Skip to main content
Log in

Evidences of drought stress as a predisposing factor to Scots pine decline in Valle d’Aosta (Italy)

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Scots pine (Pinus sylvestris L.) forests of many inner Alpine valleys have recently displayed a quick loss of vitality. A decline disease has been suggested as the cause, with drought as the main predisposing factor and the additional contribution of biotic agents inciting tree dieback. This study is focused on Valle d’Aosta, a dry, inner-Alpine region in NW Italy. We inferred vitality changes between years 2000 and 2007 by computing reductions in enhanced vegetation index (EVI). Image differencing was carried out on pre-processed Moderate Resolution Imaging Spectroradiometer (MODIS) imagery taken in late springtime and validated against ancillary ground truth. We: (1) tested whether EVI reductions in Scots pine forests were significantly higher than those of a control species and of a wetter region for the same species, (2) analyzed decline incidence as a function of site and topographic variables, and (3) assessed the relative influence of site and stand structure on decline probability by means of path analysis. Mean EVI in the study area increased due to an early onset of the 2007 growing season. Nevertheless, the incidence of decline was 6.3% and significantly greater for Scots pine than the control species and site. Low-elevation, northerly exposed sites exhibited the highest incidence of decline. Path analysis suggested that the most important determinants of decline probability were slope, solar radiation, and stand sparseness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The coefficients adopted in the MODIS-EVI algorithm are L = 1, a 1 = 6, a 2 = 7.5, and G = 2.5. These enclose EVI in a range between −1 and +1.

  2. Data distributed by the Land Processes Distributed Active Archive Center (LP DAAC), located at the US Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center (http://lpdaac.usgs.gov). Accessed 28 February 2009.

  3. Pixels with pine coverage >90% (n = 594) exhibited a significant difference in mean elevation between southern slopes (1,501 m a.s.l.) and northern ones (1,253 m a.s.l., P < 0.001 after Welch t test).

References

  • Allen CD, Breshears DD (1998) Drought-induced shift of a forest-woodland ecotone: rapid landscape response to climate variation. Proc Natl Acad Sci 95:14839–14842

    Article  PubMed  CAS  Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim J-H, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684

    Article  Google Scholar 

  • Asner GP (1998) Biophysical and biochemical sources of variability in canopy reflectance. Remote Sens Environ 64:234–253

    Article  Google Scholar 

  • Bannari A, Morin D, Bonn F, Huete AR (1995) A review of vegetation indices. Remote Sens Rev 13:95–120

    Article  Google Scholar 

  • Baumgartner A, Reichel E, Weber G (1983) Der Wasserhaushalt der Alpen: Niederschlag, Verdunstung, Abfluss und Gletscherspende im Gesamtgebiet der Alpen im Jahresdurchschnitt fur die Normalperiode 1931–1960. Verlag Oldenbourg, München

    Google Scholar 

  • Biancotti A, Bellardone G, Bovo S, Cagnazzi B, Giacomelli L, Marchisio C (1998) Distribuzione regionale di piogge e temperature. Regione Piemonte, Torino

    Google Scholar 

  • Bigler C, Bräker OU, Bugmann H, Dobbertin M, Rigling A (2006) Drought as an inciting mortality factor in Scots pine stands of the Valais, Switzerland. Ecosystems 9:330–343

    Article  Google Scholar 

  • Breda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann For Sci 63:625–644

    Article  Google Scholar 

  • Breshears DD, Cobb NS, Rich PM, Price KP, Allen CD, Balice RG, Romme WH, Kastens JH, Floyd ML, Belnap J (2005) Regional vegetation die-off in response to global-change-type drought. Proc Natl Acad Sci 102:15144–15148

    Article  PubMed  CAS  Google Scholar 

  • Burgess DW, Lewis P, Muller J (1995) Topographic effects in AVHRR NDVI data. Remote Sens Environ 54:223–232

    Article  Google Scholar 

  • Camerano P, Terzuolo PG, Varese P (2007) I tipi forestali della Valle d’Aosta. Compagnia delle Foreste, Arezzo

    Google Scholar 

  • Carter GA (1993) Responses of leaf spectral reflectance to plant stress. Am J Bot 80:239–243

    Article  Google Scholar 

  • Carter GA, Knapp AK (2001) Leaf optical properties in higher plants: linking spectral characteristics to stress and chlorophyll concentration. Am J Bot 88:677–684

    Article  PubMed  CAS  Google Scholar 

  • Carter GA, Paliwal K, Pathre U, Green TH, Mitchell RJ, Gjerstad DH (1989) Effect of competition and leaf age on visible and infrared reflectance in pine foliage. Plant Cell Environ 12:309–315

