Skip to main content
Log in

Visual, vibratory, and olfactory cues affect interactions between the red spider mite Tetranychus evansi and its predator Phytoseiulus longipes

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

Phytoseiulus longipes Evans (Mesostigmata: Phytoseiidae) is an exotic predator widely used in biological control programs for the red spider mite Tetranychus evansi Baker & Pritchard (Acari: Tetranychidae) in East Africa. However, little is known about the cues mediating this prey/predator interaction. Here, we performed behavioral assays to test the involvement of visual, vibratory, and olfactory cues using a combination of dead/living insects enclosed in either perforated or non-perforated transparent/opaque capsules. We monitored insect responses with a video tracking system and analyzed the data with Ethovision software. Our results showed avoidance behavior of T. evansi in the presence of live P. longipes through visual, vibratory, and olfactory cues. P. longipes was attracted by vibratory and olfactory cues emitted by T. evansi. The composition of volatiles from T. evansi was identified by GC/MS as methyl salicylate (MeSA), linalool, β-caryophyllene, octanoic acid, decanoic acid, dodecanoic acid, tetradecanoic acid, hexadecanoic acid, and octadecanoic acid. Our behavioral assays with predatory mites in a Y-tube olfactometer revealed that among the identified volatiles, only MeSA, linalool, and MeSA + linalool attracted P. longipes. The implications of these findings for the control of T. evansi are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adango E, Onzo A, Hanna R, Atachi P, James B (2007) Mite pests of major importance on indigenous leafy vegetables in Benin: the search for appropriate control strategies. Acta Hort 752:311–318

    Article  Google Scholar 

  • Agelopoulos NG, Keller MA (1994) Plant-natural enemy association in the tritrophic system, Cotesia rubecula-Pieris rapae-Brassiceae (Cruciferae): I. Sources of infochemicals. J Chem Ecol 20:1725–1734. doi:10.1007/BF02059894

    Article  PubMed  CAS  Google Scholar 

  • Alba JM, Schimmel BC, Glas JJ, Ataide L, Pappas ML, Villarroel CA, Schuurink RC, Sabelis MW, Kant MR (2015) Spider mites suppress tomato defenses downstream of jasmonate and salicylate independently of hormonal crosstalk. New Phytol 205(2):828–840

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Alberti G, Crooker AR (1985) Internal anatomy. In: Helle AW, Sabelis MW (eds) Spider mites: their biology, natural enemies and control. World crop pests, vol 1A. Elsevier, Amsterdam, pp 29–62

    Google Scholar 

  • Attia S, Grissa KL, Lognay G, Bitume E, Hance T, Mailleux AC (2013) A review of the major biological approaches to control the worldwide pest Tetranychus urticae (Acari: Tetranychidae) with special reference to natural pesticides. J Pest Sci 86(3):361–386

    Article  Google Scholar 

  • Barth FG (1998) The vibrational sense of spiders. In: Hoy R, Popper AN, Fay RR (eds) Comparative hearing: insects. Springer handbook of auditory research. Springer, New York, pp 228–278. doi:10.1007/978-1-4612-0585-2_7

    Chapter  Google Scholar 

  • Barth FG (2002a) Signposts to the prey: substrate vibrations. In: Barth FG (ed) A spider’s World: Senses and Behavior. Springer, Berlin, pp 223–242

    Chapter  Google Scholar 

  • Barth FG (2002b) Courtship and vibratory communication. In: Barth FG (ed) A spider’s world: senses and behavior. Springer, Berlin, pp 269–300

    Chapter  Google Scholar 

  • Blaakmeer A, Hagenbeek D, van Beek TA, De Groot AE, Schoonhoven LM, van Loon JJA (1994) Plant response to eggs vs. host marking pheromone as factors inhibiting oviposition by Pieris brassicae. J Chem Ecol 20:1657–1665

    Article  PubMed  CAS  Google Scholar 

  • Boubou A, Migeon A, Roderick GK, Navajas M (2011) Recent emergence and worldwide spread of the red tomato spider mite, Tetranychus evansi: genetic variation and multiple cryptic invasions. Biol Invasions 13:81–92. doi:10.1007/s10530-010-9791-y

