Skip to main content
Log in

The use of entomopathogenic nematodes in the control of stored-product insects

  • Review
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

This review highlights the latest findings regarding the use of entomopathogenic nematodes against post-harvest insects. Due to their requirements for moisture, entomopathogenic nematodes had received, until lately, limited attention for application to the dry storage environment. Recent improvements of their formulation and application approaches, as well as the discovery of new, more virulent strains have enhanced the efficacy of entomopathogenic nematodes and renewed interest in using entomopathogenic nematodes in the stored-product environment. The nematode species tested against storage insects belong exclusively to the genera Steinernema and Heterhorhabditis. The virulence of entomopathogenic nematodes against post-harvest insects varies depending on the nematode species and strain. Usually, only a single-nematode species or strain is not equally effective against all major stored-product insect pests; therefore, one nematode strain or species cannot be suitable for controlling all species present in the storage environment, where several insect species coexist. The successful application of entomopathogenic nematodes in storage environments for controlling post-harvest insects is highly dependent on several biotic and abiotic factors, such as the host life stage, temperature, and relative humidity. Entomopathogenic nematodes have still to overcome substantial hurdles to become a reliable alternative for commercial applications in warehouses and storage facilities. However, the use of innovative, enhanced methods of formulation and application, such as encapsulation or bait traps, could boost the exploitation of entomopathogenic nematodes in storage facilities against post-harvest insects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adarkwah C, Ulrichs C, Schaarschmidt S, Badii BK, Addai IK, Obeng-Ofori D, Schöller M (2014) Potential of Hymenopteran larval and egg parasitoids to control stored-product beetle and moth infestation in jute bags. B Entomol Res 104:534–542

    Article  CAS  Google Scholar 

  • Alikhan MA, Bednarek A, Grabiec S (1985) The physiological and morphological characteristics of Neoaplectana carpocapsae (Nematoda, Steinernematidae) in two insect hosts. J Invertebr Pathol 45:168–173

    Article  Google Scholar 

  • Arthur FH, Subramanyam B (2012) Chemical control in stored products. In: Hagstrum DW, Phillips TW, Cuperus G (eds) Stored product protection, S156. Kansas State University, Manhattan, pp 95–100

    Google Scholar 

  • Arthurs S, Heinz KM, Prasifka JR (2004) An analysis of using entomopathogenic nematode against above ground pests. B Entomol Res 94:297–306

    Article  CAS  Google Scholar 

  • Athanassiou CG, Palyvos NE, Kakouli-Duarte T (2008) Insecticidal effect of Steinernema feltiae (Filipjev) (Nematoda: Steinernematidae) against Tribolium confusum du Val (Coleoptera: Tenebrionidae) and Ephestia kuehniella (Zeller) (Lepidoptera: Pyralidae) in stored wheat. J Stored Prod Res 44:52–57

    Article  Google Scholar 

  • Athanassiou CG, Kavallieratos NC, Menti H, Karanastasi E (2010) Mortality of four stored product pests in stored wheat when exposed to doses of three entomopathogenic nematodes. J Econ Entomol 103:977–984

    Article  PubMed  Google Scholar 

  • Atwa AA, Hegazi EM, Khafagi WE, Abd El-Aziz GM (2013) Interaction of the koinobiont parasitoid Microplitis rufiventris of the cotton leafworm, Spodoptera littoralis, with two entomopathogenicrhabditids, Heterorhabditis bacteriophora and Steinernema carpocapsae. J Insect Science 13:84

    Article  Google Scholar 

  • Baker K, Cook RJ (1982) Biological control of plant pathogens. The American Phytopathological Society, St. Paul

    Google Scholar 

  • Barbosa-Negrisoli CRDC, Negrisoli ASJ, Bernardi D, Garcia MS (2013) Activity of eight strains of entomopathogenic nematodes (Rhabditida: Steinernematidae, Heterorhabditidae) against five stored product pests. Exp Parasitol 134:384–388

    Article  Google Scholar 

  • Baxter IH (2008) Entomopathogen based autodissemination for the control of Plodia interpunctella (Hübner)—an examination of the critical components. Dissertation, University of Southampton, pp 149

  • Baxter IH, Howard N, Armsworth CG, Barton LEE, Jackson C (2008) The potential of two electrostatic powders as the basis for an autodissemination control method of Plodia interpunctella (Hübner). J Stored Prod Res 44:152–161

