Skip to main content
Log in

The role of rhythm in perceiving speech in noise: a comparison of percussionists, vocalists and non-musicians

  • Short Communication
  • Published:
Cognitive Processing Aims and scope Submit manuscript

Abstract

The natural rhythms of speech help a listener follow what is being said, especially in noisy conditions. There is increasing evidence for links between rhythm abilities and language skills; however, the role of rhythm-related expertise in perceiving speech in noise is unknown. The present study assesses musical competence (rhythmic and melodic discrimination), speech-in-noise perception and auditory working memory in young adult percussionists, vocalists and non-musicians. Outcomes reveal that better ability to discriminate rhythms is associated with better sentence-in-noise (but not words-in-noise) perception across all participants. These outcomes suggest that sensitivity to rhythm helps a listener understand unfolding speech patterns in degraded listening conditions, and that observations of a “musician advantage” for speech-in-noise perception may be mediated in part by superior rhythm skills.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  • Alain C, Du Y (2015) Recruitment of the speech motor system in adverse listening conditions. J Acoust Soc Am 137:2211

    Article  Google Scholar 

  • Anderson S, White-Schwoch T, Parbery-Clark A, Kraus N (2013) Reversal of age-related neural timing delays with training. Proc Natl Acad Sci 110:4357–4362

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Andreou L-V, Kashino M, Chait M (2011) The role of temporal regularity in auditory segregation. Hear Res 280:228–235

    Article  PubMed  Google Scholar 

  • Ashley R (2002) Do [n’t] change a hair for me: the art of jazz rubato. Music Percept 19:311–332

    Article  Google Scholar 

  • Bastiaansen M, Hagoort P (2006) Oscillatory neuronal dynamics during language comprehension. Prog Brain Res 159:179–196

    Article  PubMed  Google Scholar 

  • Bhide A, Power A, Goswami U (2013) A rhythmic musical intervention for poor readers: a comparison of efficacy with a letter-based intervention mind. Brain Educ 7:113–123

    Article  Google Scholar 

  • Boebinger D, Evans S, Rosen S, Lima CF, Manly T, Scott SK (2015) Musicians and non-musicians are equally adept at perceiving masked speech. J Acoust Soc Am 137:378–387

    Article  PubMed Central  PubMed  Google Scholar 

  • Brown L, Sherbenou R, Johnsen SK (1988) Test of nonverbal intelligence. Pro-Ed, Austin

    Google Scholar 

  • Butkovic A, Ullén F, Mosing MA (2015) Personality related traits as predictors of music practice: underlying environmental and genetic influences. Personal Individ Differ 74:133–138

    Article  Google Scholar 

  • Cameron DJ, Grahn JA (2014) Enhanced timing abilities in percussionists generalize to rhythms without a musical beat. Front Human Neurosci 8:1003

  • Chen JL, Penhune VB, Zatorre RJ (2008) Listening to musical rhythms recruits motor regions of the brain. Cereb Cortex 18:2844–2854. doi:10.1093/cercor/bhn042

    Article  PubMed  Google Scholar 

  • Cicchini GM, Arrighi R, Cecchetti L, Giusti M, Burr DC (2012) Optimal encoding of interval timing in expert percussionists. J Neurosci 32:1056–1060

    Article  CAS  PubMed  Google Scholar 

  • Cummins F (2013) Joint speech: the missing link between speech and music? PERCEPTA-Revista de Cognição Musical 1:17–32

    Google Scholar 

  • Davis MH, Johnsrude IS (2007) Hearing speech sounds: top-down influences on the interface between audition and speech perception. Hear Res 229:132–147

    Article  PubMed  Google Scholar 

  • Ding N, Simon JZ (2013) Adaptive temporal encoding leads to a background-insensitive cortical representation of speech. J Neurosci 33:5728–5735

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fuller CD, Galvin III JJ, Maat B, Free RH, Başkent D (2014) The musician effect: does it persist under degraded pitch conditions of cochlear implant simulations? Front Neurosci 8:179

