Skip to main content
Log in

Bt cotton and the predator Podisus nigrispinus (Dallas) (Heteroptera: Pentatomidae) in the management of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) resistance to lambda-cyhalothrin

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

This study sought to provide relevant information for developing effective programs to manage Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) resistance to insecticides by quantifying and describing the interactions between cotton Bt and Podisus nigrispinus (Dallas) (Heteroptera; Pentatomidae) in the management of lambda-cyhalothrin resistance in S. frugiperda fed Bt cotton leaves expressing Cry1Ac (Bollgard, Monsanto, St Louis, MO, USA). These effects were assayed by studying functional responses. Third instar S. frugiperda larvae were used for the following treatments: strains resistant (1) or susceptible (2) to lambda-cyhalothrin fed Bollgard cotton leaves and strains resistant (3) or susceptible (4) to lambda-cyhalothrin fed non-Bt cotton leaves. The predatory behavior of P. nigrispinus females was best represented by a sigmoid curve. The type of P. nigrisinus functional response was not affected by the cotton cultivar or S. frugiperda strain used in the trials. P. nigrispinus females invested a greater amount of handling time (T h) in S. frugiperda larvae that were suseptible to insecticides and fed non-Bt cotton (T h = 1.72 h) compared to those from the insecticide-resistant strain fed with Bt cotton (T h = 1.23 h) or even compared to those that were lambda-cyhalothrin resistant and fed Bt (T h = 1.17 h) or non-Bt cotton (T h = 1.17 h). The results in the present study can be applied in the development of management programs targeting S. frugiperda resistance to pyrethroid lambda-cyhalothrin. The integration of Bt cotton concurrent with biological control by the Asopinae P. nigrispinus is important for successfully managing S. frugiperda resistance to lambda-cyhalothrin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adamczyk Jr JJ, Greenberg S, Armstrong S Mullins WJ, Braxton LB, Lassiter RB, Siebert MW (2008) Evaluation of Bollgard II and WideStrike Technologies against beet and fall armyworms. In: Proceedings, Beltwide Cotton Conferences. National Cotton Council, Memphis, TN

  • Barros R (2012) Evaluation of Bt-cotton as strategy tool for the control of cotton plant-insects under field conditions. Cientifica 40:117–137

    Google Scholar 

  • Colli W (2011) Organismos transgênicos no Brasil: regular ou desregular? Revista USP 89:148–173

    Article  Google Scholar 

  • De Clercq P, Mohaghegh J, Tirry L (2000) Effect of host plant on the functional response of the predator Podisus nigrispinus (Heteroptera: Pentatomidae). Biol Control 18:65–70

    Article  Google Scholar 

  • Diez-Rodriguez GI, Omoto C (2001) Herança da resistência de Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) à lambda-cialotrina. Neotrop Entomol 30:311–316

    Article  Google Scholar 

  • Faria LDB, Godoy WAC, Trinca LA (2004) Dynamics of handling time and functional response by larvae of Chrysomya albiceps (Dipt., Calliphoridae) on different prey species. J Appl Entomol 128:432–436

    Article  Google Scholar 

  • Fok M (2011) Gone with transgenic cotton cropping in the USA. Biotechnol Agron Soc Environ 15:345–352

    Google Scholar 

  • Freund RJ, Littell RC (1986) SAS system for regression. SAS Institute, Cary

    Google Scholar 

  • Hagerty AM, Kilpatrick AL, Tumipseed SG, Sullivan ML (2005) Predaceous arthropods and lepidopteran pests on conventional, Bollgard, and Bollgard II cotton under untreated and disrupted conditions. Environ Entomol 34:105–114

    Article  Google Scholar 

  • Hassell MP (1978) The dynamics of arthropod predator-prey systems. Princeton University Press, Princeton

    Google Scholar 

  • Hertlein MB, Thorarinsson K (1987) Variable patch times and the functional response of Leptopilina boulardi (Hymenoptera: Eucoilidae). Environ Entomol 16:593–598

    Article  Google Scholar 

  • Holling CS (1959) Some characteristics of simple types of predation and parasitism. Can Entomol 91:385–398

