Skip to main content
Log in

Temperature-dependent effect of two neurotoxic insecticides on predatory potential of Philodromus spiders

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

Although temperature significantly influences pesticides’ impact on ectotherms, the joint effect of temperature and pesticides on natural enemies is understudied. In laboratory conditions, we investigated the influence of two commonly used insecticides, spinosad and λ-cyhalothrin, on mortality and functional response of a community of Philodromus spiders (P. cespitum 80 %, P. albidus 20 %) at different temperatures (10, 17, 25, and 31 °C). Almost all spiders died at 31 °C in the λ-cyhalothrin treatment. Mortality was very low at other temperatures. Mortality in the spinosad treatment did not differ from the control. Both pesticides reduced the prey capture rate and/or changed the type of functional response at all temperatures. The sublethal effects of λ-cyhalothrin were most pronounced at 10 °C, while those of spinosad were most marked at 10 and 25 °C. At 10 °C, the pesticides’ effects on the spiders were long lasting. In addition, λ-cyhalothrin influenced the philodromids much more negatively than spinosad suggesting its incompatibility with IPM across all temperatures. The results support the importance of studying the temperature-specific effects of pesticides in order to increase the efficiency of integrated pest management. Philodromids are effective in pest suppression at low temperatures, but application of pesticides at the beginning of the season can significantly disrupt their biocontrol potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Benamú MA, Schneider MI, Pineda S, Sanchez NE, Gonzalez A (2007) Sublethal effects of two neurotoxican insecticides on Araneus pratensis (Araneae: Araneidae). Commun Agric Appl Biol Sci 72:557–559

    PubMed  Google Scholar 

  • Benamú MA, Schneider MI, González A, Sánchez NE (2013) Short and long-term effects of three neurotoxic insecticides on biological and behavioural attributes of the orb-web spider Alpaida veniliae (Araneae, Araneidae): implications for IPM programs. Ecotoxicology 22:1155–1164

    Article  PubMed  Google Scholar 

  • Biondi J, Mommaerts V, Smagghe G, Vinuela E, Zappalá L, Desneux N (2012a) The non-target impact of spinosyns on beneficial arthropods. Pest Manag Sci 68:1523–1536

    Article  CAS  PubMed  Google Scholar 

  • Biondi J, Desneux N, Siscaro G, Zappalá L (2012b) Using organic-certified rather than synthetic pesticides may not be safer for biological control agents: selectivity and side effects of 14 pesticides on the predator Orius laevigatus. Chemosphere 87:803–812

    Article  CAS  PubMed  Google Scholar 

  • Biondi J, Zappalá L, Stark JD, Desneux N (2013) Do biopesticides affect the demographic traits of a parasitoid wasp and its biocontrol services through sublethal effects? PLoS ONE 8(9):e76548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birkhofer K, Gavish-Regev E, Endlweber K, Lubin YD, Von Berg K, Wise DH, Scheu S (2008) Cursorial spiders retard initial aphid population growth at low densities in winter wheat. Bull Entomol Res 98:249–255

    Article  CAS  PubMed  Google Scholar 

  • Bogya S, Szinetár C, Markó V (1999) Species composition of spider (Araneae) assemblages in apple and pear orchards in Carpathian Basin. Acta Phytopathol Hung 34:99–122

    Google Scholar 

  • Boina DR, Onagbola EO, Salyani M, Stelinski LL (2009) Influence of posttreatment temperature on the toxicity of insecticides against Diaphorina citri (Hemiptera: Psyllidae). J Econ Entomol 102:685–691

    Article  CAS  PubMed  Google Scholar 

  • Bommarco R, Miranda F, Bžund H, Björkman C (2011) Insecticides suppress natural enemies and increase pest damage in cabbage. J Econ Entomol 104:782–791

    Article  CAS  PubMed  Google Scholar 

  • Brown C, Hanna CJ, Hanna CJ (2014) The importance of pesticide exposure duration and mode on the foraging of an agricultural pest predator. Bull Environ Contam Toxicol 94:178–182. doi:10.1007/s00128-014-1425-0

    Article  PubMed  Google Scholar 

  • Bryja V, Řezáč M, Kubcová L, Kůrka A (2005) Three interesting species of the genus Philodromus Walckenaer, 1825 (Araneae: Philodromidae) in the Czech Republic. Acta Mus Morav Sci Biol 90:185–194

