Skip to main content
Log in

Canopy effects on vegetation caused by harvesting and regeneration treatments

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

This paper reviews the primary effects of canopy on understorey vegetation to provide insight into the management of the canopy space to benefit tree regeneration. Site conditions, like nutrient and water availability, overstorey conditions, e.g. tree species, and canopy density, are important determinants of ground vegetation. An investigation of canopy effects is concerned about how the canopy trees modify site conditions. As canopy density may be deliberately modified during regeneration treatments, the effect of canopy density on individual species in the herbaceous layer and tree regeneration is important. This autecological perspective focuses on the successional traits of species to help understand species differences in fecundity, survival, density and growth. From a synecological perspective, the importance of successional traits for the outcome of competition between species arising from differences in canopy densities is highlighted. This review shows that moderately dense canopies may favour tree regeneration over aggressive shade-intolerant graminoids or forbs. This is particularly true for shade-tolerant and intermediate shade-tolerant tree species. To better understand and utilise this phenomenon, research should try to identify and isolate different canopy effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abe M, Miguchi H, Honda A, Makita A, Nakashizuka T (2005) Short-term changes affecting regeneration of Fagus crenata after the simultaneous death of Sasa kurilensis. J Veg Sci 16:49–56

    Article  Google Scholar 

  • Abé S, Masaki T, Nakashizuka T (1995) Factors influencing sapling composition in canopy gaps of a temperate deciduous forest. Vegetatio 120:21–32

    Google Scholar 

  • Agestam E, Ekö P-M, Nilsson U, Welander NT (2003) The effects of shelterwood density and site preparation on natural regeneration of Fagus sylvatica in southern Sweden. For Ecol Manag 176:61–73

    Article  Google Scholar 

  • Ammer C (1996a) Impact of ungulates on structure and dynamics of natural regeneration of mixed mountain forests in the Bavarian Alps. For Ecol Manag 88:43–53

    Article  Google Scholar 

  • Ammer C (1996b) Konkurrenz um Licht—zur Entwicklung der Naturverjüngung im Bergmischwald. Forstliche Forschungsberichte München, Schriftenreihe der Universität München und der bayerischen forstlichen Versuchsanstalt No. 158

  • Ammer C (2000) Untersuchungen zum Einfluss von Fichtenaltbeständen auf die Entwicklung junger Buchen. Berichte aus der Holz—und Forstwirtschaft, Shaker Verlag, Aachen, 185 p

  • Ammer C (2002) Response of Fagus sylvatica seedlings to root trenching of overstorey Picea abies. Scand J For Res 17:408–416

    Article  Google Scholar 

  • Ammer C (2003a) Growth and biomass partitioning of Fagus sylvatica L. and Quercus robur L. seedlings in response to shading and small changes in the R/FR-ratio of radiation. Ann For Sci 60:163–171

    Article  Google Scholar 

  • Ammer C (2003b) Zum Einfluss waldbaulicher Massnahmen auf die Naturverjüngung eines Bergmischwaldes. BFW-Berichte 130:67–78

    Google Scholar 

  • Ammer C, Wagner S (2002) Problems and options in modelling fine root biomass of single mature Norway spruce trees at given points from stand data. Can J For Res 32:581–590

    Article  Google Scholar 

  • Ammer C, Mosandl R, El Kateb H (2002) Direct seeding of beech (Fagus sylvatica L.) in Norway spruce (Picea abies [L.] Karst.) stands—effects of canopy density and fine root biomass on seed germination. For Ecol Manag 159:59–72

    Article  Google Scholar 

  • Ammer C, Brang P, Knoke T, Wagner S (2004) I. Methoden zur waldbaulichen Untersuchung von Jungwüchsen. Forstarchiv 75(3):83–110

    Google Scholar 

  • Anderson RC, Loucks OL (1969) Herbaceous response to canopy cover, light intensity, and throughfall precipitation in coniferous forests. Ecology 50(2):255–263

    Article  Google Scholar 

  • Arias D, Calvo-Alvarado J, Dohrenbusch A (2007) Calibration of LAI-2000 to estimate leaf area index (LAI) and assessment of its relationship with stand productivity in six native and introduced tree species. For Ecol Manage 247:185–193

    Article  Google Scholar 

  • Attiwill PM, Leeper GW (1987) Forest soils and nutrient cycles. Melbourne University Press, Melbourne

    Google Scholar 

  • Aubert M, Bureau F, Alard D, Bardat J (2004) Effect of tree mixture on the humic epipedon and vegetation diversity in managed beech forests (Normandy, France). Can J For Res 34:233–248

    Article  Google Scholar 

  • Augusto L, Dupouey JL, Ranger J (2003) Effects of tree species substitution on understory vegetation and environmental conditions in temperate forests. Ann For Sci 60:823–831

    Article  Google Scholar 

  • Axelsson L, Klockare B, Sundqvist C (2006) Oak seedlings grown in different light qualities. Physiol Plant 45(4):378–392

    Google Scholar 

  • Balandier P, Collet C, Miller J, Reynolds P, Zedaker S (2006) Designing forest vegetation management strategies based on the mechanisms and dynamics of crop tree competition by neighbouring vegetation. Forestry 79:3–27

    Article  Google Scholar 

  • Ballaré CL (1999) Keeping up with the neighbours: phytochrome sensing and other signalling mechanisms. Trends Plant Sci 4(3):97–102

    Article  PubMed  Google Scholar 

  • Banez G, Ggokusen K, Saito A (1999) Plasticity in the branching characteristics of four year old Quercus acutissima and Q. serrata seedlings in response to low light intensity and additional fertilizer. Bull Kyushu Univ For 80:27–39

    Google Scholar 

  • Barbier S, Gosselin F, Balandier P (2008) Influence of tree species on understory vegetation diversity and mechanisms involved—a critical review for temperate and boreal forests. For Ecol Manage 254:1–15

    Article  Google Scholar 

  • Baritz R (2001) Humus forms in forests of the northern German lowlands. Academic Dissertation, Institute of Landscape Development, Technical University, Berlin

  • Barkman JJ (1992) Canopies and microclimate of tree species mixtures. In: Cannell MGR, Malcolm DC, Robertson PA (eds) The Ecology of Mixed-Species Stands of Trees. Special Publication 11 of the British Ecological Society, Blackwell Scientific Publications, Oxford, UK, pp 181–188

    Google Scholar 

  • Bauhus J, Puettmann K, Messier C (2009) Silviculture for old-growth attributes. For Ecol Manage 258:525–537

    Article  Google Scholar 

  • Beatty SW (1984) Influence of microtopography and canopy species on spatial patterns of forest understory plants. Ecology 65(5):1406–1419

    Article  Google Scholar 

  • Beniamino F, Ponge JF, Arpin P (1991) Soil acidification under the crown of oak trees. I. Spatial distribution. For Ecol Manage 40:221–232

    Article  Google Scholar 

  • Bens O, Wahl NA, Fischer H, Hüttl RF (2007) Water infiltration and hydraulic conductivity in sandy cambisols, impacts of forest transformation on soil hydraulic properties. Eur J Forest Res 126:101–109

    Article  Google Scholar 

  • Beon M-S, Bartsch N (2003) Early seedling growth of pine (Pinus densiflora) and oaks (Quercus serrata, Q. mongolica, Q. variabilis) in response to light intensity and soil moisture. Plant Ecol 167:97–105