    Article  Google Scholar 

  • Boubou A, Migeon A, Roderick GK, Auger P, Cornuet J-M, Magalhães S, Navajas M (2012) Test of colonisation scenarios reveals complex invasion history of the red tomato spider mite Tetranychus evansi. PLoS One 7:e35601. doi:10.1371/journal.pone.0035601

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Brown RE, Macdonald DW (eds) (1985) Social odours in mammals. Oxford University Press, Clarendon, Oxford

    Google Scholar 

  • Bruyne De, Dicke M, Tjallingii WF (1991) Receptor cell responses in the anterior tarsi of Phytoseiulus persimilis to volatile kairomone components. Exp Appl Acarol 13:53–58

    Article  Google Scholar 

  • Cédola CV, Sánchez NE, Liljesthröm GG (2001) Effect of tomato leaf hairiness on functional and numerical response of Neoseiulus californicus (Acari: Phytoseiidae). Exp Appl Acarol 25:819–831. doi:10.1023/A:1020499624661

    Article  PubMed  Google Scholar 

  • Chang CL, Cho IK, Li QX (2009) Insecticidal activity of basil oil, trans-anethole, estragole, and linalool to adult fruit flies of Ceratitis capitata, Bactrocera dorsalis, and Bactrocera cucurbitae. J Econ Entomol 102:203–209

    Article  PubMed  CAS  Google Scholar 

  • Cocroft RB, Hamel JA (2010) Vibrational communication in the “other insect societies”: a diversity of ecology signals, and signal functions. In: O’Connell-Rodwell CE (ed) The use of vibrations in communication: properties, mechanisms and function across taxa. Transworld Research Network, Trivandrum, pp 47–68

    Google Scholar 

  • Dawkins R, Krebs JR (1979) Arms races between and within species. Proc R Soc B 205:489–511

    Article  CAS  Google Scholar 

  • De Boer JG, Dicke M (2004) The role of methyl salicylate in prey searching behavior of the predatory mite Phytoseiulus persimilis. J Chem Ecol 30:255–271

    Article  PubMed  Google Scholar 

  • De Boer JG, Posthumus MA, Dicke M (2004) Identification of volatiles that are used in discrimination between plants infested with prey or non-prey herbivores by a predatory mite. J Chem Ecol 30:2215–2230

    Article  PubMed  Google Scholar 

  • De Moraes CM, Mescher MC (2004) Biochemical crypsis in the avoidance of natural enemies by an insect herbivore. Proc Natl Acad Sci USA 101:8993–8997. doi:10.1073/pnas.0403248101

    Article  PubMed Central  PubMed  Google Scholar 

  • Dekker T, Ignell R, Ghebru M, Glinwood R, Hopkins R (2011) Identification of mosquito repellent odours from Ocimum forskolei. Parasit Vectors 4:183

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Delétré E, Chandre F, Barkman B, Menut C, Martin T (2015) Naturally occurring bioactive compounds from four repellent essential oils against Bemisia tabaci whiteflies. Pest Manag Sci. doi:10.1002/ps.3987

    PubMed  Google Scholar 

  • Dicke M, Gols R, Ludeking D, Posthumus MA (1999) Jasmonic acid and herbivory differentially induce carnivore-attracting plant volatiles in lima bean plants. J Chem Ecol 25:1907–1922. doi:10.1023/A:1020942102181

    Article  CAS  Google Scholar 

  • Dicke M, Grostal P (2001) Chemical detection of natural enemies by arthropods: an ecological perspective. Annu Rev Ecol Syst 32:1–23. doi:10.1146/annurev.ecolsys.32.081501.113951

    Article  Google Scholar 

  • Dicke M, Hilker M (2003) Induced plant defences: from molecular biology to evolutionary ecology. Basic Appl Ecol 4:3–14

    Article  CAS  Google Scholar 

  • Dicke M, Takabayashi J, Posthumus MA, Schuette C, Krips OE (1998) Plant phytoseiid interactions mediated by herbivore-induced plant volatiles: variation in production of cues and in response of predatory mites. Exp Appl Acarol 22:311–333