    Article  Google Scholar 

  • Cech TL, Perny B (2000) Kiefernsterben in Tirol. Forstschutz Aktuell Wien 22:12–15

    Google Scholar 

  • Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20:37–46

    Article  Google Scholar 

  • Collins JB, Woodcock CE (1996) An assessment of several linear change detection techniques for mapping forest mortality using multitemporal Landsat TM data. Remote Sens Environ 56:66–77

    Article  Google Scholar 

  • Colombo R, Busetto L, Migliavacca M, Cremonese E, Meroni M, Galvagno M, Rossini M, Siniscalco C, Morra di Cella U (2009) On the spatial and temporal variability of Larch phenological cycle in mountainous areas. Ital J Remote Sens 41:79–96

    Article  Google Scholar 

  • Coppin P, Jonckheere I, Nackaerts K, Muys B (2004) Digital change detection in environmental monitoring: a review. Int J Remote Sens 25:1565–1596

    Article  Google Scholar 

  • Costantini EAC, L’Abate G, Urbano F (2004) Soil regions of Italy. CRA-ISSDS, Firenze

    Google Scholar 

  • Deshayes M, Guyon D, Jeanjean H, Stach N, Jolly A, Hagolle O (2006) The contribution of remote sensing to the assessment of drought effects in forest ecosystems. Ann For Sci 63:579–595

    Article  Google Scholar 

  • Dobbertin M, Rigling A (2006) Pine mistletoe (Viscum album ssp austriacum) contributes to Scots pine (Pinus sylvestris) mortality in the Rhone valley of Switzerland. For Pathol 36:309–322

    Article  Google Scholar 

  • Dobbertin M, Mayer P, Wohlgemuth T, Feldmeyer-Christe E, Graf U, Zimmermann NE, Rigling A (2005) The decline of Pinus sylvestris L. forests in the Swiss Rhone Valley—a result of drought stress? Phyton 45:153–156

    Google Scholar 

  • Eilmann B, Weber P, Rigling A, Eckstein D (2006) Growth reactions of Pinus sylvestris L. and Quercus pubescens Willd to drought years at a xeric site in Valais, Switzerland. Dendrochronologia 23:121–132

    Article  Google Scholar 

  • Falkenstrom H, Ekstrand S (2002) Evaluation of IRS-1c LISS-3 satellite data for defoliation assessment on Norway spruce and Scots pine. Remote Sens Environ 82:208–223

    Article  Google Scholar 

  • Fung T, LeDrew E (1988) The determination of optimal threshold levels for change detection using various accuracy indices. Photogramm Eng Remote Sens 54:1449–1454

    Google Scholar 

  • Giordano L, Gonthier P, Varese GC, Miserere L, Nicolotti G (2009) Mycobiota inhabiting sapwood of healthy and declining Scots pine (Pinus sylvestris L.) trees in the Alps. Fungal Divers 38:69–83

    Google Scholar 

  • Giuggiola A, Kuster TM, Saha S (2010) Drought-induced mortality of Scots pines at the southern limits of its distribution in Europe: causes and consequences. iForest 3:95–97

    Article  Google Scholar 

  • Gonthier P, Giordano L, Nicolotti G (2007) Sui disseccamenti acuti e generalizzati del pino silvestre nell’envers della media Valle d’Aosta. L’informatore Agricolo 23:41–45

    Google Scholar 

  • Gonthier P, Giordano L, Nicolotti G (2010) Further observations on sudden diebacks of Scots pine in the European Alps. For Chron 86:110–117

    Google Scholar 

  • Gottero F, Ebone A, Terzuolo P, Camerano P (2007) I Boschi del Piemonte: conoscenza e indirizzi gestionali. Regione Piemonte, Blu Edizioni, Torino

    Google Scholar 

  • Guarín A, Taylor AH (2005) Drought triggered tree mortality in mixed conifer forests in Yosemite National Park, California, USA. For Ecol Manag 218:229–244

    Article  Google Scholar 

  • Guyot G, Guyon D, Riom J (1989) Factors affecting the spectral response of forest canopies: a review. Geocarto Int 4:3–18

    Article  Google Scholar 

  • Hasenauer H, Nemani RR, Schadauer K, Running SW (1999) Forest growth response to changing climate between 1961 and 1990 in Austria. For Ecol Manag 122:209–219

    Article  Google Scholar 

  • Heikkilä J, Nevalainen S, Tokola T (2002) Estimating defoliation in boreal coniferous forests by combining Landsat TM, aerial photographs and field data. For Ecol Manag 158:9–23