    Article  Google Scholar 

  • Bergstedt J, Milberg P (2001) The impact of logging intensity on field-layer vegetation in Swedish boreal forests. For Ecol Manage 154:105–115

    Article  Google Scholar 

  • Bílek L, Remeš J, Zahradník D (2009) Natural regeneration of senescent even-aged beech (Fagus sylvatica L.) stands under the conditions of Central Bohemia. J For Sci 55(4):145–155

    Google Scholar 

  • Bisbee KE, Gower ST, Norman JM, Nordheim EV (2001) Environmental controls on ground cover species composition and productivity in a boreal black spruce forest. Oecologia 129:261–270

    Article  Google Scholar 

  • Blennow K (1998) Modelling minimum air temperature in partially and clear felled forests. Agric For Meteorol 91:223–235

    Article  Google Scholar 

  • Böcker L, Lochmann E (1977) Ergebnisse ökologischer und technologischer Untersuchungen zur Buchen-Naturverjüngung im Harz und Thüringer Becken. Sozialistische Forstwirtschaft 27(5):145–149

    Google Scholar 

  • Bolstad P, Gower ST, Isebrands JG, Dickson RE, Ceulemans R (1990) Estimation of leaf area index in fourteen southern Wisconsin forest stands using a portable radiometer. Tree Physiol 7:115–124

    PubMed  Google Scholar 

  • Bolte A, Bilke A (1998) Wirkung der Bodenbelichtung auf die Ausbreitung von Calamagrostis epigejos in den Kiefernforsten Noddeutschlands. Forst und Holz 53(8):232–236

    Google Scholar 

  • Brechtel HM (1962) Methodische Beiträge zur Ökologie der Überschirmung und Auflichtung einschichtiger Waldbestände. Schriftenreihe der Landesforstverwaltung Baden-Württemberg, No. 14, Baden-Württembergische Versuchs—und Forschungsanstalt—Sektion Ökologie, Freiburg

  • Briggs JM, Knapp AK (1995) Interannual variability in primary production in tallgrass prairie: climate, soil moisture, topographic position and fire as determinants of aboveground biomass. Am J Bot 82(8):1024–1030

    Article  Google Scholar 

  • Brockway DG, Outcalt KW, Boyer WD (2006) Longleaf pine regeneration ecology and methods. In: Jose S, Jokela EJ, Miller DL (eds) The longleaf pine ecosystem: ecology, silviculture, and restoration. Springer, New York, pp 95–133

    Chapter  Google Scholar 

  • Brown JMB (1951) Influence of shade on the height growth and habit of beech. Forestry commission report on forest research for 1951. HMSO, London, pp 41–45

    Google Scholar 

  • Brzeziecki B, Kienast F (1994) Classifying the life-history strategies of trees on the basis of the Grimian model. For Ecol Manage 69:167–187

    Article  Google Scholar 

  • Buczko U, Bens O, Fischer H, Hüttl RF (2002) Water repellency in sandy luvisols under different forest transformation stages in Northeast-Germany. Geoderma 109(12):1–18

    Article  Google Scholar 

  • Burke DM, Elliott KA, Holmes SB, Bradley D (2008) The effects of partial harvest on the understory vegetation of southern Ontario woodlands. For Ecol Manage 255:2204–2212

    Article  Google Scholar 

  • Burschel P, Schmaltz J (1965) Die Bedeutung des Lichtes für die Entwicklung junger Buchen. Allgemeine Forst- und Jagd-Zeitung 136(9):193–210

    Google Scholar 

  • Burschel P, El Kateb H, Huss J, Mosandl R (1985) Die Verjüngung im Bergmischwald. Erste Ergebnisse einer Untersuchung in den ostbayerischen Kalkalpen. Forstw Cbl 104:65–100

    Article  Google Scholar 

  • Burschel P, El Kateb H, Mosandl R (1992) Experiments in mixed mountain forests in Bavaria. In: Kelty MJ, Larson BC, Oliver CD (eds) The ecology and silviculture of mixed-species-forests. Kluwer, Dordrecht, pp 183–216

    Google Scholar 

  • Busing RT (1994) Canopy cover and tree regeneration in old-growth cove forests of the Appalachian Mountains. Vegetatio 115:19–27

    Google Scholar 

  • Canham CD (1988) Growth and canopy architecture of shade-tolerant trees: response to canopy gaps. Ecology 69(3):786–795

    Article  Google Scholar 

  • Canham CD, Denslow JS, Platt WJ, Runkle JR, Spies TA, White PS (1990) Light regimes beneath closed canopies and tree-fall gaps in temperate tropical forests. Can J For Res 20:620–631

    Article  Google Scholar 

  • Canham CD, Finzi AC, Pacala SW, Burbank DH (1994) Causes and consequences of resource heterogeneity in forests: interspecific variation in light transmission by canopy trees. Can J For Res 24:337–349

    Article  Google Scholar 

  • Chen J, Franklin JF, Spies TA (1992) Vegetation responses to edge environments in old-growth Douglas-fir forests. Ecol Appl 2(4):387–396

    Article  Google Scholar 

  • Chrimes D, Nilson K (2005) Overstorey density influence on the height of Picea abies regeneration in northern Sweden. Forestry 78(4):433–442

    Article  Google Scholar 

  • Clark JS, Macklin E, Wood L (1998) Stages and spatial scales of recruitment limitation in southern Appalachian forests. Ecol Monogr 68(2):213–235

    Article  Google Scholar 

  • Cole PG, Weltzin JF (2005) Light limitation creates patchy distribution of an invasive grass in eastern deciduous forests. Biol Invasions 7:477–488

    Article  Google Scholar 

  • Collet C, Lanter O, Pardos M (2001) Effects of canopy opening on height and diameter growth in naturally regenerated beech seedlings. Ann For Sci 58:127–134

    Article  Google Scholar 

  • Collet C, Lanter O, Pardos M (2002) Effects of canopy opening on the morphology and anatomy of naturally regenerated beech seedlings. Trees 16:291–298

    Article  Google Scholar 

  • Collins B, Battaglia LL (2008) Oak regeneration in southeastern bottomland hardwood forest. For Ecol Manage 255:3026–3034

    Article  Google Scholar 

  • Collins BS, Picket STA (1987) Influence of canopy opening on the environment and herb layer in a northern hardwoods forest. Vegetatio 70:3–10

    Google Scholar 

  • Combes D, Sinoquet H, Varlet-Grancher C (2000) Preliminary measurement and simulation of the spatial distribution of the morphogenetically active radiation (MAR) within an isolated tree canopy. Ann For Sci 57:497–511

    Article  Google Scholar 

  • Conrad B (2005) Regenerationsdynamik buchendominierter Laubwälder auf Kalkstandorten. Dissertation, Albert-Ludwigs-Universität Freiburg im Breisgau

  • Coomes DA, Grubb PJ (2000) Impacts of root competition in forests and woodlands: a theoretical framework and review of experiments. Ecol Monogr 70(2):171–207

    Article  Google Scholar 

  • Curt T, Prévosto B (2004) Dimensional relationships of naturally established European beech trees beneath Scots pine and Silver birch canopy. For Ecol Manage 194:335–348