    Article  CAS  Google Scholar 

  • Dicke M, van Beek TA, Posthumus MA, Ben Dom N, Van Bokhoven H, De Groot AE (1990) Isolation and identification of volatile kairomone that affects acarine predator–prey interactions: involvement of host plant in its production. J Chem Ecol 16:381–396

    Article  PubMed  CAS  Google Scholar 

  • Djemai I, Casas J, Magal C (2001) Matching host reactions to parasitoid wasp vibrations. Proc R Soc B 268:2403–2408

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Du Y, Poppy GM, Powell W, Pickett JA, Wadhams LJ, Woodcock CM (1998) Identification of semiochemicals released during aphid feeding that attract parasitoid Aphidius ervi. J Chem Ecol 24:1355–1368. doi:10.1023/A:1021278816970

    Article  CAS  Google Scholar 

  • Egger B, Koschier EH (2014) Behavioural responses of Frankliniella occidentalis Pergande larvae to methyl jasmonate and cis-jasmone. J Pest Sci 87(1):53–59

    Article  Google Scholar 

  • Elias DO, Mason AC, Maddison WP, Hoy RR (2003) Seismic signals in a courting male jumping spider (Araneae: Salticidae). J Exp Biol 206:4029–4039

    Article  PubMed  Google Scholar 

  • Elias DO, Hebets EA, Hoy RR (2006) Female preference for complex/novel signals in a spider. Behav Ecol 17:765–771

    Article  Google Scholar 

  • Elias DO, Kasumovic MM, Punzalan D, Andrade MCB, Mason AC (2008) Assessment during aggressive contests between male jumping spiders. Anim Behav 76:901–910

    Article  PubMed Central  PubMed  Google Scholar 

  • El-Sayed AM, Mitchell VJ, Suckling DM (2014) 6-Pentyl-2H-pyran-2-one: a potent peach-derived kairomone for New Zealand flower thrips, Thrips obscuratus. J Chem Ecol 40:50–55. doi:10.1007/s10886-014-0379-3

    Article  PubMed  CAS  Google Scholar 

  • Escudero LA, Ferragut F (2005) Life-history of predatory mites Neoseiulus californicus and Phytoseiulus persimilis (Acari: Phytoseiidae) on four spider mite species as prey, with special reference to Tetranychus evansi (Acari: Tetranychidae). Biol Cont 32:378–384

    Article  Google Scholar 

  • Escudero LA, Baldó-Gosálvez M, Ferragut F (2005) Eficacia de los fitoseidos como depredadores de las arañas rojas de cultivos hortícolas Tetranychus urticae, T. turkestani, T. ludeni y T. evansi (Acari: Tetranychidae). Bol San Veg Plagas 31:377–383

    Google Scholar 

  • Evans GO (1992) Principles of acarology. CAB International, Wallingford

    Google Scholar 

  • Fernández Ferrari MC, Schausberger P (2013) From repulsion to attraction: species- and spatial context-dependent threat sensitive response of the spider mite Tetranychus urticae to predatory mite cues. Naturwissenschaften 100:541–549. doi:10.1007/s00114-013-1050-5

    Article  PubMed  CAS  Google Scholar 

  • Ferrero M, de Moraes GJ, Kreiter S, Tixier M-S, Knapp M (2007) Life tables of the predatory mite Phytoseiulus longipes feeding on Tetranychus evansi at four temperatures (Acari: Phytoseiidae, Tetranychidae). Exp Appl Acarol 41:45–53

    Article  PubMed  Google Scholar 

  • Ferrero M, Tixier M-S, Kreiter S (2014a) Different feeding behaviors in a single predatory mite species. a. Comparative life histories of three populations of Phytoseiulus longipes (Acari: Phytoseiidae) depending on prey species and plant substrate. Exp Appl Acarol 62(3):313–324

    Article  PubMed  CAS  Google Scholar 

  • Ferrero M, Tixier M-S, Kreiter S (2014b) Different feeding behaviours in a single predatory mite species. b. Responses of two populations of Phytoseiulus longipes (Acari: Phytoseiidae) to various prey species, prey stages and plant substrates. Exp Appl Acarol 62(3):325–335