    Article  CAS  Google Scholar 

  • Bedding RA, Molyneux AS, Akhurst RJ (1983) Heterororhabditis spp., Neoaplectana spp. and Steinernema kraussei: interspecific and intraspecific differences in infectivity for insects. Exp Parasitol 55:249–257

    Article  CAS  PubMed  Google Scholar 

  • Belair G, Fournier Y, Dauphinais N (2003) Efficacy of steinernematid nematodes against three insect pests of crucifers in Quebec. J Nematol 35:259–265

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brower JH, Smith L, Vail PV, Flinn PW (1996) Biological control. In: Subramanyam B, Hagstrum DW (eds) Integrated management of insect in stored products pest. Dekker, New York, pp 223–286

    Google Scholar 

  • Byers JA, Poinar GO Jr (1982) Location of insect hosts by the nematode, Neoaplectana carpocapsae, in response to temperature. Behaviour 79:1

    Article  Google Scholar 

  • Cabanillas HE, Poinar GO, Raulston JR (1994) Steinernema riobravis n. sp. (Rhabditida: Steinernematidae) from Texas. Fund Appl Nematol 17:123–131

    Google Scholar 

  • Campbell JF, Gaugler R (1997) Inter-specific variation in entomopathogenic nematode foraging strategy: dichotomy or variation along a continuum? Fund Appl Nematol 20:393–398

    Google Scholar 

  • Choo HY, Lee DW, Yoon HS, Lee SM, Hang DT (2002) Effects of temperature and nematode concentration on virulence and reproduction of entomopathogenic nematode, Steinernema carpocapsae Pocheon strain (Nematoda: Steinernematidae). Korean J Appl Entomol 41:269–277

    Article  Google Scholar 

  • Ciche TA, Darby C, Ehlers RU, Forst S, Goodrich-Blair H (2006) Dangerous liaisons: the symbiosis of entomopathogenic nematodes and bacteria. Biol Control 38:22–46

    Article  Google Scholar 

  • Collins PJ, Lambkin TM, Bridgeman BW, Pulvirenti C (1993) Resistance to grain protectant insecticides in coleopterous pests of stored cereals in Queensland, Australia. J Econ Entomol 86:239–245

    Article  CAS  Google Scholar 

  • Connick WJ (1988) Formulation of living biological control agents with alginate. In: pesticide formulations, ACS Symposium Series. American Chemical Society, pp 241–250

  • Doucet MMA, de Miranda MB, Bertolotti MA, Caro KA (1996) Efficacy of Heterorhabditis bacteriophora (strain OLI) in relation to temperature, concentration and origin of the infective juvenile. Nematropica 26:129–133

    Google Scholar 

  • Dowds BCA, Peters A (2002) Virulence mechanisms. In: Gaugler R (ed) Entomopathogenic nematology. CABI, New York, pp 79–98

    Chapter  Google Scholar 

  • Ehlers RU (2003) Entomopathogenic nematodes in the European biocontrol market. Commun Agric Appl Biol Sci 68:3–16

    CAS  PubMed  Google Scholar 

  • Ehlers RU (2005) Forum on safety and regulation. In: Grewal PS, Ehlers RU, Shapiro-Ilan DI (eds) Nematodes as biocontrol agents. CABI, Wallingford, pp 107–114

    Chapter  Google Scholar 

  • Fields PG (1992) The control of stored-product insects and mites with extreme temperatures. J Stored Prod Res 28:89–118

    Article  Google Scholar 

  • Flinn PW, Schöller M (2012) Biological control: Insect pathogens, parasitoids, and predators. In: Hagstrum DW, Phillips TW, Cuperus G (eds) Stored product protection, S156. Kansas State University, Manhattan, pp 203–212

    Google Scholar 

  • Gaugler R (1988) Ecological considerations in the biological control of soil-inhabiting insects with entomopathogenic nematodes. Agr Ecosyst Environ 24:351–360

    Article  Google Scholar 

  • Gaugler R (2002) Entomopathogenic entomology. CABI Publishing, Wallingford

    Google Scholar 

  • Gaugler R, LeBeck L, Nakagaki B, Boush GM (1980) Orientation of the entomopathogenous nematode, Neoaplectana carpocapsae, to carbon dioxide. Environ Entomol 8:658