    Article  Google Scholar 

  • Holben B (1986) Characteristics of maximum-value composite images from temporal AVHRR data. Int J Remote Sens 7:1417–1434

    Article  Google Scholar 

  • Hu L, Bentler P (1999) Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Struct Equ Model 6:1–55

    Article  Google Scholar 

  • Huete AR, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83:195–213

    Article  Google Scholar 

  • Intergovermental Panel on Climate Change (2007) Climate change 2007: the scientific basis. IPCC Fourth assessment report. Cambridge University Press, Cambridge

    Google Scholar 

  • Jackson RD (1986) Remote sensing of biotic and abiotic plant stress. Annu Rev Phytopathol 24:265–287

    Article  Google Scholar 

  • Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled seamless SRTM data V4. International Centre for Tropical Agriculture (CIAT). http://srtm.csi.cgiar.org. Accessed 6 June 2009

  • Jolly WM, Dobbertin M, Zimmermann NE, Reichstein M (2005) Divergent vegetation growth responses to the 2003 heat wave in the Swiss Alps. Geophys Res Lett 32:L18409

    Article  Google Scholar 

  • Justice CO, Vermote E, Townshend JRG, Defries R, Roy DP, Hall DK, Salomonson VV, Privette JL, Riggs G, Strahler A (1998) The Moderate Resolution Imaging Spectroradiometer (MODIS): land remote sensing for global change research. IEEE Trans Geosci Remote Sens 36:1228–1249

    Article  Google Scholar 

  • Kleman J (1986) The spectral reflectance of stands of Norway spruce and Scotch pine, measured from a helicopter. Remote Sens Environ 20:253–265

    Article  Google Scholar 

  • Knutson KC, Pyke DA (2008) Western juniper and ponderosa pine ecotonal climate-growth relationships across landscape gradients in southern Oregon. Can J For Res 38:3021–3032

    Article  Google Scholar 

  • Letts MG, Nakonechny KN, Van Gaalen KE, Smith CM (2009) Physiological acclimation of Pinus flexilis to drought stress on contrasting slope aspects in Waterton Lakes National Park, Alberta, Canada. Can J For Res 39:629–641

    Article  CAS  Google Scholar 

  • Li HJ, Zheng L, Lei YP, Li CQ, Zhou K (2007) Comparison of NDVI and EVI based on EOS/MODIS data. Prog Geogr 26:26–32

    CAS  Google Scholar 

  • Liu WT, Kogan FN (1996) Monitoring regional drought using the vegetation condition index. Int J Remote Sens 17:2761–2782

    Article  Google Scholar 

  • Logan JA, Regniere J, Powell JA (2003) Assessing the impacts of global warming on forest pest dynamics. Front Ecol Environ 1:130–137

    Article  Google Scholar 

  • Lu D, Mausel P, Brondizio E, Moran E (2004) Change detection techniques. Int J Remote Sens 25:2365–2401

    Article  Google Scholar 

  • Lunetta RS, Knight JF, Ediriwickrema J, Lyon JG, Worthy LD (2006) Land-cover change detection using multi-temporal MODIS NDVI data. Remote Sens Environ 105:142–154

    Article  Google Scholar 

  • Manion PD (1991) Tree disease concepts. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Matsushita B, Yang W, Chen J, Onda Y, Qiu G (2007) Sensitivity of the Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) to topographic effects: a case study in high-density cypress forest. Sensors 7:2636–2651

    Article  Google Scholar 

  • McCune B, Keon D (2002) Equations for potential annual direct incident radiation and heat load. J Veg Sci 13:603–606

    Article  Google Scholar 

  • McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178:719–739

    Article  PubMed  Google Scholar 

  • McMurtrie R, Wolf L (1983) A model of competition between trees and grass for radiation, water and nutrients. Ann Bot 52:449–458

    Google Scholar 

  • Minerbi S, Cescatti A, Cherubini P, Hellrigl K, Markart G, Saurer M, Mutinelli C (2006) La siccità dell’estate 2003 causa di disseccamenti del pino silvestre in Val d’Isarco. For Obs 2(3):89–144

    Google Scholar 

  • Morisette JT, Khorram S (2000) Accuracy assessment curves for satellite-based change detection. Photogramm Eng Remote Sens 66:875–880

    Google Scholar 

  • Muchoney DM, Haack BN (1994) Change detection for monitoring forest defoliation. Photogramm Eng Remote Sens 60:1243–1251

    Google Scholar 

  • Myneni RB, Asrar G (1994) Atmospheric effects and spectral vegetation indices. Remote Sens Environ 47:390–402