    Article  PubMed  CAS  Google Scholar 

  • Fiaboe KKM, Fonseca RL, de Moraes GJ, Ogol CKPO, Knapp M (2006) Identification of priority areas in South America for exploration of natural enemies for classical biological control of Tetranychus evansi (Acari: Tetranychidae) in Africa. Biol Control 38:373–379

    Article  Google Scholar 

  • Freysdottir J, Sigurpalsson MB, Omarsdottir S, Olafsdottir ES, Vikingsson A, Hardardottir I (2011) Ethanol extract from birch bark (Betula pubescens) suppresses human dendritic cell mediated Th1 responses and directs it towards a Th17 regulatory response in vitro. Immunol Lett 136(1):90–96

    Article  PubMed  CAS  Google Scholar 

  • Furtado IP, de Moraes GJ, Kreiter S, Knapp M (2006) Search for effective natural enemies of Tetranychus evansi in south and southeast Brazil. Exp Appl Acarol 40:157–174

    Article  PubMed  Google Scholar 

  • Gadino AN, Walton VM, Lee JC (2012) Evaluation of methyl salicylate lures on populations of Typhlodromus pyri (Acari: Phytoseiidae) and other natural enemies in western Oregon vineyards. Biol Control 63:48–55

    Article  CAS  Google Scholar 

  • Garrido I, Espinosa F, Álvarez-Tinaut MC (2009) Oxidative defence reactions in sunflower roots induced by methyljasmonate and methyl-salicylate and their relation with calcium signalling. Protoplasma 237:27–39

    Article  PubMed  CAS  Google Scholar 

  • Gershenzon J, Dudareva N (2007) The function of terpene natural products in the natural world. Nat Chem Biol 3(7):408–414

    Article  PubMed  CAS  Google Scholar 

  • Gibson JS, Uetz GW (2008) Seismic communication and mate choice in wolf spiders: components of male seismic signals and mating success. Anim Behav 75:1253–1262

    Article  Google Scholar 

  • Grostal P, Dicke M (2000) Recognising one’s enemies: a functional approach to risk assessment by prey. Behav Ecol Sociobiol 47:258–264. doi:10.1007/s002650050663

    Article  Google Scholar 

  • Hare JD (2011) Ecological role of volatiles produced by plants in response to damage by herbivorous insects. Annu Rev Entomol 56:161–180. doi:10.1146/annurev-ento-120709-144753

    Article  PubMed  CAS  Google Scholar 

  • Hergenröder R, Barth FG (1983) Vibratory signals and spider behavior: how do the sensory inputs from the eight legs interact in orientation? J Comp Physiol 152:361–371. doi:10.1007/BF00606241

    Article  Google Scholar 

  • Hill PSM (2008) Vibrational communication in animals. Harvard University Press, Cambridge

    Google Scholar 

  • Hill PSM (2009) How do animals use substrate-borne vibrations as an information source? Naturwissenschaften 96:1355–1371. doi:10.1007/s00114-009-0588-8

    Article  PubMed  CAS  Google Scholar 

  • Hink WF, Duffey TE (1990) Controlling ticks and fleas with linalool. Shirlo Inc., Memphis, TN, assignee. United States Patent No. 4,933,371, June 12, 1990

  • James DG (2003a) Field evaluation of herbivore-induced plant volatiles as attractants for beneficial insects: methyl salicylate and the green lacewing, Chrysopa nigricornis. J Chem Ecol 29:1601–1609

    Article  PubMed  CAS  Google Scholar 

  • James DG (2003b) Synthetic herbivore-induced plant volatiles as field attractants for beneficial insects. Env Entomol 32:977–982

    Article  CAS  Google Scholar 

  • James DG (2005) Further field evaluation of synthetic herbivore-induced plant volatiles as attractants for beneficial insects. J Chem Ecol 31:481–495

    Article  PubMed  CAS  Google Scholar 

  • James DG, Price TS (2004) Field-testing of methyl salicylate for recruitment and retention of beneficial insects in grapes and hops. J Chem Ecol 30(8):1613–1628

