, Norway

  • Flores L, Martınez L (2000) Land cover estimation in small areas using ground survey and remote sensing. Remote Sens Environ, Elsevier 74:240–248

    Google Scholar 

  • Gallego FJ (2004) Remote sensing and land cover area estimation. Int J Remote Sens 25:3019–3047

    Google Scholar 

  • Gjertsen AK (2007) Accuracy of forest mapping based on landsat TM data and a kNN-based method. Remote Sens Environ 110(4):420–430

    Article  Google Scholar 

  • Goerndt ME, Monleon VJ, Temesgen H (2011) A comparison of small-area estimation techniques to estimate selected stand attributes using lidar-derived auxiliary variables. Can J For Res 41(6):1189–1201

    Article  Google Scholar 

  • Gregoire T (1998) Design-based and model-based inference in survey sampling: appreciating the difference. Can J For Res 28(10):1429–1447

    Article  Google Scholar 

  • Grubner M, Kröpfl M (2007) Calibaration report, UltraCamX, SNo: UCX-SX-1-70717171. Tech. Rep., Microsoft, Vexcel Imaging, Graz, Austria

  • Henderson C (1950) Estimation of genetic parameters. Biometrics 6:186–187

    Google Scholar 

  • Heurich M (2007) Evaluierung und Entwicklung von Methoden zur automatisierten Erfassung von Waldstrukturen aus Daten flugzeuggetragener Fernerkundungssensoren. PhD thesis, Technische Universität München

  • Hirschmugl M, Ofner M, Raggam J, Schardt M (2007) Single tree detection in very high resolution remote sensing data. Remote Sens Environ 110(4):533–544

    Article  Google Scholar 

  • Hyyppä J, Inkinen M (1999) Detecting and estimating attributes for single trees using laser scanner. Photogramm J Finl 16(2):27–42

    Google Scholar 

  • Hyyppä J, Hyyppä H, Leckie D, Gougeon F, Yu X, Maltamo M (2008) Review of methods of small-footprint airborne laser scanning for extracting forest inventory data in boreal forests. Int J Remote Sens 29(5):1339–1366

    Article  Google Scholar 

  • Köhl M, Magnussen S, Marchetti M (2006) Sampling methods, remote sensing and GIS multiresource forest inventory. Springer, Berlin

    Book  Google Scholar 

  • Landsskogtakseringen (2008) Landsskogtakseringens feltinstruks 2008, Hsndbok fra Skog og landskap 05/08. Skog og landskap, Ås, Norway

  • Leberl F, Irschara A, Pock T, Meixner P, Gruber M, Scholz S, Wiechert A (2010) Point clouds: Lidar versus 3d vision. Photogramm Eng Remote Sens 76(10):1123–1134

    Google Scholar 

  • Marklund L (1988) Biomass functions for pine, spruce and birch in sweden. Institutionen foer Skogstaxering, Sweden

    Google Scholar 

  • McGaughey R (2008) Fusion manual version 2.70. Tech. rep., USDA, Pacific North-West Research Center, Seattle, WA

  • McRoberts R, Tomppo E (2007) Remote sensing support for national forest inventories. Remote Sens Environ 110(4):412–419

    Article  Google Scholar 

  • McRoberts RE, Cohen WB, Næsset E, Stehman SV, Tomppo EO (2010) Using remotely sensed data to construct and assess forest attribute maps and related spatial products. Scand J For Res 25(4):340–367

    Article  Google Scholar 

  • McRoberts RE, Tomppo EO, Næsset E (2010) Advances and emerging issues in national forest inventories. Scand J For Res 25(4):368–381

    Article  Google Scholar 

  • Means J, Acker S, Fitt B, Renslow M, Emerson L, Hendrix C (2000) Predicting forest stand characteristics with airborne scanning lidar. Photogramm Eng Remote Sens 66(11):1367–1371

    Google Scholar 

  • Moe H (2007) Rapport fråaerotriangulering, Vestfold 20 cm 2007, flyoppgåve 13466 (TerraTec 3627). Tech. Rep., TerraTec

  • Næsset E (1997) Estimating timber volume of forest stands using airborne laser scanner data. Remote Sens Environ 61(2):246–253

    Article  Google Scholar 

  • Næsset E (2001) Effects of differential single-and dual-frequency gps and glonass observations on point accuracy under forest canopies. Photogramm Eng Remote Sens 67(9):1021–1026

    Google Scholar 

  • Næsset E (2002a) Determination of mean tree height of forest stands by digital photogrammetry. Scand J For Res 17(5):446–459

    Article  Google Scholar 

  • Næsset E (2002b) Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens Environ 80(1):88–99

    Article  Google Scholar 

  • Næsset E, Gobakken T, Solberg S, Gregoire T, Nelson R, Ståhl G, Weydahl D (in press) Model-assisted regional forest biomass estimation using lidar and insar as auxiliary data: A case study from a boreal forest area. Remote Sens Environ