    Article  Google Scholar 

  • Dai X (1996) Influence of light conditions in canopy gaps on forest regeneration: a new gap light index and its application in a boreal forest in east-central Sweden. For Ecol Manage 84:187–197

    Article  Google Scholar 

  • Davis MA, Wrage KJ, Reich PB, Tjoelker MG, Schaeffer T, Muermann C (1999) Survival, growth, and photosynthesis of tree seedlings competing with herbaceous vegetation along a water-light-nitrogen gradient. Plant Ecol 145:341–350

    Article  Google Scholar 

  • Degen B, Gregorius H-R, Scholz F (1996) ECO-GENE, a model for simulation studies on the spatial and temporal dynamics of genetic structures of tree populations. Silvae Genetica 45(5/6):323–329

    Google Scholar 

  • Deleporte S, Tillier P (1999) Long-term effects of mineral amendments on soil fauna and humus in an acid beech forest floor. For Ecol Manage 118:245–252

    Article  Google Scholar 

  • Denner M (2007) Auswirkungen des ökologischen Waldumbaus in der Dübener Heide und im Erzgebirge auf die Bodenvegetation. Ermittlung phytozönotischer Indikatoren für naturschutzfachliche Bewertungen. No. 29, Forstwissenschaftliche Beiträge Tharandt

  • Diaci J (2002) Regeneration dynamics in a Norway spruce plantation on a silver fir-beech forest site in the Slovenian Alps. For Ecol Manage 161:27–38

    Article  Google Scholar 

  • Dobrowolska D (2008a) Effect of stand density on oak regeneration in flood plain forests in Lower Silesia, Poland. Forestry 81(4):511–523

    Article  Google Scholar 

  • Dobrowolska D (2008b) Growth and development of silver fir (Abies alba Mill.) regeneration and restoration of the species in the Karkonosze Mountains. J For Sci 54(9):398–408

    Google Scholar 

  • Dorland E, Willems JH (2006) High light availability alleviates the costs of reproduction in Ophrys insectifera (Orchidaceae). J Europäischer Orchideen 38(2):369–386

    Google Scholar 

  • Drever CR, Lertzman KP (2003) Effects of a wide gradient of retained tree structure on understory light in coastal Douglas-fir forests. Can J For Res 33:137–146

    Article  Google Scholar 

  • Dumais D, Prévost M (2008) Ecophysiology and growth of advance red spruce and balsam fir regeneration after partial cutting in yellow birch-conifer stands. Tree Physiol 28:1221–1229

    CAS  PubMed  Google Scholar 

  • Ebrecht L, Schmidt W (2003) Nitrogen mineralization and vegetation along skidding tracks. Ann For Sci 60:733–740

    Article  Google Scholar 

  • Edelkraut KA (2003) Interacting effects of resources and competition on the growth of wetland plants. Dissertation ETH No. 15250, Swiss Federal Institute of Technology, Zurich

  • Ellenberg H (1939) Über Zusammensetzung, Standort und Stoffproduktion bodenfeuchter Eichen- und Buchen-Mischwaldgesellschaften Nordwestdeutschlands. Mitt Florist Soziol Arb gem Niedersachsen 5:3–135

    Google Scholar 

  • Ellenberg H (1988) Vegetation ecology of Central Europe (trans: Strutt GK). Cambridge University Press

  • Ellenberg H (1992) Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica XVIII, 2., verb. und erw. Aufl., Verlag Erich Goltze, Göttingen

  • Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. 5., stark veränd. u. verb. Aufl., Stuttgart, UTB für Wissenschaft: Botanik, Ökologie, Agrar—und Forstwissenschaften, Geographie

  • Emborg J (1998) Understorey light conditions and regeneration with respect to the structural dynamics of a near-natural temperate deciduous forest in Denmark. For Ecol Manage 106:83–95

    Article  Google Scholar 

  • Emmer M, Sevink J (1994) Temporal and vertical changes in the humus form profile during a primary succession of Pinus sylvestris. Plant Soil 167:281–295

    Article  CAS  Google Scholar 

  • Ericsson T (1995) Growth and shoot: root ratio of seedlings in relation to nutrient availability. Plant Soil 168–169:205–214

    Article  Google Scholar 

  • Ernst WHO (2004) Vegetation, organic matter and soil quality. In: Developments in Soil Science, vol 29. Elsevier, pp 41–98

  • Falinski JB (1986) Vegetation dynamics in temperate lowland primeval forests. W. Junk Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Fenner M (2000) Seeds—the ecology of regeneration in plant communities, 2nd edn. CABI, Wallingford

    Book  Google Scholar 

  • Ferrari JB, Sugita S (1996) A spatially explicit model of leaf litter fall in hemlock-hardwood forests. Can J For Res 26:1905–1913

    Article  Google Scholar 

  • Finzi AC, van Breemen N, Canham CD (1998a) Canopy tree-soil interactions within temperate forests: species effects on soil carbon and nitrogen. Ecol Appl 8(2):440–446

    Google Scholar 

  • Finzi AC, Canham CD, van Breemen N (1998b) Canopy tree-soil interactions within temperate forests: species effects on pH and cations. Ecol Appl 8(2):447–454

    Google Scholar 

  • Fischer H, Bens O (2002) Artenkombination und assoziierte Artmerkmale der Bodenvegetation innerhalb einer unechten Eichen-Zeitreihe (Quercus petraea Liebl.). Allgemeine Forst- und Jagd-Zeitung 173(1):8–14

    Google Scholar 

  • Fischer H, Bens O, Hüttl RF (2002) Changes in humus form, humus stock and soil organic matter distribution caused by forest transformation in the North-Eastern lowlands of Germany. Forstw Cbl 121:322–334

    Article  CAS  Google Scholar 

  • Fraterrigo JM, Turner MG, Pearson SM (2006) Interactions between land use, life history traits and understory spatial heterogeneity. Landsc Ecol 21:777–790

    Article  Google Scholar 

  • Fuller RJ (2008) Forest management effects on carabid beetle communities in coniferous and broadleaved forests: implications for conservation. Insect Conserv Divers 1:242–252

    Article  Google Scholar 

  • Gaudio N, Balandier P, Marquier A (2008) Light-dependent development of two competitive species (Rubus idaeus, Cytisus scoparius) colonizing gaps in temperate forest. Ann For Sci 65:104

    Article  Google Scholar 

  • Gilbert B, Lechowicz MJ (2004) Neutrality, niches, and dispersal in a temperate forest understory. Proc Natl Acad Sci USA 101:7651–7656

    Article  CAS  PubMed  Google Scholar 

  • Godefroid S, Koedam N (2004) The impact of forest paths upon adjacent vegetation: effects of the path surfacing material on the species composition and soil compaction. Biol Conserv 119:405–419

    Article  Google Scholar 

  • Goldberg DE (1990) Components of resource competition in plant communities. In: Grace and Tilman (ed) Perspectives on plant competition. Academic Press, pp 27–49

  • Grant RH (1997) Partitioning of biologically active radiation in plant canopies. Int J Biometeorol 40(1):26–40

    Article  Google Scholar 

  • Grassi G, Minotta G, Tonon G, Bagnaresi U (2004) Dynamics of Norway spruce and silver fir natural regeneration in a mixed stand under uneven-aged management. Can J For Res 34(1):141–149

    Article  Google Scholar 

  • Gray AN, Spies TA (1997) Microsite controls on tree seedling establishment in conifer forest canopy gaps. Ecology 78(8):2458–2473