    Article  CAS  Google Scholar 

  • Jamil MS, Ebrahimzade M, Hassandokht MR (2014) The effect of changes of N, P, and Ca on Coriandrum sativum L’.s essence and its components. Int J Biosci 4:1–9. doi:10.12692/ijb/4.9.1-9

    Google Scholar 

  • Kachroo A, Kachroo P (2009) Fatty acid-derived signals in plant defense. Annu Rev Phytopathol 47:153–176

    Article  PubMed  CAS  Google Scholar 

  • Kant MR, Ament K, Sabelis MW, Haring MA, Schuurink RC (2004) Differential timing of spider mite-induced direct and indirect defenses in tomato plants. Plant Physiol 135:483–495

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kant MR, Sabelis MW, Haring MA, Schuurink RC (2008) Intraspecific variation in a generalist herbivore accounts for differential induction and impact of host plant defences. Proc R Soc B 275:443–452. doi:10.1098/rspb.2007.1277

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kats LB, Dill LM (1998) The scent of death: chemosensory assessment of predation risk by prey animals. Ecosci 5:361–394

    Google Scholar 

  • Kennedy GG (2003) Tomato, pest, parasitoids, and predators: tritrophic interactions involving the genus Lycopersicon. Ann Rev Entomol 48:51–72

    Article  CAS  Google Scholar 

  • Knapp M, Wagener B, Navajas M (2003) Molecular discrimination between the spider mite Tetranychus evansi Baker & Prichard, an important pest of tomatoes in southern Africa, and the closely related species T. urticae Koch (Acarina: Tetranychidae). Afr Entomol 11:300–304

    Google Scholar 

  • Koller M, Knapp M, Schausberger P (2007) Direct and indirect adverse effects of tomato on the predatory mite Neoseiulus californicus feeding on the spider mite Tetranychus evansi. Entomol Exp Appl 125:297–305. doi:10.1111/j.1570-7458.2007.00625.x

    Article  Google Scholar 

  • Koschier EH, Hoffmann D, Riefler J (2007) Influence of salicylaldehyde and methyl salicylate on post-landing behaviour of Frankliniella occidentalis Pergande. J Appl Entomol 131:362–367

    Article  CAS  Google Scholar 

  • Lee S-J, Umano K, Shibamoto T, Lee K-G (2005) Identification of volatile components in basil (Ocimum basilicum L.) and thyme leaves (Thymus vulgaris L.) and their antioxidant properties. Food Chem 91:131–137. doi:10.1016/j.foodchem.2004.05.056

    Article  CAS  Google Scholar 

  • Letizia CS, Cocchiara J, Lalko J, Api AM (2003) Fragrance material review on linalool. Food Chem Toxicol 41:943–964. doi:10.1016/S0278-6915(03)00015-2

    Article  PubMed  CAS  Google Scholar 

  • Losey JE, Denno RF (1998) The escape response of pea aphids to foliar-foraging predators: factors affecting dropping behaviour. Ecol Entomol 23:53–61. doi:10.1046/j.1365-2311.1998.00102.x

    Article  Google Scholar 

  • Maganga ME, Gries G, Gries R (1996) Repellency of various oils and pine oil constituents to house flies (Diptera: Muscidae). Environ Entomol 25:1182–1187

    Article  CAS  Google Scholar 

  • Mallinger RE, Hogg DB, Gratton C (2011) Methyl salicylate attracts natural enemies and reduces populations of soybean aphids (Hemiptera: Aphididae) in soybean agroecosystems. J Econ Entomol 104:115–124

    Article  PubMed  Google Scholar 

  • Martin T, Assogba-Komlan F, Sidick I, Ahle V, Chandre F (2010) An acaricide-treated net to control phytophagous mites. Crop Prot 29:470–475. doi:10.1016/j.cropro.2009.11.004

    Article  CAS  Google Scholar 

  • McGregor PK (2005) Chapter 10: Communication. In: Bolhuis JJ, Giraldear L-A (eds) The behavior of animals: mechanisms, function, and evolution. Wiley-Blackwell, Oxford