    Article  Google Scholar 

  • Houck MA, Strauss RE (1985) A comparative study of functional responses: experimental design and statistical interpretation. Can Entomol 91:617–629

    Article  Google Scholar 

  • Huesing J, English L (2004) The impact of Bt crops on the developing world. AgBioForum 7:84–95

    Google Scholar 

  • Institute Sas (2006) SAS/STAT user’s guide. SAS Institute, Cary

    Google Scholar 

  • Juliano SA (1993) Nonlinear curve fitting: predation and functional response curves. In: Scheiner SM, Gurevitch J (eds) Design and analysis of ecological experiments. Oxford University Press, New York, pp 159–182

    Google Scholar 

  • Knipling EF (1980) Regional management of the fall armyworm: a realistic approach? Florida Entomol 63:468–480

    Article  Google Scholar 

  • Laycock A, Camm E, Van Laerhoven S, Gillespie D (2006) Cannibalism in a zoophytophagous omnivore is mediated by prey availability and plant substrate. J Insect Behav 19:219–229

    Article  Google Scholar 

  • Leibee GL, Capinera JL (1995) Pesticide resistance in Florida insects limits management options. Florida Entomol 78:386–399

    Article  CAS  Google Scholar 

  • Liu X, Chen M, Collins HL, Onstad D, Roush R, Zhang Q, Shelton AM (2012) Effect of insecticides and Plutella xylostella (Lepidoptera: Plutellidae) genotype on a predator and parasitoid and implications for the evolution of insecticide resistance. J Econ Entomol 105:354–362

    Article  PubMed  Google Scholar 

  • Lu Y, Wu K, Jiang Y, Guo Y, Desneux N (2012) Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487:362–365

    Article  CAS  PubMed  Google Scholar 

  • Madadi H, Parizi EM, Allahyari H, Enkegaard A (2011) Assessment of the biological control capability of Hippodamia variegata (Col.: Coccinellidae) using functional response experiments. J Pest Sci 84:447–455

    Article  Google Scholar 

  • Malaquias JB, Ramalho FS, Fernandes FS, Souza JVS, Azeredo TL (2009) Effects of photoperiod on the development and growth of Podisus nigrispinus, a predator of cotton leafworm. Phytoparasitica 37:241–248

    Article  Google Scholar 

  • Malaquias JB, Ramalho FS, Fernandes FS, Nascimento JL Jr, Correia ET, Zanuncio JC (2010) Effects of photoperiod on reproduction and longevity of Podisus nigrispinus (Heteroptera: Pentatomidae). Ann Entomol Soc Am 103:603–610

    Article  Google Scholar 

  • Martinelli S, Clark PL, Zucchi MI, Silva MC, Foster JE, Omoto C (2007) Genetic structure and molecular variabillity of Spodoptera frugiperda (Lepidoptera: Noctuidae) collected in maize and cotton fields in Brazil. Bull Entomol Res 97:225–231

    Article  CAS  PubMed  Google Scholar 

  • Medeiros RS, Ramalho FS, Serrão JE, Zanuncio JC (2004) Estimative of Podisus nigrispinus (Dallas) (Heteroptera: Pentatomidae) development time with non linear models. Neotrop Entomol 33:141–148

    Article  Google Scholar 

  • Mohaghegh J, De Clercq P, Tirry L (2001) Functional response of the predators Podisus maculiventris (Say) and Podisus nigrispinus (Dallas) (Het., Pentatomidae) to the beet armyworm, Spodoptera exigua (Huëbner) (Lep., Noctuidae): effect of temperature. J Appl Entomol 125:131–134

    Article  Google Scholar 

  • Murdoch WW (1969) Switching in generalist predators: experiments on predator specificity and stability of prey populations. Ecol Monogr 39:335–354

    Article  Google Scholar 

  • Murdoch WW, Oaten A (1975) Predation and population stability. Adv Ecol Res 9:1–131

    Article  Google Scholar 

  • Nicholson AJ (1933) The balance of animal populations. J Anim Ecol 2:132–178

    Article  Google Scholar 

  • O’Neil RJ (1990) Functional response of arthropod predators and its role in the biological control of insect pests in agricultural systems. In Alan RL (ed.), New direction in biological control: alternatives for suppressing agricultural pests and diseases. West Lafayette: Purdue University, Indiana, pp 83–86