    Article  Google Scholar 

  • Gaugler R, Grewal PS, Kaya HK, Smith-Fiola D (2000) Quality assessment of commercially produced entomopathogenic nematodes. Biol Control 17:100–109

    Article  Google Scholar 

  • Geden CJ, Axtell RC, Brooks WM (1985) Susceptibility of the lesser mealworm Alphitobius diaperinus (Coleoptera: Tenebrionidae) to the entomogenous nematodes Steinernema feltiae, S. glaseri (Steinernematidae) and Heterorhabditis heliothidis (Heterorhabditidae). J Entomol Sci 20:331–339

    Google Scholar 

  • Grewal PS (2002) Formulation and application technology. In: Gaugler R (ed) Entomopathogenic Nematology, CABI Publishing. Wallingford, UK, pp 265–287

    Chapter  Google Scholar 

  • Grewal PS (2012) Entomopathogenic nematodes as tools in integrated pest management. In: Abrol DP (ed) Integrated pest management: principles and practice. CABI Publishing, Wallingford, pp 162–236

    Chapter  Google Scholar 

  • Grewal PS, Selvan S, Gaugler R (1994) Thermal adaptation of entomopathogenic nematodes—niche breadth for infection, establishment and reproduction. J Thermal Biol 19:245–253

    Article  Google Scholar 

  • Guedes RNC, Dover BA, Kambhampati S (1996) Resistance to chlorpyrifosmethyl, pirimiphos-methyl, and malathion in Brazilian and US populations of Rhyzopertha dominica (Coleoptera: Bostrichidae). J Econ Entomol 89:27–32

    Article  CAS  Google Scholar 

  • Hasselmann K, Stevens AD, Heffele D (2005) Investigations towards a biological control of cockroaches with entomopathogenic nematodes. Gesunde Pflanzen 57:169–178

    Article  Google Scholar 

  • Hazir S, Stock SP, Kaya HK, Koppenhöfer AM, Keskin N (2001) Developmental temperature effects on five geographic isolates of the entomopathogenic nematode Steinernema feltiae (Nematoda: Steinernematidae). J Invertebr Pathol 77:243–250

    Article  CAS  PubMed  Google Scholar 

  • Hiltpold I, Hibbard BE, Wade FB, Turlings TCJ (2012) Capsules containing entomopathogenic nematodes as a Trojan horse approach to control the Western corn rootworm. Plant Soil 358:11–25

    Article  CAS  Google Scholar 

  • Hsiao WF, All JN (1996) Effects of temperature and placement site on the dispersal of the entomopathogenic nematode, Steinernema carpocapsae in four soils. Chin J Entomol 16:95–106

    Google Scholar 

  • Hubert J, Nesvorna M, Volek V (2015) Stored product mites (Acari: Astigmata) infesting food in various types of packaging. Exp Appl Acarol 65:237–242

    Article  CAS  PubMed  Google Scholar 

  • Ishibashi N, Kondo E (1990) Behavior of infective juveniles. In: Gaugler R, Kaya HK (eds) Entomopathogenic nematodes in biological control. CRC Press, Boca Raton, pp 139–152

    Google Scholar 

  • Kavallieratos NG, Athanassiou CG, Aountala M, Kontodimas DC (2014) Evaluation of the entomopathogenic fungi Beauveria bassiana, Metarhizium anisopliae, and Isaria fumosorosea for control of Sitophilus oryzae. J Food Protect 77:87–93

    Article  Google Scholar 

  • Kaya HK (1990) Soil ecology. In: Gaugler R, Kaya HK (eds) Entomopathogenic nematodes in biological control. CRC Press, Boca Raton, pp 93–115

    Google Scholar 

  • Kaya HK, Gaugler R (1993) Entomopathogenic nematodes. Ann Rev Entomol 38:181–206

    Article  Google Scholar 

  • Kaya HK, Nelsen CE (1985) Encapsulation of steinernematid and heterorhabditid nematodes with calcium alginate: a new approach for insect control and other applications. Environ Entomol 14:572–574

    Article  Google Scholar 

  • Kim J, Jaffuel G, Turlings TCJ (2015) Enhanced alginate capsule properties as a formulation of entomopathogenic nematodes. Biocontrol 60:527–535