    Google Scholar 

  • Migeon A, Ferragut F, Escudero-Colomar LA, Fiaboe KKM, Knapp M, de Moraes GJ, Ueckermann E, Navajas M (2009) Modelling the potential distribution of the invasive tomato red spider mite, Tetranychus evansi (Acari: Tetranychidae). Exp Appl Acarol 48:199–212. doi:10.1007/s10493-008-9229-8

    Article  PubMed  Google Scholar 

  • Muller GC, Junnila A, Butler J, Kravchenko VD, Revay EE, Weiss RW, Schlein Y (2009) Efficacy of the botanical repellents geraniol, linalool, and citronella against mosquitoes. J Vector Ecol 34:2–8

    Article  PubMed  Google Scholar 

  • Muller GC, Junnila A, Kravchenko VD, Revay EE, Butler J, Orlova OB, Weiss RW, Schlein Y (2008a) Ability of essential oil candles to repel biting insects in high and low biting pressure environments. J Am Mosq Control Assoc 24:154–160

    Article  PubMed  CAS  Google Scholar 

  • Muller GC, Junnila A, Kravchenko VD, Revay EE, Butler J, Schlein Y (2008b) Indoor protection against mosquito and sand fly bites: a comparison between citronella, linalool, and geraniol candles. J Am Mosq Control Assoc 24:150–153

    Article  PubMed  CAS  Google Scholar 

  • Murungi LK, Kirwa H, Torto B (2013) Differences in essential oil content of berries and leaves of Solanum sarrachoides (Solanaceae) and the effects on oviposition of the tomato spider mite (Tetranychus evansi). Ind Crop Prod 46:73–79. doi:10.1016/j.indcrop.2013.01.022

    Article  CAS  Google Scholar 

  • Nelson XJ, Jackson RR (2011a) Flexibility in the foraging strategies of spiders. In: Herberstein ME (ed) Spider behaviour: flexibility and versatility. Cambridge University Press, Cambridge, pp 31–56

    Chapter  Google Scholar 

  • Nelson XJ, Jackson RR (2011b) Flexible use of anti-predator defences. In: Herberstein ME (ed) Spider behaviour: flexibility and versatility. Cambridge University Press, Cambridge, pp 99–126

    Chapter  Google Scholar 

  • Noldus LPJJ, Spink AJ, Tegelenbosch RAJ (2002) Computerised video tracking, movement analysis and behaviour recognition in insects. Comp Electr Agric 35:201–227. doi:10.1016/S0168-1699(02)00019-4

    Article  Google Scholar 

  • Olonisakin A (2010) Essential oil composition and biological activity of Cymbopogon citratus. J Chem Soc Niger 35:99–104

    CAS  Google Scholar 

  • Park BS, Choi WS, Kim JH, Lee SE (2005) Monoterpenes from thyme (Thymus vulgaris) as potential mosquito repellents. J Am Mosq Control Assoc 21:80–83

    Article  PubMed  CAS  Google Scholar 

  • Pfannenstiel RS, Hunt RE, Yeargan KV (1995) Orientation of a hemipteran predator to vibrations produced by feeding caterpillars. J Insect Behav 8:1–9. doi:10.1007/BF01990965

    Article  Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; ISBN 3-900051-07-0, URL http://www.R-project.org

  • Rosier RL, Langkilde T (2011) Behavior under risk: how animals avoid becoming dinner. Nat Educ Knowl 2(11):8

    Google Scholar 

  • Ryan MF, Byrne O (1988) Plant-insect coevolution and inhibition of acetylcholinesterase. J Chem Ecol 14:1965–1975

    Article  PubMed  CAS  Google Scholar 

  • Sadgrove NJ, Telford IR, Greatrex BW, Jones GL (2014) Composition and antimicrobial activity of the essential oils from the Phebalium squamulosum species complex (Rutaceae) in New South Wales, Australia. Phytochem 97:38–45. doi:10.1016/j.phytochem.2013.10.015