  • Giraud A-L, Poeppel D (2012) Cortical oscillations and speech processing: emerging computational principles and operations. Nat Neurosci 15:511–517

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gordon RL, Shivers CM, Wieland EA, Kotz SA, Yoder PJ, Devin McAuley J (2015) Musical rhythm discrimination explains individual differences in grammar skills in children. Dev Sci 18:635–644

  • Grahn JA (2012) Neural mechanisms of rhythm perception: current findings and future perspectives. Top Cogn Sci 4:585–606. doi:10.1111/j.1756-8765.2012.01213.x

    Article  PubMed  Google Scholar 

  • Harle M, Rockstroh B, Keil A, Wienbruch C, Elbert T (2004) Mapping the brain’s orchestration during speech comprehension: task-specific facilitation of regional synchrony in neural networks. BMC Neurosci 5:40

    Article  PubMed Central  PubMed  Google Scholar 

  • Herdener M, Humbel T, Esposito F, Habermeyer B, Cattapan-Ludewig K, Seifritz E (2014) Jazz drummers recruit language-specific areas for the processing of rhythmic structure. Cereb Cortex 24:836–843

    Article  PubMed  Google Scholar 

  • Huss M, Verney JP, Fosker T, Mead N, Goswami U (2011) Music, rhythm, rise time perception and developmental dyslexia: perception of musical meter predicts reading and phonology. Cortex J Devot Study Nerv Syst Behav 47:674–689. doi:10.1016/j.cortex.2010.07.010

    Article  Google Scholar 

  • Jeon JY, Fricke FR (1997) Duration of perceived and performed sounds. Psychol Music 25:70–83

    Article  Google Scholar 

  • Jones JL, Lucker J, Zalewski C, Brewer C, Drayna D (2009) Phonological processing in adults with deficits in musical pitch recognition. J Commun Disord 42:226–234

    Article  PubMed Central  PubMed  Google Scholar 

  • Killion MC, Niquette PA, Gudmundsen GI, Revit LJ, Banerjee S (2004) Development of a quick speech-in-noise test for measuring signal-to-noise ratio loss in normal-hearing and hearing-impaired listeners. J Acoust Soc Am 116:2395–2405

    Article  PubMed  Google Scholar 

  • Kotz SA, Schwartze M, Schmidt-Kassow M (2009) Non-motor basal ganglia functions: a review and proposal for a model of sensory predictability in auditory language perception. Cortex J Devot Study Nerv Syst Behav 45:982–990. doi:10.1016/j.cortex.2009.02.010

    Article  Google Scholar 

  • Kraus N, White-Schwoch T (in press) Unraveling the biology of auditory learning: a cognitive-sensorimotor-reward framework. Trends Cogn Sci

  • Kraus N, Strait DL, Parbery-Clark A (2012) Cognitive factors shape brain networks for auditory skills: spotlight on auditory working memory. Ann NY Acad Sci 1252:100–107

    Article  PubMed Central  PubMed  Google Scholar 

  • Large E, Jones M (1999) The dynamics of attending: How people track time-varying events. Psychol Rev 106:119–159

    Article  Google Scholar 

  • Large EW, Snyder JS (2009) Pulse and meter as neural resonance. Ann N Y Acad Sci 1169:46–57. doi:10.1111/j.1749-6632.2009.04550.x

    Article  PubMed  Google Scholar 

  • Liu F, Jiang C, Wang B, Xu Y, Patel AD (2015) A music perception disorder (congenital amusia) influences speech comprehension. Neuropsychologia 66:111–118

    Article  PubMed  Google Scholar 

  • Martin JG (1972) Rhythmic (hierarchical) versus serial structure in speech and other behavior. Psychol Rev 79:487–509

    Article  CAS  PubMed  Google Scholar 

  • Mosing MA, Madison G, Pedersen NL, Kuja-Halkola R, Ullén F (2014) Practice does not make perfect no causal effect of music practice on music ability. Psychol Sci 0956797614541990