    Article  Google Scholar 

  • Greis I, Kellomäki S (1981) Crown structure and stem growth of Norway spruce undergrowth under varying shading. Silva Fennica 15(3):306–322

    Google Scholar 

  • Griffith TM, Sultan SE (2005) Shade tolerance plasticity in response to neutral vs. green shade cues in Polygonum species of contrasting ecological breadth. New Phytol 166:141–148

    Article  PubMed  Google Scholar 

  • Grime JP (2001) Plant strategies and vegetation processes. Wiley, Chichester 417 p

    Google Scholar 

  • Grime JP, Jeffrey DW (1965) Seedling establishment in vertical gradients of sunlight. J Ecol 53(3):621–642

    Article  Google Scholar 

  • Grimm V, Railsback SF (2005) Individual-based modeling and ecology. Princeton series in theoretical and computational biology. Princeton University Press, Princeton, p 428

    Google Scholar 

  • Groot A (1999) Effects of shelter and competition on early growth of planted white spruce. Can J For Res 29:1002–1014

    Article  Google Scholar 

  • Güsewell S (2005) Nutrient resorption of wetland graminoids is related to the type of nutrient limitation. Ecology 19:344–354

    Google Scholar 

  • Haeupler H (2000) Biodiversität in Zeit und Raum—Dynamik oder Konstanz. Ber Reinhold-Tüxen-Ges 12

  • Hahn K, Thomsen RP (2007) Ground flora in Suserup Skov: characterized by forest continuity and natural gap dynamics or edge-effect and introduced species? Ecol Bull 52:167–181

    Google Scholar 

  • Hannerz M, Hånell B (1997) Effects on the flora in Norway spruce forests following clearcutting and shelterwood cutting. For Ecol Manage 90:29–49

    Article  Google Scholar 

  • Hanssen KH (2003) Natural regeneration of Picea abies on small clear-cuts in SE Norway. For Ecol Manage 180:199–213

    Article  Google Scholar 

  • Härdtle W, von Oheimb G, Westphal C (2003) The effects of light and soil conditions on the species richness of the ground vegetation of deciduous forests in northern Germany (Schleswig-Holstein). For Ecol Manage 182:327–338

    Article  Google Scholar 

  • Harmer R, Morgan G (2007) Development of Quercus robur advance regeneration following canopy reduction in an oak woodland. Forestry 80:137–149

    Article  Google Scholar 

  • Harper JL (1977) Population biology of plants. Academic Press, New York

    Google Scholar 

  • Harrington TB (2006) Plant competition, facilitation, and other overstorey-understory interactions in longleaf pine ecosystems. In: Jose S, Jokela EJ, Miller DL (eds) The longleaf pine ecosystem: ecology, silviculture, and restoration. Springer, New York, pp 135–156

    Chapter  Google Scholar 

  • Harrington TB, Dagley CM, Edwards MB (2003) Above- and belowground competition from longleaf pine plantations limits performance of reintroduced herbaceous species. For Sci 49(5):681–695

    Google Scholar 

  • Hart SA, Chen HYH (2006) Understory vegetation dynamics of North American boreal forests. Crit Rev Plant Sci 25:381–397

    Article  Google Scholar 

  • Heithecker TD, Halpern CB (2006) Variation in microclimate associated with dispersed-retention harvests in coniferous forests of western Washington. For Ecol Manage 226:60–71

    Article  Google Scholar 

  • Hester AJ, Miles J, Gimingham CH (1991) Succession from heather moorland to birch woodland. II. Competition between Vaccinium myrtillus, Deschampsia flexuosa and Agrostis capillaries. J Ecol 79:317–328

    Article  Google Scholar 

  • Hofmeister J, Jaljevic M, Hosek J, Sádlo J (2002) Eutrophication of deciduous forests in the Bohemian Karst (Czech Republic): the role of nitrogen and phosphorus. For Ecol Manage 169:213–230

    Article  Google Scholar 

  • Hofmeister J, Hosek J, Modrý M, Rolecek J (2009) The influence of light and nutrient availability on herb layer species richness in oak-dominated forests in central Bohemia. Plant Ecol (in press)

  • Holderegger R (1996) Effects of litter removal on the germination of Anemone nemorosa L. Flora 191:175–177

    Google Scholar 

  • Hunziker U, Brang P (2005) Microsite patterns of conifer seedling establishment and growth in a mixed stand in the southern Alps. For Ecol Manage 210:67–79

    Article  Google Scholar 

  • Hutchinson GE (1978) An introduction to population ecology. Yale University Press, New Haven

    Google Scholar 

  • Janzen DH (1970) Herbivores and the number of tree species in tropical forests. Am Nat 104(940):501–528

    Article  Google Scholar 

  • Jennings SB, Brown ND, Sheil D (1999) Assessing forest canopies and understory illumination: canopy closure, canopy cover and other measures. Forestry 72(1):59–73

    Article  Google Scholar 

  • Jobidon R, Cyr G, Thiffault N (2004) Plant species diversity and composition along an experimental gradient of northern hardwood abundance in Picea mariana plantations. For Ecol Manage 198:209–221

    Article  Google Scholar 

  • Karlsson C (2000) Seed production of Pinus sylvestris after release cutting. Can J For Res 30:982–989

    Article  Google Scholar 

  • Karlsson M (2001) Natural regeneration of broadleaved tree species in Southern Sweden. Effects of silvicultural treatments and seed dispersal from surrounding stands, Silvestra 196

  • Kenk G (1988) Der Volumen—und Wertzuwachs im Stadium der natürlichen Verjüngung eines Kiefern—Tannen—Bestandes durch den Schirmkeilschlag in Langenbrand/Nordschwarzwald. Allgemeine Forst- und Jagd-Zeitung 159(8):154–164

    Google Scholar 

  • Koerselman W, Meuleman AFM (1996) The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J Appl Ecol 33:1441–1450

    Article  Google Scholar 

  • Kotowski W, van Andel J, van Diggelen R, Hogendorf J (2001) Responses of fen plant species to groundwater level and light intensity. Plant Ecol 155:147–156

    Article  Google Scholar 

  • Kozlowski TT, Kramer PJ, Pallardy SG (1991) The physiological ecology of woody plants. Academic Press, San Diego, p 657

    Google Scholar 

  • Kramer PJ, Kozlowski TT (1979) Physiology of woody plants. Academic Press, San Diego

    Google Scholar 

  • Kühlmann S, Heikkinen J, Särkkä A, Hjort U (2001) Relating abundance of ground vegetation species and tree patterns at local scale using ecological field theory. In: Proceedings of IUFRO 4.11, conference. University of Greenwich. [Online] http://cms1.gre.ac.uk/conferences/iufro/proceedings. Accessed 19 Sep 2009

  • Kull O, Aan A (1997) The relative share of graminoid and forb life-forms in a natural gradient of herb layer productivity. Ecography 120:146–154

    Article  Google Scholar 

  • Küßner R (1991) Sukzessionale Prozesse in Fichtenbeständen (Picea abies) des Osterzgebirges—Möglichkeiten ihrer waldbaulichen Beeinflussung und ihre Bedeutung für einen ökologisch begründeten Waldumbau. Forstw Cbl 116:359–369