    Article  Google Scholar 

  • Neale MC (1994) MxGui 3.2. Department of Psychiatry, Virginia Commonwealth University, Richmond. http://www.vcu.edu/mx. Accessed 1 Apr 2011

  • Oberhuber W, Stumböck M, Kofler W (1998) Climate-tree-growth relationships of Scots pine stands (Pinus sylvestris L.) exposed to soil dryness. Trees 13:19–27

    Google Scholar 

  • Ozenda P (1985) La végétation de la chaîne alpine dans l'espace montagnard europeén. Masson, Paris

    Google Scholar 

  • Peñuelas J, Filella I (1998) Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends Plant Sci 3:151–156

    Article  Google Scholar 

  • Peters AJ, Rundquist DC, Wilhite DA (1991) Satellite detection of the geographic core of the 1988 Nebraska drought. Agric For Meteorol 57:35–47

    Article  Google Scholar 

  • Polomski J, Schönfeld U, Braasch H, Dobbertin M, Burgermeister W, Rigling D (2006) Occurrence of Bursaphelenchus species in declining Pinus sylvestris in a dry Alpine valley in Switzerland. For Pathol 36:110–118

    Article  Google Scholar 

  • Quaglino A, Mondino GP, Nosenzo A, Borelli M, Motta R, Pividori M (1987) DEFOR86: Deperimento delle foreste in Valle d’Aosta—Possibili rapporti con l’inquinamento atmosferico. Università degli Studi di Torino e Regione Autonoma Valle d’Aosta, Aosta

    Google Scholar 

  • Rebetez M, Dobbertin M (2004) Climate change may already threaten Scots pine stands in the Swiss Alps. Theor Appl Clim 79:1–9

    Article  Google Scholar 

  • Rebetez M, Dupont O, Giroud M (2009) An analysis of the July 2006 heatwave extent in Europe compared to the record year of 2003. Theor Appl Clim 95:1–7

    Article  Google Scholar 

  • Reineke LH (1933) Perfecting a stand-density index for even-aged forests. J Agric Res 46:627–638

    Google Scholar 

  • Rigling A, Dobbertin M, Bürgi M, Gimmi U, Pannatier E, Gugerli F, Heiniger U, Polomski J, Rebetez M, Rigling D (2006) Verdrängen Flaumeichen die Walliser Waldföhren? Merkblatt für die Praxis 41:1–16

    Google Scholar 

  • Rigling A, Eilmann B, Köchli R, Dobbertin M (2010) Mistletoe-induced crown degradation in Scots pine in a xeric environment. Tree Physiol 30:845–852

    Article  PubMed  Google Scholar 

  • Rosenfield GH, Fitzpatrick-Lins K (1986) A coefficient of agreement as a measure of thematic classification accuracy in remote sensing. Photogramm Eng Remote Sens 52:223–227

    Google Scholar 

  • Rouault G, Candau JN, Lieutier F, Nageleisen LM, Martin JC, Warzée N (2006) Effects of drought and heat on forest insect populations in relation to the 2003 drought in Western Europe. Ann For Sci 63:613–624

    Article  Google Scholar 

  • Rutishauser T, Luterbacher J, Defila C, Frank D, Wanner H (2008) Swiss spring plant phenology 2007: extremes, a multi-century perspective, and changes in temperature sensitivity. Geophys Res Lett 35:L05703

    Article  Google Scholar 

  • Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336

    Article  PubMed  Google Scholar 

  • Shaw JD (2000) Application of stand density index to irregularly structured stands. West J Appl For 15:40–42

    CAS  Google Scholar 

  • Shaw JD (2006) Forest Inventory and Analysis (FIA) annual inventory answers the question: what is happening to pinyon-juniper woodlands? J For 103:280–286

    Google Scholar 

  • Shipley B (2000) Cause and correlation in biology: a user’s guide to path analysis, structural equations and causal inference. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Thabeet A, Vennetier M, Gadbin-Henry C, Denelle N, Roux M, Caraglio Y, Vila B (2009) Response of Pinus sylvestris L. to recent climatic events in the French Mediterranean region. Trees 23:843–853

    Article  Google Scholar 

  • Toscano S (2008) L’utilizzo di immagini satellitari per l’individuazione dei cambiamenti nella componente vegetazionale del territorio: aspetti procedurali critici e possibili soluzioni. Dissertation, Università degli Studi di Torino, Torino

  • Townshend JRG, Justice CO, Gurney C, McManus J (1992) The impact of misregistration on change detection. IEEE Trans Geosci Remote Sens 30:1054–1060