    Article  CAS  Google Scholar 

  • Koehler PG, Patterson RS, Martin WR (1992) Susceptibility of cockroaches (Dictyoptera: Blattellidae, Blattidae) to infection by Steinernema carpocapsae. J Econ Entomol 85:1184–1187

    Article  CAS  PubMed  Google Scholar 

  • Koppenhöfer AM, Grewal PS (2005) Compatibility with agrochemicals and other biocontrol agents. In: Grewal PS, Ehlers RU, Shapiro-Ilan DI (eds) Nematodes as biocontrol agents. CABI Publishing, Wallingford, pp 363–382

    Chapter  Google Scholar 

  • Koppenhöfer AM, Kaya HK, Taormino SP (1995) Infectivity of entomopathogenic nematodes (Rhabditida: Steinernematidae) at different soil depths and moistures. J Invertebr Pathol 65:193–199

    Article  Google Scholar 

  • Koppenhöfer AM, Choo HY, Kaya HK, Lee DW, Gelernter WD (1999) Increased field and greenhouse efficacy against scarab grubs with a combination of an entomopathogenic nematode and Bacillus thuringiensis. Biol Control 14:37–44

    Article  Google Scholar 

  • Koppenhöfer AM, Brown IM, Gaugler R, Grewal PS, Kaya HK, Klein MG (2000) Synergism of entomopathogenic nematodes and imidacloprid against white grubs: greenhouse and field evaluation. Biol Control 19:245–251

    Article  Google Scholar 

  • Kung SP, Gaugler R, Kaya HK (1991) Effects of soil temperature, moisture, and relative humidity on entomopathogenic nematode persistence. J Invertebr Pathol 57:242–249

    Article  Google Scholar 

  • Lacey LA, Unruh TR, Headrick HL (2003) Interactions of two idiobiont parasitoids (Hymenoptera: Ichneumonidae) of codling moth (Lepidoptera: Tortricidae) with the entomopathogenic nematode Steinernema carpocapsae (Rhabditida: Steinernematidae). J Invertebr Pathol 83:230–239

    Article  PubMed  Google Scholar 

  • Lanzoni A, Ade G, Martelli R, Radeghieri P, Pezzi F (2014) Technological aspects of Steinernema carpocapsae spray application alone or mixed with Bacillus thuringiensis aizawai in spinach crop. B Insectol 67:115–124

    Google Scholar 

  • Laznik Z, Tóth T, Lakatos T, Vidrih M, Trdan S (2010) The activity of three new strains of Steinernema feltiae against adults of Sitophilus oryzae under laboratory conditions. J Food Agric Environ 8:150–154

    Google Scholar 

  • Lord JC, Campbell JF, Sedlacek JD, Vail PV (2007) Application and evaluation of entomopathogens for managing insects in stored products. In: Lacey LA, Kaya HK (eds) Field manual of techniques in invertebrate pathology, 2nd edn. Springer, Dordrecht, pp 677–693

    Chapter  Google Scholar 

  • Mason LJ, McDonough M (2012) Biology, behavior, and ecology of stored grain and legume insects. In: Hagstrum DW, Phillips TW, Cuperus G (eds) Stored product protection, S156. Kansas State University, Manhattan, pp 7–20

    Google Scholar 

  • Mbata GN, Shapiro-Ilan DI (2005) Laboratory evaluation of virulence of Heterorhabditid nematodes to Plodia interpunctella Hübner (Lepidoptera:Pyralidae). Environ Entomol 34:676–682

    Article  Google Scholar 

  • Mbata GN, Shapiro-Ilan DI (2010) Compatibility of Heterorhabditis indica (Rhabditida: Heterorhabditidae) and Habrobracon hebetor (Hymenoptera: Braconidae) for biological control of Plodia interpunctella (Lepidoptera: Pyralidae). Biol Control 54:75–82

    Article  Google Scholar 

  • Menti H, Wright DJ, Perry RN (2000) Infectivity of populations of the entomopathogenic nematodes Steinernema feltiae and Heterorhabditis megidis in relation to temperature, age and lipid content. Nematology 2:515–521

    Article  Google Scholar 

  • Moore D, Lord JC, Smith SM (2000) Pathogens. In: Subramanyam B, Hagstrum DW (eds) Alternatives to pesticides in stored product IPM. Kluwer Academic Publishers, Dordrecht, pp 193–227