    Google Scholar 

  • Küßner R (1999) Ein auf Strahlungsmessungen basierendes Verfahren zur Bestimmung des Blattflächenindexes und zur Charakterisierung der Überschirmung in Fichtenbeständen—Methodische Untersuchungen und Anwendung in der waldbaulichen Praxis. Forstwissenschaftliche Beiträge Tharandt 5

  • Küßner R, Reynolds PE, Bell FW (2000) Growth response of Picea mariana seedlings to competition for radiation. Scand J For Res 15:334–342

    Article  Google Scholar 

  • Kuuluvainen T, Hokkanen TJ, Järvinen E, Pukkala T (1993) Factors related to seedling growth in a boreal Scots pine stand: a spatial analysis of a vegetation-soil system. Can J For Res 23:2101–2109

    Article  Google Scholar 

  • Landhäusser SM, Stadt KJ, Lieffers VJ (1996) Screening for control of a forest weed: early competition between three replacement species and Calamagrostis canadensis or Picea glauca. J Appl Ecol 33:1517–1526

    Article  Google Scholar 

  • Larcher W (2001) Ökophysiologie der Pflanzen—Leben, Leistung und Streßbewältigung der Pflanzen in ihrer Umwelt. 6, neubearb. Aufl., Ulmer, Stuttgart

  • Lee DW, Oberbauer SF, Johnson P, Krishnapilay B, Mansor M, Mohamad H, Yap SK (2000) Effects of irradiance and spectral quality on leaf structure and function in seedlings of two Southeast Asian Hopea (Dipterocarpaceae) species. Am J Bot 87:447–455

    Article  PubMed  Google Scholar 

  • Lehmann B (2007) Effekte einzelbaumweise eingemischter einheimischer Eichen in Wäldern der Gemeinen Kiefer (Pinus sylvestris L.) auf Standorten geringer Trophie und Wasserversorgung im Süden Brandenburgs. Dresden, Technical University, Fak. Forst-, Geo- und Hydrowissenschaften, Dissertation, 145 p

  • Leicht SA, Silander JA Jr (2006) Differential responses of invasive Celastrus orbiculatus (Celastraceae) and native C. scandens to changes in light quality. Am J Bot 93:972–977

    Article  Google Scholar 

  • Leonhardt B, Wagner S (2006) Qualitative Entwicklung von Buchen-Voranbauten unter Fichtenschirm. Forst und Holz 61(11):454–457

    Google Scholar 

  • Leps J, Smilauer P (2007) Multivariate analysis of ecological data using CANOCO, 3rd edn. Cambridge University Press, Cambridge 269 p

    Google Scholar 

  • Leuchner M, Menzel A, Werner H (2007) Quantifying the relationship between light quality and light availability at different phenological stages within a mature mixed forest. Agric For Meteorol 142:35–44

    Article  Google Scholar 

  • Leuschner Ch, Hertel D, Coners H, Büttner V (2001) Root competition between beech and oak: a hypothesis. Oecologia 126(2):276–284

    Article  Google Scholar 

  • Lieffers VJ, Stadt KJ (1994) Growth of understory Picea glauca, Calamagrostis canadensis, and Epilobium angustifolium in relation to overstorey light transmission. Can J For Res 24:1193–1198

    Article  Google Scholar 

  • Lieffers VJ, Messier C, Stadt KJ, Gedron F, Comeau PG (1999) Predicting and managing light in the understory of boreal forests. Can J For Res 29:796–811

    Article  Google Scholar 

  • Lindh BC, Muir PS (2004) Understory vegetation in young Douglas-fir forests: does thinning help restore old-growth composition? For Ecol Manage 192:285–296

    Article  Google Scholar 

  • Liski J (1995) Variation in soil organic carbon and thickness of soil horizons within boreal forest stand—effect of tree implication for sampling. Silva Fennica 29(4):255–266

    Google Scholar 

  • Löf M, Karlsson M, Sonesson K, Welander TN, Collet C (2007) Growth and mortality in underplanted tree seedlings in response to variations in canopy closure of Norway spruce stands. Forestry 80(4):371–384

    Article  Google Scholar 

  • Lüpke Bv (1987) Einflüsse von Altholzüberschirmung und Bodenvegetation auf das Wachstum junger Buchen und Traubeneichen. Forstarchiv 58:18–24

    Google Scholar 

  • Lüpke Bv (1998) Silvicultural methods of oak regeneration with special respect to shade tolerant mixed species. For Ecol Manage 106:19–26

    Article  Google Scholar 

  • Lüpke Bv (1982) Versuche zur Einbringung von Lärche und Eiche in Buchenbestände. Schriftenreihe der Forstlichen Fakultät der Uni Göttingen und der Niedersächsischen Forstlichen Versuchsanstalt Göttingen, No 74, J.D. Sauerländer’s Verlag, Frankfurt

  • Lüpke Bv, Hauskeller-Bullerjahn K (2004) Beitrag zur Modellierung der Jungwuchsentwicklung am Beispiel von Traubeneichen-Buchen-Mischverjüngung. Allgemeine Forst- und Jagd-Zeitung 175(4/5):61–69

    Google Scholar 

  • Lyr H, Hoffmann G, Dohse K (1963) Über den Einfluß unterschiedlicher Beschattung auf die Stoffproduktion von Jungpflanzen einiger Waldbäume. I. Mitteilung Flora-Allgemeine Botanische Zeitung (Jena) 152:291–311

    Google Scholar 

  • Lyr H, Hoffmann G, Engel W (1964) Über den Einfluß unterschiedlicher Beschattung auf die Stoffproduktion von Jungpflanzen einiger Waldbäume. II. Mitteilung Flora-Allgemeine Botanische Zeitung (Jena) 155:305–330

    Google Scholar 

  • Lyr H, Polster H, Fiedler H-J (1967) Gehölzphysiologie. Gustav Fischer Verlag, Jena

    Google Scholar 

  • Madsen P, Hahn K (2008) Natural regeneration in a beech-dominated forest managed by close-to-nature principles—a gap cutting based experiment. Can J For Res 38:1716–1729

    Article  Google Scholar 

  • Madsen P, Larsen B (1997) Natural regeneration of beech (Fagus sylvatica L.) with respect to canopy density, soil moisture and soil carbon content. For Ecol Manage 97:95–105

    Article  Google Scholar 

  • Mamolos AP, Veresoglou DS, Barbayiannis N (1995) Plant species abundance and tissue concentrations of limiting nutrients in low-nutrient grasslands: a test of competition theory. J Ecol 83:485–497

    Article  Google Scholar 

  • Matlack GR, Litvaitis JA (1999) Forest edges. In: Hunter ML Jr (ed) Maintaining biodiversity in forest ecosystems. Cambridge University Press, Cambridge

    Google Scholar 

  • McClure JW, Lee TD, Leak WB (2000) Gap capture in northern hardwoods: patterns of establishment and height growth in four species. For Ecol Manage 127:181–189

    Article  Google Scholar 

  • Meir P, Kruijt B, Broadmeadow M, Barbosa E, Kull O, Carswell F, Nobre A, Jarvis PG (2002) Acclimation of photosynthetic capacity to irradiance in tree canopies in relation to leaf nitrogen concentration and leaf mass per unit area. Plant Cell Environ 25:343–357