    Article  CAS  Google Scholar 

  • Sampaio LF, Maia JG, de Parijós AM, de Souza RZ, Barata LES (2012) Linalool from rosewood (Aniba rosaeodora Ducke) oil inhibits adenylate cyclase in the retina, contributing to understanding its biological activity. Phytother Res 26:73–77. doi:10.1002/ptr.3518

    Article  CAS  Google Scholar 

  • Sanchez-Ramos I, Castanera P (2001) Acaricidal activity of natural monoterpenes on Tyrophagus putrescentiae (Schrank), a mite of stored food. J Stored Prod Res 37:93–101

    Article  CAS  Google Scholar 

  • Sarmento RA, Lemos F, Bleeker PM, Schuurink RC, Pallini A, Oliveira MG, Lima ER, Kant M, Sabelis MW, Janssen A (2011) A herbivore that manipulates plant defence. Ecol Lett 14:229–236. doi:10.1111/j.1461-0248.2010.01575.x

    Article  PubMed Central  PubMed  Google Scholar 

  • Saunyama IGM, Knapp M (2003) Effect of pruning and trellising of tomatoes on red spider mite incidence and crop yield in Zimbabwe. Afr Crop Sci J 11:269–277. doi:10.4314/acsj.v11i4.27577

    Google Scholar 

  • Scutareanu P, Drukker B, Bruin J, Posthumus MA, Sabelis MW (1997) Volatiles from Psylla-infested pear trees and their possible involvement in attraction of anthocorid predators. J Chem Ecol 23:2241–2260. doi:10.1023/B:JOEC.0000006671.53045.16

    Article  CAS  Google Scholar 

  • Sharma RN, Saxena KN (1974) Orientation and developmental inhibition in the housefly by certain terpenoids. J Med Entomol 11:617–621

    PubMed  CAS  Google Scholar 

  • Shimoda T, Dicke M (2000) Attraction of a predator to chemical information related to nonprey: when can it be adaptive? Behav Ecol 11:606–613. doi:10.1093/beheco/11.6.606

    Article  Google Scholar 

  • Shiojiri K, Takabayashi J, Yano S, Takafuji A (2001) Infochemically mediated tritrophic interaction webs on cabbage plants. Pop Ecol 43:23–29. doi:10.1007/PL00012011

    Article  Google Scholar 

  • Sibanda T, Dobson HM, Cooper JF, Manyangaririwa W, Chiimba W (2000) Pest management challenges for smallholder vegetable farms in Zimbabwe. Crop Prot 19:807–815. doi:10.1016/S0261-2194(00)00108-3

    Article  Google Scholar 

  • Simmons AT, Gurr GM (2005) Trichomes of Lycopersicon species and their hybrids: effects on pests and natural enemies. Agric For Entomol 7:265–276. doi:10.1111/j.1461-9555.2005.00271.x

    Article  Google Scholar 

  • Škaloudova B, Zemek R, Krivan V (2007) The effect of predation risk in an acarine system. Anim Behav 74:813–821. doi:10.1016/j.anbehav.2007.02.005

    Article  Google Scholar 

  • Snoeren TA, Mumm R, Poelman EH, Yang Y, Pichersky E, Dicke M (2010) The herbivore-induced plant volatile methyl salicylate negatively affects attraction of the parasitoid Diadegma semiclausum. J Chem Ecol 36(5):479–489

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Takabayashi J, Dicke M (1992) Response of predatory mites with different rearing histories to volatiles of uninfested plants. Entomol Exp Appl 64:187–193. doi:10.1111/j.1570-7458.1992.tb01608.x

    Article  Google Scholar 

  • Takabayashi J, Dicke M (1993) Volatile allelochemicals that mediate interactions in a tritrophic system consisting of predatory mites, spider mites and plants. In: Kawanabe H, Cohen JE, Iwasaki K (eds) Mutualism and community organization. Behavioural, theoretical and food-web approaches. Oxford University Press, Oxford, pp 280–295

    Google Scholar 

  • Takabayashi J, Shimoda T, Dicke M, Ashihara W, Takafuji A (2000) Induced response of tomato plants to injury by green and red strains of Tetranychus urticae. Exp Appl Acarol 24:377–383