    Chapter  Google Scholar 

  • Morris ON (1985) Susceptibility of 31 species of agricultural pests to entomogenous nematodes Steinernema feltiae and Heterorhabditis bacteriophora. Can Entomol 122:309–320

    Article  Google Scholar 

  • Morton A, García-del-Pino F (2013) Sex-related differences in the susceptibility of Periplaneta americana and Capnodis tenebrionis to the entomopathogenic nematode Steinernema carpocapsae. J Invertebr Pathol 112:203–207

  • Navaneethan T, Strauch O, Besse S, Bonhomme A, Ehlers RU (2010) Influence of humidity and a surfactant-polymer-formulation on the control potential of the entomopathogenic nematode Steinernema feltiae against diapausing codling moth larvae (Cydia pomonella L.) (Lepidoptera: Tortricidae). Biocontrol 55:777–788

    Article  CAS  Google Scholar 

  • Nayak MK, Holloway JC, Emery RN, Pavic H, Bartleta J, Collins PJ (2013) Strong resistance to phosphine in the rusty grain beetle, Cryptolestes ferrugineus (Stephens) (Coleoptera: Laemophloeidae): its characterisation, a rapid assay for diagnosis and its distribution in Australia. Pest Manag Sci 69:48–53

    Article  CAS  PubMed  Google Scholar 

  • Nguyen KB (2015a) Species of Steinernema. University of Florida, Entomology and Nematology Department. http://entnem.ifas.ufl.edu/nguyen/morph-/steinsp1.htm. Accessed 10 June 2016

  • Nguyen KB (2015b) Species of Heterorhabditis. University of Florida, Entomology and Nematology Department. http://entnem.ifas.ufl.edu/nguyen/morph-/HETEROSP.htm. Accessed 10 June 2016

  • Niedermayer S, Steidle JLM (2013) The Hohenheimer Box—a new way to rear and release Lariophagus distinguendus to control stored product pest insects. Biol Control 64:263–269

    Article  Google Scholar 

  • Nishimatsu T, Jackson JJ (1998) Interaction of insecticides, entomopathogenic nematodes, and larvae of the western corn rootworm (Coleoptera: Chrysomelidae). J Econ Entomol 91:410–418

    Article  CAS  PubMed  Google Scholar 

  • Opit GP, Phillips TW, Aikins MJ, Hasan MM (2012) Phosphine resistance in Tribolium castaneum and Rhyzopertha dominica from stored wheat in Oklahoma. J Econ Entomol 105:1107–1114

    Article  CAS  PubMed  Google Scholar 

  • Oppert B, Morgan TD, Kramer KJ (2011) Efficacy of Bacillus thuringiensis Cry3Aa protoxin and protease inhibitors against coleopteran storage pests. Pest Manag Sci 67:568–573

    Article  CAS  PubMed  Google Scholar 

  • Patel AV, Vorlop KD (1994) Entrapment of biological control agents applied to entomopathogenic nematodes. Biotechnol Tech 8:569–574

    Article  CAS  Google Scholar 

  • Pimentel MAG, Faroni LRD, da Silva FH, Batista MD, Guedes RNC (2010) Spread of phosphine resistance among Brazilian populations of three species of stored product insects. Neotrop Entomol 39:101–107

    Article  CAS  PubMed  Google Scholar 

  • Poinar GO (1990) Biology and taxonomy of Steinernematidae and Heterorhabditidae. In: Gaugler R, Kaya HK (eds) Entomopathogenic nematodes in biological control. CRC Press, Boca Raton, pp 23–62

    Google Scholar 

  • Ramos-Rodríguez O, Campbell JF, Ramaswamy SB (2006) Pathogenicity of three species of entomopathogenic nematodes to some major stored-product insect pests. J Stored Prod Res 42:241–252

    Article  Google Scholar 

  • Ramos-Rodríguez O, Campbell JF, Ramaswamy SB (2007a) Efficacy of the entomopathogenic nematode Steinernema riobrave against the stored-product insect pests Tribolium castaneum and Plodia interpunctella. Biol Control 40:15–21

    Article  Google Scholar 

  • Ramos-Rodríguez O, Campbell JF, Christen JM, Shapiro-Ilan DI, Lewis EE, Ramaswamy SB (2007b) Attraction behaviour of three entomopathogenic nematode species towards infected and uninfected hosts. Parasitology 134:729–738