    Article  Google Scholar 

  • Messaoud Y, Houle G (2006) Spatial patterns of tree seedling establishment and their relationship to environmental variables in a cool-temperate deciduous forest of eastern North America. Plant Ecol 185:319–331

    Article  Google Scholar 

  • Mitamura M, Yamamura Y, Nokano T (2009) Large-scale canopy opening causes decreased photosynthesis in the saplings of shade-tolerant. Tree Physiol 29:137–145

    Article  CAS  PubMed  Google Scholar 

  • Mitscherlich G, Künstle E, Lang W (1967) Ein Beitrag zur Frage der Beleuchtungsstärke im Bestande. Allgemeine Forst- und Jagd-Zeitung 138(10):213–223

    Google Scholar 

  • Modrý M, Hubený D, Rejšek K (2004) Differential response of naturally regenerated European shade tolerant tree species to soil type and light availability. For Ecol Manag 188:185–195

    Article  Google Scholar 

  • Mölder A, Schmidt W (2007) Relationship between herb layer biomass and tree layer diversity in deciduous forests. Verh Ges Ökol 37:52

    Google Scholar 

  • Mölder A, Bernhardt-Römermann M, Schmidt W (2008) Herb-layer diversity in deciduous forests: raised by tree richness or beaten by beech? For Ecol Manag 256:272–281

    Article  Google Scholar 

  • Moola FM, Mallik AU (1998) Morphological plasticity and regeneration strategies of velvet leaf blueberry (Vaccinium myrtilloides Michx.) following canopy disturbance in boreal mixedwood forests. For Ecol Manage 111:35–50

    Article  Google Scholar 

  • Mosandl R.(1984) Löcherhiebe im Bergmischwald. Ein waldbauökologischer Beitrag zur Femelschlagverjüngung in den Chiemgauer Alpen. Forstl. Forsch.ber. München 61, 317 S

  • Mosandl R (1991) Die Steuerung von Waldökosystemen mit waldbaulichen Mitteln—dargestellt am Beispiel des Bergmischwaldes. Mitteilungen aus der Staatsforstverwaltung Bayerns No. 46, München

  • Mosandl R, Kleinert A (1998) Development of oaks (Quercus petraea [MATT.] Liebl.) emerged from bird-dispersed seeds under old-growth pine (Pinus silvestris L.) stands. For Ecol Manage 106:35–44

    Article  Google Scholar 

  • Mountford EP, Savill PS, Bebber DP (2006) Patterns of regeneration and ground vegetation associated with canopy gaps in a managed beechwood in southern England. Forestry 79(4):389–408

    Article  Google Scholar 

  • Mrotzek R (1998) Wuchsdynamik und Mineralstoffhaushalt der Krautschicht in einem Buchenwald auf Basalt. Berichte des Forschungszentrums Waldökosysteme, Reihe A, No. 152, Selbstverlag des Forschungszentrums Waldökosysteme der Universität Göttingen

  • Navrátil M, Špunda V, Marková I, Janouš D (2007) Spectral composition of photosynthetically active radiation penetrating into a Norway spruce canopy: the opposite dynamics of the blue/red spectral ratio during clear and overcast days. Trees Struct Funct 21:311–320

    Google Scholar 

  • Nelson CR, Halpern CB (2005) Edge-related responses of understory plants to aggregated retention harvest in the Pacific Northwest. Ecol Appl 15(1):196–209

    Article  Google Scholar 

  • Newton AC, Dick JM, McBeath C, Leakey RRB (1996) The influence of R:FR ratio on the growth, photosynthesis and rooting ability of Terminalia spinosa Engl. and Triplochiton scleroxylon K. Schum. Ann Appl Biol 128(3):541–556

    Article  Google Scholar 

  • Nyland RD (2002) Silviculture, 2nd edn. Mc Craw Hill, Boston

    Google Scholar 

  • O’Connell DA, Ryan PJ, McKenzie NJ, Ringrose-Voase AJ (2000) Quantitative site and soil descriptors to improve the utility of forest soil surveys. For Ecol Manage 138:107–122

    Article  Google Scholar 

  • Olff H (1992) Effects of light and nutrient availability on dry matter and N allocation in six successional grassland species. Oecologia 89:412–421

    Google Scholar 

  • Oliver CD, Larson BC (1996) Forest stand dynamics. Wiley, New York (Update edn)

    Google Scholar 

  • Örlander G, Karlsson Ch (2000) Influence of shelterwood density on survival and height increment of Picea abies advance growth. Scand J For Res 15:20–29

    Article  Google Scholar 

  • Ovington JD (1965) Organic production, turnover and mineral cycling in woodlands. Biol Rev 40:295–336

    Article  Google Scholar 

  • Pacala SW, Canham CD, Silander JA Jr, Kobe RK (1994) Sapling growth as a function of resources in a north temperate forest. Can J For Res 24:2172–2183

    Article  Google Scholar 

  • Pacala SW, Canham CD, Saponara J, Silander JA, Kobe RK, Ribbens E (1996) Forest models defined by field measurements: estimation, error analysis and dynamics. Ecol Monogr 66(1):1–43

    Article  Google Scholar 

  • Packer A, Clay K (2000) Soil pathogens and spatial patterns of seedling mortality in a temperate tree. Nature 404:278–281

    Article  CAS  PubMed  Google Scholar 

  • Pagès J-P, Pache G, Joud D, Magnan N, Michalet R (2003) Direct and indirect effects of shade on four forest tree seedlings in the French Alps. Ecology 84(10):2741–2750

    Article  Google Scholar 

  • Palik B, Mitchell RJ, Pecot S, Battaglia M, Pu M (2003) Spatial distribution of overstorey retention influences resources and growth of longleaf pine seedlings. Ecol Appl 13(3):674–686

    Article  Google Scholar 

  • Paquette A, Bouchard A, Cogliastro A (2006) Survival and growth of under-planted trees: a meta-analysis across four biomes. Ecol Appl 16(4):1575–1589

    Article  PubMed  Google Scholar 

  • Parent S, Messier C (1995) Effets d’un gradient de lumière sur la croissance en hauteur et la morphologie de la cime du sapin baumier régénéré naturellement. Can J For Res 25:878–885

    Article  Google Scholar 

  • Petritan AM, von Lüpke B, Petritan IC (2007) Effects of shade on growth and mortality of maple (Acer pseudoplatanus), ash (Fraxinus excelsior) and beech (Fagus sylvatica) saplings. Forestry 80(4):397–412

    Article  Google Scholar 

  • Pianka ER, Horn HS (2005) Ecology’s legacy from Robert MacArthur, Chap. 11. In: Cuddington K, Biesner B (eds) Ecological paradigms lost: routes of theory change. Elsevier and Academic Press, pp 213–232

  • Ponge JF (2003) Humus forms in terrestrial ecosystems: a framework to biodiversity. Soil Biol Biochem 35:935–945

    Article  CAS  Google Scholar 

  • Powell GW, Bork EW (2006) Aspen canopy removal and root trenching effects on understory vegetation. For Ecol Manage 230:79–90

    Article  Google Scholar 

  • Pyšek P (1991) Biomass production and size structure of Calamagrostis villosa populations in different habitats. Preslia, Praha 63:9–20

    Google Scholar 

  • Pyšek P (1993) What do we know about Calamagrostis villosa? A review of the species behaviour in secondary habitats. Preslia, Praha 64(4):1–20