  • Nothdurft A, Saborowski J, Breidenbach J (2009) Spatial prediction of forest stand variables. Eur J Forest Res 128(3):241–251

    Article  Google Scholar 

  • Packalén P, Maltamo M (2007) The k-MSN method for the prediction of species-specific stand attributes using airborne laser scanning and aerial photographs. Remote Sens Environ 109(3):328–341

    Article  Google Scholar 

  • Packalén P, Maltamo M (2008) Estimation of species-specific diameter distributions using airborne laser scanning and aerial photographs. Can J For Res 38(7):1750–1760

    Article  Google Scholar 

  • Pinheiro J, Bates D (2002) Mixed-effects models in S and S-plus. Springer, Berlin

    Google Scholar 

  • Prasad N, Rao J (1990) The estimation of the mean squared error of small-area estimators. J Am Stat Assoc 85:163–171

    Google Scholar 

  • Rao JNK (2003) Small area estimation. Wiley-Interscience, NY

    Book  Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing

  • Royston JP (1982) An extension of Shapiro and Wilk’s W test for normality to large samples. J R Stat Soc. Ser C (Appl Stat) 31(2):115–124

    Article  Google Scholar 

  • Särndal C (1984) Design-consistent versus model-dependent estimation for small domains. J Am Stat Assoc 79(378):624–631

    Google Scholar 

  • Särndal C, Swensson B, Wretman J (2003) Model assisted survey sampling. Springer, Berlin

    Google Scholar 

  • Shapiro S, Wilk M (1965) An analysis of variance test for normality (complete samples). Biometrika 52(3/4):591–611

    Article  Google Scholar 

  • Straub C, Seitz R (2011) Möglichkeiten der automatisierten Generierung von OberflSchenmodellen in Waldgebieten aus digitalen Luftbildern. Proceedings of the DGPF conference 2011. DGPF, Mainz, Germany

  • Thompson S (2002) Sampling, second edition Edition. Wiley-Interscience, NY

    Google Scholar 

  • Tomter S, Hylen G, Nilsen J-E (2010) Norways national forest inventory. In: Tomppo E, Gschwantner T, Lawrence M, McRoberts RE (Eds.): National forest inventories: pathways for common reporting. Springer, Berlin.

  • Waser LT, Baltsavias E, Ecker K, Eisenbeiss H, Feldmeyer-Christe E, Ginzler C, Küchler M, Zhang L (2008) Assessing changes of forest area and shrub encroachment in a mire ecosystem using digital surface models and CIR aerial images. Remote Sens Environ 112(5):1956–1968

    Article  Google Scholar 

Download references

Acknowledgments

We very much appreciate the helpful comments of Dr Edgar Kublin (Forest Research Institute of Baden-Württemberg, Freiburg, Germany), Dr Holger Lange (Norwegian Forest and Landscape Institute, Ås, Norway) and, Dr Ronald E. McRoberts (Northern Research Station, St. Paul, USA) on an early version of the manuscript. We would like to thank two anonymous reviewers for their suggestions, which helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Breidenbach.

Additional information

Communicated by A. Weiskittel.

Appendix

Appendix

Asymptotic variances and covariances

The asymptotic variances and covariances \(\bar{V}\) of \(\hat{\sigma}^2_\varepsilon\) and \(\hat{\sigma}^2_\upsilon\) are elements of the inverse of the information matrix M (Rao 2003, p. 140):

$$ \bar{V}_{\upsilon\upsilon} = {\bf M}^{-1}_{11}, \bar{V}_{\varepsilon\varepsilon} = {\bf M}^{-1}_{22}, \bar{V}_{\varepsilon\upsilon} = \bar{V}_{\upsilon\varepsilon} = {\bf M}^{-1}_{12} = {\bf M}^{-1}_{21}. $$

The information matrix M is given by

$$ {\bf M}_{11} = \frac{1}{2} \sum_i n_i^2 \alpha_i^{-2}, $$
$$ {\bf M}_{22} = \frac{1}{2} \sum_i([n_i-1] \hat{\sigma}^{-4}_\varepsilon + \alpha_i^{-2}) $$

and

$$ {\bf M}_{12} = {\bf M}_{21} = \frac{1}{2} \sum_i n_i \alpha_i^{-2} $$

with

$$ \alpha_i = \hat{\sigma}^2_\varepsilon + n_i \hat{\sigma}^2_\upsilon. $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breidenbach, J., Astrup, R. Small area estimation of forest attributes in the Norwegian National Forest Inventory. Eur J Forest Res 131, 1255–1267 (2012). https://doi.org/10.1007/s10342-012-0596-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-012-0596-7

Keywords

Navigation