  • Pashley DP (1986) Host associated genetic differentiation in fall armyworm (Lepidoptera: Noctuidae): a sibling species complex? Ann Entomol Soc Am 79:898–904

    Article  Google Scholar 

  • Pereira AIA, Ramalho FS, Malaquias JB, Bandeira CM, Silva JES, Zanuncio JC (2008) Density of Alabama argillacea larvae affects food extraction by females of Podisus nigrispinus. Phytoparasitica 36:84–94

    Article  Google Scholar 

  • Pereira AIA, Ramalho FS, Rodrigues KCV, Malaquias JB, Souza JVS, Zanuncio JC (2010) Food extraction by the males of Podisus nigrispinus (Dallas) (Hemiptera: Pentatomidae) from cotton leafworm larvae. Braz Arch Biol Technol 53:1027–1035

    Article  Google Scholar 

  • Ramalho FS (1994) Cotton pest management. Part 4. A Brazilian perspective. Annu Rev Entomol 34:563–578

    Article  Google Scholar 

  • Ramalho FS, Azeredo TL, Nascimento ARB, Fernandes FS, Nascimento JR Jr, Malaquias JB, Domingues da Silva CA, Zanuncio JC (2011) Feeding of fall army worm, Spodoptera frugiperda, on Bt transgenic cotton and its isoline. Entomol Exp Appl 139:207–214

    Article  Google Scholar 

  • Randhawa GJ, Chhabra R (2013) Genetically modified cotton in India and detection strategies. Methods Mol Biol 958:17–28

    Article  CAS  PubMed  Google Scholar 

  • Romeis J, van Driesche RG, Barrat BIP, Bigler F (2008) Insect resistant transgenic crops and biological control. In Romeis J, Shelton AM, Kennedy GG (eds.). Integration of insect-resistant genetically modified crops within IPM programs. Springer, Dordrecht, pp 87–118

  • Roush RT, Mckenzie JA (1987) Ecological genetics of insecticide and acaricide resistance. Annu Rev Entomol 32:361–380

    Article  CAS  PubMed  Google Scholar 

  • Vivan LM, Torres JB, Veigas AFSL (2003) Development and reproduction of a predatory stinkbug, Podisus nigrispinus in relation to two different prey types and environmental conditions. Biocontrol 48:155–158

    Article  Google Scholar 

  • Wilkinson MJ, Ford CS (2007) Estimating the potential for ecological harm from gene flow to crop wild relatives. Biosafety Rev 3:42–63

    Google Scholar 

  • Wu K, Mu W, Liang G, Guo Y (2005) Regional reversion of insecticide resistance in Helicoverpa armigera (Lepidoptera: Noctuidae) is associated with the use of Bt cotton in northern China. Pest Manag Sci 61:497–498

    Article  Google Scholar 

  • Yu SJ (1992) Detection and biochemical characterization of insecticide resistance in fall armyworm (Lepidoptera: Noctuidae). J Econ Entomol 85:675–682

    Article  CAS  Google Scholar 

  • Zanuncio JC, Silva CAD, Rodrigues E, Pereira FF, Ramalho FS, Serrão JE (2008) Predation rate of Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae with and without defense by Podisus nigrispinus (Heteroptera: Pentatomidae). Braz Arch Biol Technol 51:125–129

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the scholarships granted to the first author and also thank Embrapa Cotton for their technical support. Additional funds were received from the Brazilian agency Financiadora de Estudos e Projetos-FINEP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. S. Ramalho.

Additional information

Communicated by N. Desneux.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malaquias, J.B., Omoto, C., Ramalho, F.S. et al. Bt cotton and the predator Podisus nigrispinus (Dallas) (Heteroptera: Pentatomidae) in the management of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) resistance to lambda-cyhalothrin. J Pest Sci 88, 57–63 (2015). https://doi.org/10.1007/s10340-014-0585-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-014-0585-3

Keywords

Navigation