    Google Scholar 

  • Reader RJ, Bonser SP, Duralia TE, Bricker BD (1995) Interspecific variation in tree seedling establishment in canopy gaps in relation to tree density. J Veg Sci 6:609–614

    Article  Google Scholar 

  • Ricard J-P, Messier C (1996) Abundance, growth and allometry of red raspberry (Rubus idaeus L.) along a natural light gradient in a northern hardwood forest. For Ecol Manage 81:153–160

    Article  Google Scholar 

  • Rice KJ, Nagy ES (2000) Oak canopy effects on the distribution patterns of two annual grasses: the role of competition and soil nutrients. Am J Bot 87(11):1699–1706

    Article  PubMed  Google Scholar 

  • Riegel GM, Miller RF, Krueger WC (1995) The effects of above ground and belowground competition on understory species composition in a Pinus ponderosa forest. For Sci 41:864–889

    Google Scholar 

  • Ritchie GA (1997) Evidence for red:far red signaling and morphogenetic growth response in Douglas fir (Pseudotsuga menziesii) seedlings. Tree Physiol 17:161–168

    PubMed  Google Scholar 

  • Ritter E, Dalsgaard L, Einhorn KS (2005) Light, temperature and soil moisture regimes following gap formation in a semi-natural beech-dominated forest in Denmark. For Ecol Manage 206:15–33

    Article  Google Scholar 

  • Roberts MR, Zhu L (2002) Early response of the herbaceous layer to harvesting in a mixed coniferous-deciduous forest in New Brunswick. Can For Ecol Manage 155:17–31

    Article  Google Scholar 

  • Röhrig E, Bartsch N, Bv Lüpke (2006) Waldbau auf ökologischer Grundlage. Ulmer, Stuttgart

    Google Scholar 

  • Roloff A (2004) Bäume—Phänomene der Anpassung und Optimierung. Ecomed, Landsberg am Lech

    Google Scholar 

  • Royo AA, Carson WP (2006) On the formation of dense understorey layers in forests worldwide: consequences and implications for forest dynamics, biodiversity, and succession. Can J For Res 36:1345–1362

    Article  Google Scholar 

  • Sakamaki Y, Ino Y (2002) Influence of shade timing on an Equisetum arvense L. population. Ecol Res 17:673–686

    Article  Google Scholar 

  • Schall P (1998) Ein Ansatz zur Modellierung der Naturverjüngungsprozesse im Bergmischwald der östlichen Bayerischen Alpen. Berichte des Forschungszentrums Waldökosysteme, Reihe A, Bd. 155

  • Schmidt W (2005) Herb layer species as indicators of biodiversity of managed and unmanaged beech forests. For Snow Landsc Res 79:111–125

    Google Scholar 

  • Schmidt W, Weckesser M (2001) Struktur und Diversität der Waldvegetation als Indikatoren für eine nachhaltige Waldnutzung. Forst und Holz 56(15):493–498

    Google Scholar 

  • Schmidt-Vogt H (1972) Untersuchungen zur Bedeutung des Lichtfaktors bei Femelschlagverjüngung von Tannen-Buchen-Fichten-Wäldern im westlichen Hoch-schwarzwald. Forstwissenschaftliches Centralblatt 91:238–247

    Article  Google Scholar 

  • Schmitt J, Wulff RD (1993) Light spectral quality, phytochrome and plant competition. Trends Ecol Evol 8:47–51

    Article  CAS  PubMed  Google Scholar 

  • Schopfer P, Brennicke A (2006) Pflanzenphysiologie. 6. Aufl., Elsevier, Spektrum Akad., Heidelberg, 700 S

  • Schulze K (1998) Wechselwirkungen zwischen Waldbauform, Bejagungsstrategie und der Dynamik von Rehwildbeständen. Ph.D. Thesis, Institute of silviculture, University of Göttingen, 265 p

  • Seidling W (2005) Ground floor vegetation assessment within the intensive (Level II) monitoring of forest ecosystems in Germany: chances and challenges. Eur J Forest Res 124:301–312

    Article  Google Scholar 

  • Shibata M, Nakashizuka T (1995) Seed and seedling demography of four co-occurring Carpinus species in a temperate deciduous forest. Ecology 76(4):1099–1108

    Article  Google Scholar 

  • Shimatani K, Kimura M, Kitamura K, Suyama Y, Isagi Y, Sugita H (2007) Determining the location of a deceased mother tree and estimating forest regeneration variables by use of microsatellites and spatial genetic models. Popul Ecol 49:317–330

    Article  Google Scholar 

  • Shropshire C, Wagner RG, Bell FW, Swanton CJ (2001) Light attenuation by early successional plants of the boreal forest. Can J For Res 31:812–823

    Article  Google Scholar 

  • Silvertown JW, Charlesworth D (2001) Introduction to plant population biology, 4th edn. Blackwell Publishing, Oxford

    Google Scholar 

  • Silvertown JW, Doust JL (1997) Introduction to plant population biology, 3rd edn. Blackwell Science, Oxford

    Google Scholar 

  • Smith H (2000) Phytochromes and light signal perception by plants—an emerging synthesis. Nature 407:585–691

    Article  CAS  PubMed  Google Scholar 

  • Smith H, Whitelam GC (1997) The shade avoidance syndrome: multiple responses mediated by multiple phytochromes. Plant Cell Environ 20:840–844

    Article  Google Scholar 

  • Sonohat G, Balandier P, Ruchaud F (2004) Predicting solar radiation transmittance in the understory of even-aged coniferous stands in temperate forests. Ann For Sci 61:629–641

    Article  Google Scholar 

  • Staelens J, Nachtergale L, Luyssaert S, Lust N (2003) A model of wind-influenced leaf litterfall in a mixed hardwood forest. Can J For Res 33:201–209

    Article  Google Scholar 

  • Stoyan D, Wagner S (2001) Estimating the fruit dispersion of anemochorous forest trees. Ecol Modell 145(1):35–47

    Article  Google Scholar 

  • Strandberg B, Kristiansen SM, Tybir K (2005) Dynamic oak-scrub to forest succession: effects of management on understory vegetation, humus forms and soils. For Ecol Manage 211:318–328

    Article  Google Scholar 

  • Strengbom J, Näsholm T, Ericson L (2004) Light, not nitrogen, limits growth of the grass Deschampsia flexuosa in boreal forests. Can J Bot 82:430–435

    Article  Google Scholar 

  • Stuefer JF, Huber H (1998) Differential effects of light quantity and spectral light quality on growth, morphology and development of two stoloniferous Potentilla species. Oecologia 117(1–2):1–8

    Article  Google Scholar 

  • Suding KN, Goldberg DE (1999) Variation in the effects of litter and vegetation across productivity gradients. J Ecol 78:436–449

    Article  Google Scholar 

  • Suner A, Röhrig E (1980) Die Entwicklung der Buchennaturverjüngung in Abhängigkeit von der Auflichtung des Altbestandes. Forstarchiv 51:145–149

    Google Scholar 

  • Suzuki T, Jacalne DV (1986) Response of dipterocarp seedling to various light conditions under forest canopies. Bull For For Prod Res Inst No 336:19–34

    Google Scholar 

  • Ter-Mikaelian MT, Wagner RG, Shropshire C, Bell FW, Swanton CJ (1997) Using a mechanistic model to evaluate sampling designs for light transmission through forest plant canopies. Can J For Res 27:117–126