    Article  PubMed  CAS  Google Scholar 

  • Turlings TCJ, Loughrin JH, McCall PJ, Röse USR, Joe Lewis W, Tumlinson JH (1995) How caterpillar-damaged plants protect themselves by attracting parasitic wasps. Proc Natl Acad Sci USA 92:4169–4174

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Uetz GW, Roberts JA, Taylor PW (2009) Multimodal communication and mate choice in wolf spiders: female response to multimodal versus unimodal signals. Anim Behav 78:299–305. doi:10.1016/j.anbehav.2009.04.023

    Article  Google Scholar 

  • Uhl G (2013) Spider olfaction: attracting, detecting, luring and avoiding. In: Nentwig W (ed) Spider ecophysiology. Springer, Berlin, pp 141–157. doi:10.1007/978-3-642-33989-9_11

    Chapter  Google Scholar 

  • Uhl G, Elias DO (2011) Communication. In: Herberstein ME (ed) Spider behavior: flexibility and versatility. Cambridge University Press, Cambridge, pp 127–190

    Chapter  Google Scholar 

  • Ulland S, Ian E, Mozuraitis R, Borg-Karlson A-K, Meadow R, Mustaparta H (2008) Methyl salicylate, identified as primary odorant of a specific receptor neuron type, inhibits oviposition by the moth Mamestra brassicae L. (Lepidoptera, Noctuidae). Chem Senses 33:35–46

    Article  PubMed  CAS  Google Scholar 

  • Van Den Boom CE, Van Beek TA, Posthumus MA, De Groot A, Dicke M (2004) Qualitative and quantitative variation among volatile profiles induced by Tetranychus urticae feeding on plants from various families. J Chem Ecol 30:69–89

    Article  PubMed  Google Scholar 

  • van Wijk M, De Bruijn PJ, Sabelis MW (2008) Predatory mite attraction to herbivore-induced plant odors is not a consequence of attraction to individual herbivore-induced plant volatiles. J Chem Ecol 34:791–803. doi:10.1007/s10886-008-9492-5

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Varela AM, Seif A, Löhr B (2003) A guide to IPM in tomato production in eastern and southern Africa (Edited by A. Ng’eny-Mengech). ICIPE Science Press, Nairobi, p 128

    Google Scholar 

  • Weaver DK, Dunkel FV, Ntezurubanza L, Jackson LL, Stock DT (1991) The efficacy of linalool, a major component of freshly-milled Ocimum canum Sims (Lamiaceae), for protection against postharvest damage by certain stored product Coleoptera. J Stored Prod Res 27:213–220

    Article  CAS  Google Scholar 

  • Zhang ZQ (2003) Mites of greenhouses: identification, biology and control. CABI Publishing, London

    Book  Google Scholar 

  • Zhang Z, Guo D, Li C, Zheng J, Koike K, Jia Z, Nikaido TJ (1999) Two diterpenoids from the roots of gaultheria yunnanensis. J Nat Prod 62:297–298

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Liu R, Sun L, Huang C, Wang C, Zhang DM, Du GH (2011) Anti-inflammatory activity of methyl salicylate glycosides isolated from Gaultheria yunnanensis (Franch.) Rehder. Molecules 16(5):3875–3884

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was made possible by the generous support of the American people through the U.S. Agency for International Development (USAID) under Award No. EPP-A-00-09-00004 with additional support from Michigan State University and Cirad. The study also obtained financial support from the International Centre of Insect Physiology and Ecology (icipe). The contents are the responsibility of Horticulture Collaborative Research Support Program (HortCRSP) project BioNetAgro investigators and do not necessarily reflect the views of USAID, the U.S. Government or icipe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thibaud Martin.

Additional information

Communicated by N. Agusti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azandémè-Hounmalon, G.Y., Torto, B., Fiaboe, K.K.M. et al. Visual, vibratory, and olfactory cues affect interactions between the red spider mite Tetranychus evansi and its predator Phytoseiulus longipes . J Pest Sci 89, 137–152 (2016). https://doi.org/10.1007/s10340-015-0682-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-015-0682-y

Keywords

Navigation