    Google Scholar 

  • Coats JR, Symonik DM, Bradbury SP, Dyer SD, Timson LK, Atchison GJ (1989) Toxicology of synthetic pyrethroids in aquatic organisms: an overview. Environ Toxicol Chem 8:671–679

    Article  CAS  Google Scholar 

  • Daniel C, Wyss E (2004) Efficacy of different insecticides and a repellent against the European pear sucker (Cacopsylla pyri). In: Ecofruit—11th international conference on cultivation technique and phytopathological problems in organic fruit-growing: Proceedings to the conference from 3rd Feb to 5th Feb 2004, Weinsberg

  • Deng L, Dai J, Cao H, Xu M (2007) Effects of methamidophos on the predating behavior of Hylyphantes graminicola (Sundevall) (Araneae: Linyphiidae). Environ Toxicol Chem 26:478–482

    Article  CAS  PubMed  Google Scholar 

  • Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106

    Article  CAS  PubMed  Google Scholar 

  • Dittrich V, Hassan SO, Ernst GH (1985) Sudanese cotton and the whitefly: a case study of the emergence of a new primary pest. Crop Prot 4:161–176

    Article  CAS  Google Scholar 

  • Everts JW, Willemsen I, Stulp M, Simons L, Aukema B, Kammenga J (1991) The toxic effect of deltamethrin on linyphiid and erigonid spiders in connection with ambient temperature, humidity, and predation. Arch Environ Contam Toxicol 20:20–24

    Article  CAS  PubMed  Google Scholar 

  • Fang L, Subramanyam B (2003) Activity of spinosad against adults of Rhyzopertha dominica (F.)(Coleoptera: Bostrichidae) is not affected by wheat temperature and moisture. J Kans Entomol Soc 76:529–532

    Google Scholar 

  • Foelix RF (1996) Biology of spiders, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Furlong MJ, Zu-Hua S, Yin-Quan L, Shi-Jian G, Yao-Bin L, Shu-Sheng L, Zalucki MP (2004) Experimental analysis of the influence of pest management practice on the efficacy of an endemic arthropod natural enemy complex of the diamondback moth. J Econ Entomol 97:1814–1827

    Article  PubMed  Google Scholar 

  • Galwey NW (2014) Introduction to mixed modelling: beyond regression and analysis of variance, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Gontijo PC, Moscardini VF, Michaud JP, Carvalho GA (2014) Non-target effects of chlorantraniliprole and thiamethoxam on Chrysoperla carnea when employed as sunflower seed treatments. J Pest Sci 87:711–719

    Article  Google Scholar 

  • Hanna CJ, Hanna CJ (2013) The lethal and sublethal effects of three pesticides on the striped lynx spider (Oxyopes salticus Hentz). J Appl Entomol 137:68–76

    Article  CAS  Google Scholar 

  • Harwood AD, You J, Lydy MJ (2009) Temperature as a toxicity identification evaluation tool for pyrethroid insecticides: toxicokinetic confirmation. Environ Toxicol Chem 28:1051–1058

    Article  CAS  PubMed  Google Scholar 

  • He LM, Troiano J, Wang A, Goh K (2008) Environmental chemistry, ecotoxicity, and fate of lambda-cyhalothrin. In: Whitacre DM (ed) Reviews of environmental contamination and toxikology. Springer, New York, pp 71–91

    Chapter  Google Scholar 

  • Heimbach U, Baloch AA (1994) Effects of three pesticides on Poecilus cupreus (Coleoptera: Carabidae) at different post-treatment temperatures. Environ Toxicol Chem 13:317–324

    Article  CAS  Google Scholar 

  • Holling CS (1965) The functional response of predators to prey density and its role in mimicry and population regulation. Mem Entomol Soc Can 97:5–60

    Article  Google Scholar 

  • Holmstrup M, Bindesbol AM, Oostingh GJ, Duschl A, Scheil V, Kohler HR et al (2010) Interactions between effects of environmental chemicals and natural stressors: a review. Sci Total Environ 408:3746–3762

    Article  CAS  PubMed  Google Scholar 

  • Isaia M, Beikes S., Paschetta M, Sarvajayakesevalu S, Badino G (2010) Spiders as potential biological controllers in apple orchards infested by Cydia spp. (Lepidoptera: Tortricidae). In: Nentwig W, Entling M, Kropf C (eds) Proceedings of 24th European Congress of Arachnology, Bern, pp 25–29