    Article  Google Scholar 

  • Thomasius H (1988) Stabilität natürlicher und künstlicher Waldökosysteme sowie deren Beeinflußbarkeit durch forstwirtschaftliche Maßnahmen. Allgemeine Forstzeitschrift 43(1037–1043):1064–1068

    Google Scholar 

  • Thompson K, Grime JP (1979) Seasonal variation in the seed banks of herbaceous species in ten contrasting habitats. J Ecol 67:893–921

    Article  Google Scholar 

  • Thomsen RP, Svenning J-C, Balsev H (2005) Overstorey control of understory species composition in a near-natural temperate broadleaved forest in Denmark. Plant Ecol 181:113–126

    Article  Google Scholar 

  • Tilman D (1982) Resource competition and community structure. Princeton University Press, Princeton

    Google Scholar 

  • Tilman D, Wedin D (1991) Dynamics of nitrogen competition between successional grasses. Ecology 72:1038–1049

    Article  Google Scholar 

  • Tischer A (2009) Untersuchungen zu Wirkungen eingemischter Sand-Birken (Betula pendula Roth) in Wäldern der Gemeinen Fichte (Picea abies (L.) Karst.) auf Oberbodenstruktur, Oberbodenfeuchte und Bodenvegetation. Masterarbeit, Inst. für Waldbau u. Forstschutz Tharandt

  • Tomita M, Hirabuki Y, Seiwa K (2002) Post-dispersal changes in the spatial distribution of Fagus crenata seeds. Ecology 83(6):1560–1565

    Article  Google Scholar 

  • Tüxen R (1956) Die heutige potentielle Vegetation als Gegenstand der Vegetationskartierung. Angew Pflanzensoz 13:5–42

    Google Scholar 

  • Tyler G (1989) Interacting effects of soil acidity and canopy cover on the species composition of field-layer vegetation in Oak/Hornbeam Forests. For Ecol Manage 28:101–114

    Article  Google Scholar 

  • van Noordwijk M, Lawson G, Soumaré A, Groot JJR, Hairiah K (1996) Root distribution of trees and crops: competition and/or complementary. In: Ong CK, Huxley P (eds) Tree-crop interactions. CAB international, Wallingford, pp 319–363

    Google Scholar 

  • Vanmechelen L, Groenemans R, van Ranst E (1997) Forest soil condition in Europe—results of a large-scale soil survey. Forest soil coordinating centre, University of Ghent

  • Vanselow K (1949) Natürliche Verjüngung im Wirtschaftswald. Neumann Verlag, Radebeul und Berlin

    Google Scholar 

  • Vincke C, Breda N, Granier A, Devillez F (2005) Evapotranspiration of a declining Quercus robur (L.) stand from 1999 to 2001. I. Trees and forest floor daily transpiration. Ann For Sci 62:503–512

    Article  Google Scholar 

  • Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea. How can it occur? Biogeochemistry 13:87–115

    Article  Google Scholar 

  • Wagner RG (1993) Research directions to advance forest vegetation management in North America. Can J For Res 23:2317–2327

    Article  Google Scholar 

  • Wagner S (1999) Ökologische Untersuchungen zur Initialphase der Naturverjüngung in Eschen-Buchen-Mischbeständen. Schriftenreihe der Forstlichen Fakultät der Uni Göttingen und der Niedersächsischen Forstlichen Versuchsanstalt Göttingen Bd. 129, Sauerländer’s Verlag, Göttingen

  • Wagner S, Madsen P, Ammer C (2009) Evaluation of different approaches for modelling individual tree seedling height growth. Trees 23:701–715

    Article  Google Scholar 

  • Wälder K, Frischbier N, Bredemeier M, Näther W, Wagner S (2008) Analysis of layer humus mass variation in a mixed stand of European beech and Norway spruce: an application of structural equation modelling. Ecol Model 213:319–330

    Article  Google Scholar 

  • Wälder K, Näther W, Wagner S (2009) Improving inverse model fitting in trees—anisotropy, multiplicative effects, and Bayes estimation. Ecol Model 220:1044–1053

    Article  Google Scholar 

  • Wallrup E, Saetre P, Rydin H (2006) Deciduous trees affect small-scale floristic diversity and tree regeneration in conifer forests. Scand J For Res 21:399–404

    Article  Google Scholar 

  • Watt AS (1925) On the ecology of British beechwoods with special reference to their regeneration: II. Sections II and III: the development and structure of beech communities on the Sussex Downs continued. J Ecol 13(1):27–73

    Article  Google Scholar 

  • Wayne PM, Bazzaz FA (1993) Morning vs. afternoon sun patches in experimental forest gaps—consequences of temporal incongruency of resources to birch regeneration. Oecologia 94:235–243

    Article  Google Scholar 

  • Weisberg PJ, Hadorn C, Bugmann H (2003) Predicting understory vegetation cover from overstorey attributes in two temperate mountain forests. Forstwissenschaftliches Centralblatt 122:273–286

    Article  Google Scholar 

  • Welander NT, Ottosson B (1998) The influence of shading on growth and morphology in seedlings of Quercus robur L. and Fagus sylvatica L. For Ecol Manag 107:117–126

    Article  Google Scholar 

  • Wild J, Neuhäuslová Z, Sofron J (2004) Changes of plant species composition in the Šumava spruce forests, SW Bohemia, since the 1970s. For Ecol Manage 187:117–132

    Article  Google Scholar 

  • Wu H-I, Sharpe PJH, Walker J, Penridge LK (1985) Ecological field theory: a spatial analysis of resource interference among plants. Ecol Model 29:215–243

    Article  Google Scholar 

  • Xiao CW, Janssens IA, Curiel-Yuste J, Ceulemans R (2006) Variation of specific leaf area and upscaling to leaf area index in mature Scots pine. Trees Struct Funct 20(3):304–310

    Google Scholar 

  • Yamamoto S-I (2000) Forest gap dynamics and tree regeneration. Can J For Res 5(4):223–229

    Google Scholar 

  • York RA, Battles JJ, Heald RC (2003) Edge effects in mixed conifer group selection openings: tree height response to resource gradients. For Ecol Manage 179:107–121

    Article  Google Scholar 

  • Zenner EK, Kabrick JM, Jensen RG, Peck JLE, Grabner JK (2006) Responses of ground flora to a gradient of harvest intensity in the Missouri Ozarks. For Ecol Manage 222:326–334

    Article  Google Scholar 

  • Zerbe S (2003) The differentiation of anthropogenous forest communities: a synsystematical approach. Mitt Naturwiss Ver Steiermark 133:109–117

    Google Scholar 

  • Ziesche TM, Roth M (2008) Influence of environmental parameters on small-scale distribution of soil-dwelling spiders in forests: what makes the difference, tree species or microhabitat? For Ecol Manage 255:738–752

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Wagner.

Additional information

Communicated by C. Ammer.

This article originates from the final conference of the Cost action E47 “European Network for Forest Vegetation Management: Towards Environmental Sustainability” in Vejle, Denmark, 4–7 May 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, S., Fischer, H. & Huth, F. Canopy effects on vegetation caused by harvesting and regeneration treatments. Eur J Forest Res 130, 17–40 (2011). https://doi.org/10.1007/s10342-010-0378-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-010-0378-z

Keywords

Navigation