    Article  Google Scholar 

  • Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8:127–150

    Article  Google Scholar 

  • Vacchiano G, Dobbertin M, Egli S, Giordano L, Gonthier P, Mazzoglio P, Motta R, Nola P, Nicolotti G, Patetta A, Polomski J, Rigling A, Rigling D (2008) Il deperimento del pino silvestre nelle Alpi occidentali: natura ed indirizzi di gestione. Compagnia delle Foreste, Arezzo

    Google Scholar 

  • Vallauri D (1998) Parasite dynamics of Viscum album L. in Austrian black pine stands in the Saignon watershed (southwestern Alps). Ann For Sci 55:823–835

    Article  Google Scholar 

  • van der Schrier G, Efthymiadis D, Briffa KR, Jones PD (2007) European Alpine moisture variability for 1800–2003. Int J Clim 27:415–427

    Article  Google Scholar 

  • van Leeuwen WJD, Huete AR, Laing TW (1999) MODIS vegetation index compositing approach: a prototype with AVHRR data. Remote Sens Environ 69:264–280

    Article  Google Scholar 

  • van Mantgem PJ, Stephenson NL, Byrne JC, Daniels LD, Franklin JF, Fule PZ, Harmon ME, Larson AJ, Smith JM, Taylor AH (2009) Widespread increases of tree mortality rates in the western United States. Science 323:521–524

    Article  PubMed  Google Scholar 

  • Verbesselt J, Robinson A, Stone C, Culvenor D (2009) Forecasting tree mortality using change metrics derived from MODIS satellite data. For Ecol Manag 258:1166–1173

    Article  Google Scholar 

  • Vermote EF, El Saleous NZ, Justice CO (2002) Atmospheric correction of MODIS data in the visible to middle infrared: first results. Remote Sens Environ 83:97–111

    Article  Google Scholar 

  • Waring RH (1987) Characteristics of trees predisposed to die. Bioscience 37:569–574

    Article  Google Scholar 

  • Weber P, Bugmann H, Rigling A (2007) Radial growth responses to drought of Pinus sylvestris and Quercus pubescens in an inner-Alpine dry valley. J Veg Sci 18:777–792

    Article  Google Scholar 

  • Weber P, Bugmann H, Fonti P, Rigling A (2008) Using a retrospective dynamic competition index to reconstruct forest succession. For Ecol Manag 254:96–106

    Article  Google Scholar 

  • Wermelinger B, Rigling A, Schneider Mathis D, Dobbertin M (2008) Assessing the role of bark-and wood-boring insects in the decline of Scots pine (Pinus sylvestris) in the Swiss Rhone valley. Ecol Entomol 33:239–249

    Article  Google Scholar 

  • Wulff S (2002) The accuracy of forest damage assessments: experiences from Sweden. Environ Monit Assess 74:295–309

    Article  PubMed  Google Scholar 

  • Xiao X, Hollinger D, Aber J, Goltz M, Davidson EA, Zhang Q, Moore B (2004) Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sens Environ 89:519–534

    Article  Google Scholar 

  • Yuhas AN, Scuderi LA (2009) MODIS-derived NDVI characterisation of drought-induced evergreen dieoff in western North America. Geogr Res 47:34–45

    Article  Google Scholar 

  • Zarnoch SJ, Bechtold WA, Stolte KW (2004) Using crown condition variables as indicators of forest health. Can J For Res 34:1057–1070

    Article  Google Scholar 

Download references

Acknowledgments

This research has been supported by European Commission, Regione Piemonte (Direzione Opere pubbliche, Difesa del suolo, Economia Montana e Foreste), Regione Autonoma Valle d’Aosta (Direzione Foreste) and Canton du Valais (Services des forêts et du paysage)—project INTERREG IIIA 2000–2006 Italia-Svizzera “Le pinete delle vallate alpine: un elemento del paesaggio in mutazione”. We acknowledge I.P.L.A. S.p.A. and all data providers, the crew of the Swiss Federal research Institute WSL-Birmensdorf, L. Giordano and A. Rigling for field sampling, D. Godone and F. Pirotti for helping out with remote sensing techniques, J. N. Long, R. J. DeRose and anonymous reviewers for useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Vacchiano.

Additional information

Communicated by R. Matyssek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vacchiano, G., Garbarino, M., Borgogno Mondino, E. et al. Evidences of drought stress as a predisposing factor to Scots pine decline in Valle d’Aosta (Italy). Eur J Forest Res 131, 989–1000 (2012). https://doi.org/10.1007/s10342-011-0570-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-011-0570-9

Keywords

Navigation