    Article  PubMed  Google Scholar 

  • Rasmann S, Turlings TCJ (2008) First insights into specificity of belowground tritrophic interactions. Oikos 117:362–369

    Article  Google Scholar 

  • Rasmann S, Köllner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Gershenzon J, Turlings TCJ (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737

    Article  CAS  PubMed  Google Scholar 

  • Rumbos CI, Athanassiou CG (2012) Insecticidal effect of six entomopathogenic nematode strains against Lasioderma serricorne (F.) (Coleoptera: Anobiidae) and Tribolium confusum Jacquelin du Val (Coleoptera: Tenebrionidae). J Stored Prod Res 50:21–26

    Article  Google Scholar 

  • Schmidt J, All JN (1979) Chemical attraction of Neoaplectana carpocapsae (Nematoda: Steinernematidae) to common excretory products of insects. Environ Entomol 8:55

    Article  CAS  Google Scholar 

  • Schöller M, Flinn PW (2000) Parasitoids and predators. In: Subramanyam B, Hagstrum DW (eds) Alternatives to pesticides in stored-product IPM. Kluwer Academic Publishers, Norwell, Massachusetts, pp 229–271

    Chapter  Google Scholar 

  • Schöller M, Prozell S, Al-Kirshi A-G, Reichmuth Ch (1997) Towards biological control as a major component of integrated pest management in stored product protection. J Stored Prod Res 33:81–97

    Article  Google Scholar 

  • Shahina F, Salma J (2009) Laboratory evaluation of seven Pakistani strains of entomopathogenic nematode against a stored product insect pest, Pulse beetle (Callosobruchus chinensis L.). J Nematol 41:255–260

    Google Scholar 

  • Shahina F, Salma J (2010) Laboratory evaluation of seven Pakistani strains of entomopathogenic nematode against a stored product insect pest, rice weevil (Sitophilus oryzae L.). Pak J Nematol 28:295–305

  • Shahina F, Salma J (2011a) Pakistani strains of entomopathogenic nematode as a biological control agent against stored grain pest, Tribolium castaneum. Pak J Nematol 29:25–34

    Google Scholar 

  • Shahina F, Salma J (2011b) Virulence of Pakistani isolates of entomopathogenic nematode against a stored insect species, Lasioderma serricorne. Int J Nematol 21:79–85

    Google Scholar 

  • Shannag HK, Webb SE, Capinera JL (1994) Entomopathogenic nematode effect on pickleworm (Lepidoptera: Pyralidae) under laboratory and field conditions. J Econ Entomol 87:1205–1212

    Article  Google Scholar 

  • Shapiro-Ilan DI, Mbata GN, Nguyen KB, Peat SM, Blackburn D, Adams BJ (2009) Characterization of biocontrol traits in the entomopathogenic nematode Heterorhabditis georgiana (Kesha strain), and phylogenetic analysis of the nematode’s symbiotic bacteria. Biol Control 51:377–387

    Article  Google Scholar 

  • Shapiro-Ilan DI, Han R, Dolinksi C (2012) Entomopathogenic nematode production and application technology. J Nematol 44:206–217

    PubMed  PubMed Central  Google Scholar 

  • Sheykhnejad H, Ghadamyari M, Koppenhöfer AM, Karimi J (2014) Interactions between entomopathogenic nematodes and imidacloprid for rose sawfly control. Biocontrol Sci Techn 24:1481–1486

    Article  Google Scholar 

  • Simoes N, Rosa JS (1996) Pathogenity and host specificity of entomopathogenic nematodes. Biocontrol Sci Techn 6:403–411

    Article  Google Scholar 

  • Smart GC (1995) Entomopathogenic nematodes for the biological control of insects. J Nematol 27:529–534

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steiner WA (1996) Dispersal and host-finding ability of entomopathogenic nematodes at low temperatures. Nematologica 42:243–261

    Article  Google Scholar 

  • Stock SP, Blair HG (2008) Entomopathogenic nematodes and their bacterial symbionts: the inside out of a mutualistic association. Symbiosis 46:65–75

    Google Scholar 

  • Subramanyam B, Harein PK, Cutkomp LK (1989) Organophosphate resistance in adults of red flour beetle (Coleoptera: Tenebrionidae) and sawtoothed grain beetle (Coleoptera: Cucujidae) infesting barley stored on farms in Minnesota. J Econ Entomol 82:989–995