  • Juliano SA (2001) Nonlinear curve-fitting: predation and functional response curves. In: Scheiner SM, Gurevitch J (eds) Design and analysis of ecological experiments, 2nd edn. Chapman & Hall, New York, pp 178–196

    Google Scholar 

  • Khan HAA, Akram W (2014) The effect of temperature on the toxicity of insecticides against Musca domestica L.: implications for the effective management of diarrhea. PLoS ONE 9:e95636

    Article  PubMed  PubMed Central  Google Scholar 

  • Kocourek F, Stará J (2006) Management and control of insecticide-resistant pear psylla (Cacopsylla pyri). J Fruit Ornam Plant Res 14:167–174

    Google Scholar 

  • Korenko S, Pekár S (2010) Is there intraguild predation between winter-active spiders (Araneae) on apple tree bark? Biol Control 54:206–212

    Article  Google Scholar 

  • Kreiter NA, Wise DH (2001) Prey availability limits fecundity and influences the movement pattern of female fishing spiders. Oecologia 127:417–424

    Article  Google Scholar 

  • Kuusk AK, Ekbom B (2012) Feeding habits of lycosids spiders in field habitats. J Pest Sci 85:253–260

    Article  Google Scholar 

  • Mansoor MM, Afzal M, Raza ABM, Akram Z, Waqar A, Afzal MBS (2014) Post-exposure temperature influence on the toxicity of conventional and new chemistry insecticides to green lacewing Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). Saudi J Biol Sci. doi:10.1016/j.sjbs.2014.10.008

    PubMed  PubMed Central  Google Scholar 

  • Marc P, Canard A, Ysnel F (1999) Spiders (Araneae) useful for pest limitation and bioindication. Agric Ecosyst Environ 74:229–273

    Article  Google Scholar 

  • Mayntz D, Toft S, Vollrath F (2003) Effects of prey quality and availability on the life history of a trap-building predator. Oikos 101:631–638

    Article  Google Scholar 

  • Michalko R, Pekár S (2015a) Niche partitioning and niche filtering jointly mediate the coexistence of three closely related spider species (Araneae, Philodromidae). Ecol Entomol 40:22–33

    Article  Google Scholar 

  • Michalko R, Pekár S (2015b) The biocontrol potential of Philodromus (Araneae, Philodromidae) spiders for the suppression of pome fruit orchard pests. Biol Control 82:13–20

    Article  Google Scholar 

  • Musser FR, Shelton AM (2005) The influence of post-exposure temperature on the toxicity of insecticides to Ostrinia nubilalis (Lepidoptera: Crambidae). Pest Manag Sci 61:508–510

    Article  CAS  PubMed  Google Scholar 

  • Pekár S (2012) Spiders (Araneae) in the pesticide world: an ecotoxicological review. Pest Manag Sci 68:1438–1446

    Article  PubMed  Google Scholar 

  • Pekár S, Brabec M (2009) Modern analysis of biological data. 1. Generalized linear models in R. Scientia, Prague

    Google Scholar 

  • Pekár S, Brabec M (2012) Modern analysis of biological data. 2. Linear models with correlation in R. Muni Press, Brno

    Google Scholar 

  • Pekár S, Haddad CR (2005) Can agrobiont spiders (Araneae) avoid a surface with pesticide residues? Pest Manag Sci 61:1179–1185

    Article  PubMed  Google Scholar 

  • Pekár S, Michalko R, Loverre P, Líznarová E, Černecká Ľ (2015) Biological control in winter: novel evidence for the importance of generalist predators. J Appl Ecol 52:270–279

    Article  Google Scholar 

  • Peng Y, Shao XL, Hose GC, Liu FX, Chen J (2010) Dimethoate, fenvalerate and their mixture affects Hylyphantes graminicola (Araneae: Linyphiidae) adults and their unexposed offspring. Agric For Entomol 12:343–351

    Article  Google Scholar 

  • Pulz R (1987) Thermal and water relations. In: Nentwig W (ed) Ecophysiology of spiders. Springer, Berlin, pp 26–55

    Chapter  Google Scholar 

  • R Development Core Team R (2014) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org

  • Řezáč M, Pekár S, Stará J (2010) The negative effect of some selective insecticides on the functional response of a potential biological control agent, the spider Philodromus cespitum. Biocontrol 55:503–510

    Article  Google Scholar 

  • Sadat KM, Asghar PA (2006) The influence of post-exposure temperature on the toxicity of Spinosad against adults of Callosobruchus maculatus Fabricius (Coleoptera: Bruchidae). Pak Entomol 28:65–67