  • Nozaradan S, Peretz I, Mouraux A (2012) Selective neuronal entrainment to the beat and meter embedded in a musical rhythm. J Neurosci Off J Soc Neurosci 32:17572–17581. doi:10.1523/JNEUROSCI.3203-12.2012

    Article  CAS  Google Scholar 

  • Overy K (2000) Dyslexia, temporal processing and music: the potential of music as an early learning aid for dyslexic children. Psychol Music 28:218–229

    Article  Google Scholar 

  • Overy K (2003) Dyslexia and music. From timing deficits to musical intervention. Ann NY Acad Sci 999:497–505

    Article  PubMed  Google Scholar 

  • Pantev C, Roberts LE, Schulz M, Engelien A, Ross B (2001) Timbre-specific enhancement of auditory cortical representations in musicians. NeuroReport 12:169–174

    Article  CAS  PubMed  Google Scholar 

  • Parbery-Clark A, Skoe E, Lam C, Kraus N (2009) Musician enhancement for speech-in-noise. Ear Hear 30:653–661. doi:10.1097/AUD.0b013e3181b412e9

    Article  PubMed  Google Scholar 

  • Parbery-Clark A, Strait DL, Anderson S, Hittner E, Kraus N (2011) Musical experience and the aging auditory system: implications for cognitive abilities and hearing speech in noise. PLoS ONE 6:e18082. doi:10.1371/journal.pone.0018082

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Patel AD (2010) Music, language, and the brain. Oxford University Press, Oxford

    Google Scholar 

  • Patel AD (2011) Why would musical training benefit the neural encoding of speech? The OPERA hypothesis. Front Psychol 2:142

  • Patel AD, Iversen JR (2014) The evolutionary neuroscience of musical beat perception: the action simulation for auditory prediction (ASAP) hypothesis. Front Syst Neurosci. doi:10.3389/fnsys.2014.00057

    PubMed Central  PubMed  Google Scholar 

  • Peelle JE, Davis MH (2012) Neural oscillations carry speech rhythm through to comprehension. Front Psychol 3:320

  • Port RF (2003) Meter and speech. J Phon 31:599–611

    Article  Google Scholar 

  • Putkinen V, Tervaniemi M, Huotilainen M (2013) Informal musical activities are linked to auditory discrimination and attention in 2–3-year-old children: an event-related potential study. Eur J Neurosci 37:654–661. doi:10.1111/ejn.12049

    Article  CAS  PubMed  Google Scholar 

  • Quene H, Port RF (2005) Effects of timing regularity and metrical expectancy on spoken-word perception. Phonetica 62:1–13. doi:10.1159/000087222

    Article  PubMed  Google Scholar 

  • Rammsayer T, Altenmüller E (2006) Temporal information processing in musicians and nonmusicians. Music Percept 24:37–48

    Article  Google Scholar 

  • Roncaglia-Denissen MP, Schmidt-Kassow M, Kotz SA (2013) Speech rhythm facilitates syntactic ambiguity resolution: ERP evidence. PLoS ONE 8:e56000. doi:10.1371/journal.pone.0056000

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rothermich K, Schmidt-Kassow M, Kotz SA (2012) Rhythm’s gonna get you: regular meter facilitates semantic sentence processing. Neuropsychologia 50:232–244

    Article  PubMed  Google Scholar 

  • Ruggles DR, Freyman RL, Oxenham AJ (2014) Influence of musical training on understanding voiced and whispered speech in noise. PLoS ONE 9:e86980

    Article  PubMed Central  PubMed  Google Scholar 

  • Schellenberg EG (2015) Music training and speech perception: a gene–environment interaction. Ann NY Acad Sci 1337:170–177

    Article  PubMed  Google Scholar 

  • Schmidt-Kassow M, Kotz SA (2009) Event-related brain potentials suggest a late interaction of meter and syntax in the P600. J Cogn Neurosci 21:1693–1708