    Article  CAS  Google Scholar 

  • Svendsen TS, Steenberg T (2000) The potential use of entomopathogenic nematodes against Typhaea stercorea. Biocontrol 45:97–111

    Article  Google Scholar 

  • Trdan S, Vidrih M, Vali N (2006) Activity of four entomopathogenic nematode species against young adults of Sitophilus granarius (Coleoptera: Curculionidae) and Oryzaephilus surinamensis (Coleoptera: Silvanidae) under laboratory conditions. J Plant Dis Prot 113:168–173

    Article  Google Scholar 

  • Tulek A, Erturk S, Kepenekci I, Atay T (2015) Efficacy of native entomopathogenic nematodes against the stored grain insect pest, Rhyzopertha dominica (F) (Coleoptera: Bostrichidae) adults. Egypt J Biol Pest Control 25:251–254

    Google Scholar 

  • van Tol RWHM, van der Sommen ATC, Boff MIC, van Bezooijen J, Sabelis MW, Smits PH (2001) Plants protect their roots by alerting the enemies of grubs. Ecol Lett 4:292–294

    Article  Google Scholar 

  • Vemmer M, Patel AV (2013) Review of encapsulation methods suitable for microbial biological control agents. Biol Control 67:380–389

    Article  CAS  Google Scholar 

  • White NDG (1995) Insects, mites, and insecticides in stored grain ecosystems. In: Jayas DS, White NDG, Muir WE (eds) Stored-grain ecosystems. Marcel Dekker Inc., New York, pp 123–168

    Google Scholar 

  • Wójcik WF (1986a) Influence of the size of host on the growth of the Neoplectana carpocapsae Weiser, 1955 nematodes. Ann Warsaw Agri Univ SGGW-AR Anim Sci 20:75–85

    Google Scholar 

  • Wójcik WF (1986b) Effect of worsening of physiological state of insects on the growth of the nematodes, Neoplectana carpocapsae Weiser, 1955. Ann Warsaw Agri Univ SGGW-AR Anim Sci 20:109–111

    Google Scholar 

  • Wright PJ, Peters A, Schroer S, Fife JP (2005) Application technology. In: Grewal PS, Ehlers RU, Shapiro-Ilan DI (eds) Nematodes as biocontrol agents. CABI Publishing, Wallingford, pp 91–106

    Chapter  Google Scholar 

  • Wu S, Youngman RR, Kok LT, Laub CA, Pfeiffer DG (2014) Interaction between entomopathogenic nematodes and entomopathogenic fungi applied to third instar southern masked chafer white grubs, Cyclocephala lurida (Coleoptera: Scarabaeidae), under laboratory and greenhouse conditions. Biol Control 76:65–73

    Article  Google Scholar 

  • Yilmaz S, Ayvaz A, Akbulut M, Azizoglu U, Karabörklü S (2012) A novel Bacillus thuringiensis strain and its pathogenicity against three important pest insects. J Stored Prod Res 51:33–40

    Article  Google Scholar 

  • Zannou ID, Adebo HO, Zannou E, Hell K (2013) Mites associated with stored grain commodities in Benin, West Africa. Exp Appl Acarol 61:449–470

    Article  PubMed  Google Scholar 

  • Zettler JL, Arthur FH (2000) Chemical control of stored product insects with fumigants and residual treatments. Crop Prot 19:577–582

    Article  CAS  Google Scholar 

  • Zettler JL, Cuperus GW (1990) Pesticide resistance in Tribolium castaneum (Coleoptera: Tenebrionidae) and Rhyzopertha dominica (Coleoptera: Bostrichidae) in wheat. J Econ Entomol 83:1677–1681

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Nicolas Desneux for reading the manuscript prior to submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos G. Athanassiou.

Ethics declarations

Conflict of interest

Christos Rumbos and Christos Athanassiou declare that there have no conflicts of interest. Christos Rumbos and Christos Athanassiou conceived the work and wrote the manuscript.

Research involving animal and human rights

The research did not involve human participants and/or animals.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Communicated by N. Desneux.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rumbos, C.I., Athanassiou, C.G. The use of entomopathogenic nematodes in the control of stored-product insects. J Pest Sci 90, 39–49 (2017). https://doi.org/10.1007/s10340-016-0795-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-016-0795-y

Keywords

Navigation