    Google Scholar 

  • Salgado VL (1998) Studies on the mode of action of spinosad: insect symptoms and physiological correlates. Pestic Biochem Phys 60:91–102

    Article  CAS  Google Scholar 

  • Schmidt MH, Thewes U, Thies C, Tscharntke T (2004) Aphid suppression by natural enemies in mulched cereals. Entomol Exp Appl 113:87–93

    Article  Google Scholar 

  • Stará J, Kocourek F (2007) Insecticidal resistance and cross-resistance in populations of Cydia pomonella (Lepidoptera: Tortricidae) in Central Europe. J Econ Entomol 100:1587–1595

    Article  PubMed  Google Scholar 

  • Stark JD, Vargas R, Miller N (2004) Toxicity of spinosad in protein bait to three economically important tephritid fruit fly species (Diptera: Tephritidae) and their parasitoids (Hymenoptera: Braconidae). J Econ Entomol 97:911–915

    Article  CAS  PubMed  Google Scholar 

  • Suenaga H, Hamamura T (2014) Effects of manipulated density of the wolf spider, Pardosa astrigera (Araneae: Lycosidae), on pest populations and cabbage yields: a field enclosure experiment. Appl Entomol Zool. doi:10.1007/s13355-014-0310-y

    Google Scholar 

  • Symondson WOC, Sunderland KD, Greenstone MH (2002) Can generalist predators be effective biocontrol agents? Annu Rev Entomol 47:561–594

    Article  CAS  PubMed  Google Scholar 

  • Tahir HM, Butt A (2009) Predatory potential of three hunting spiders inhabiting the rice ecosystems. J Pest Sci 82:217–225

    Article  Google Scholar 

  • Tariq MH, Afzal S, Hussain I (2006) Degradation and persistence of cotton pesticides in sandy loam soils from Punjab, Pakistan. Environ Res 100:184–196

    Article  CAS  PubMed  Google Scholar 

  • Tkadlec E (2008) Population ecology: structure, growth, and population dynamic. Palacký University Olomouc, Olomouc

    Google Scholar 

  • Uddin MA, Ara N (2006) Temperature effect on the toxicity of six insecticides against red flour Beetle, Tribolium castaneum (Herbst). J Life Earth Sci 1:49–52

    Google Scholar 

  • Vandermeer J (2011) The ecology of agroecosystems. Jones & Bartlett Learning, London

    Google Scholar 

  • Wick M, Freier B (2000) Long-term effects of an insecticide application on non-target arthropods in winter wheat: a field study over 2 seasons. J Pest Sci 73:61–69

    Google Scholar 

  • Williams T, Valle J, Viñuela E (2003) Is the naturally derived insecticide Spinosad® compatible with insect natural enemies? Biocontrol Sci Technol 13:459–475

    Article  Google Scholar 

  • Wrinn KM, Evans SC, Rypstra AL (2012) Predator cues and an herbicide affect activity and emigration in an agrobiont wolf spider. Chemosphere 87:390–396

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Xu Q, Lu W, Liu F (2015) Sublethal effects of four synthetic insecticides on the generalist predator Cyrtorhinus lividipennis. J Pest Sci 88:383–392

    Article  Google Scholar 

  • Zhao JZ, Collins HL, Li YX, Mau RFL, Thompson GD, Hertlein M, Andaloro JT, Boykin R, Shelton AM (2006) Monitoring of diamondback moth (Lepidoptera: Plutellidae) resistance to spinosad, indoxacarb, and emamectin benzoate. J Econ Entomol 99:176–181

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Šárka Mašová, Stano Pekár, and Stano Korenko for the help with experiments or their advices. We are very grateful to the three anonymous reviewers and the subject editor for their comments that noticeably improved our manuscript. This study was supported by Student Project Grant No. MUNI/A/1484/2014 provided by Masaryk University, European Social Fund and the state budget of the Czech Republic under the project Indicators of Trees Vitality Reg. No. CZ.1.07/2.3.00/20.0265 provided by Mendel University as well as by Internal Grant Agency of Mendel University (Reg. No. LDF_VT_2015012/2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radek Michalko.

Additional information

Communicated by A. Biondi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michalko, R., Košulič, O. Temperature-dependent effect of two neurotoxic insecticides on predatory potential of Philodromus spiders. J Pest Sci 89, 517–527 (2016). https://doi.org/10.1007/s10340-015-0696-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-015-0696-5

Keywords

Navigation