    Article  PubMed  Google Scholar 

  • Shahin AJ (2011) Neurophysiological influence of musical training on speech perception. Front Psychol 2:126

  • Shamma SA, Elhilali M, Micheyl C (2011) Temporal coherence and attention in auditory scene analysis. Trends Neurosci 34:114–123

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Slater J, Skoe E, Strait DL, O’Connell S, Thompson E, Kraus N (2015) Music training improves speech-in-noise perception: longitudinal evidence from a community-based music program. Behav Brain Res 291:244–252

    Article  PubMed  Google Scholar 

  • Smith MR, Cutler A, Butterfield S, Nimmo-Smith I (1989) The perception of rhythm and word boundaries in noise-masked speech. J Speech Hear Res 32:912–920

    Article  CAS  PubMed  Google Scholar 

  • Song JH, Skoe E, Banai K, Kraus N (2011) Training to improve hearing speech in noise: biological mechanisms. Cereb Cortex 22:1180–1190. doi:10.1093/cercor/bhr196

    Article  PubMed Central  PubMed  Google Scholar 

  • Stahl B, Kotz SA, Henseler I, Turner R, Geyer S (2011) Rhythm in disguise: why singing may not hold the key to recovery from aphasia. Brain awr240

  • Strait DL, Hornickel J, Kraus N (2011) Subcortical processing of speech regularities underlies reading and music aptitude in children. Behav Brain Funct 7:44

    Article  PubMed Central  PubMed  Google Scholar 

  • Strait DL, Chan K, Ashley R, Kraus N (2012) Specialization among the specialized: auditory brainstem function is tuned into timbre. Cortex J Devot Study Nerv Syst Behav 48:360–362. doi:10.1016/j.cortex.2011.03.015

    Article  Google Scholar 

  • Swaminathan J, Mason CR, Streeter TM, Best V, Kidd G Jr, Patel AD (2015) Musical training, individual differences and the cocktail party problem. Sci Rep 5:11628. doi:10.1038/srep11628

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thomson JM, Goswami U (2008) Rhythmic processing in children with developmental dyslexia: auditory and motor rhythms link to reading and spelling. J Physiol Paris 102:120–129. doi:10.1016/j.jphysparis.2008.03.007

    Article  PubMed  Google Scholar 

  • Tierney AT, Kraus N (2013) The ability to tap to a beat relates to cognitive, linguistic, and perceptual skills. Brain Lang 124:225–231. doi:10.1016/j.bandl.2012.12.014

    Article  PubMed Central  PubMed  Google Scholar 

  • Vuust P, Pallesen KJ, Bailey C, van Zuijen TL, Gjedde A, Roepstorff A, Østergaard L (2005) To musicians, the message is in the meter: pre-attentive neuronal responses to incongruent rhythm are left-lateralized in musicians. Neuroimage 24:560–564

    Article  PubMed  Google Scholar 

  • Vuust P, Brattico E, Seppänen M, Näätänen R, Tervaniemi M (2012) Practiced musical style shapes auditory skills. Ann N Y Acad Sci 1252:139–146

    Article  PubMed  Google Scholar 

  • Wallentin M, Nielsen AH, Friis-Olivariusa M, Vuust C, Vuust P (2010) The Musical Ear Test, a new reliable test for measuring musical competence. Learn Individ Differ 20:188–196

    Article  Google Scholar 

  • Wilson RH, McArdle RA, Smith SL (2007) An evaluation of the BKB-SIN, HINT, QuickSIN, and WIN materials on listeners with normal hearing and listeners with hearing loss. J Speech Lang Hear Res 50:844–856. doi:10.1044/1092-4388(2007/059)

    Article  PubMed  Google Scholar 

  • Woodcock RW, McGrew K, Mather N (2001) Woodcock-Johnson tests of achievement. Riverside Publishing, Itasca

    Google Scholar 

  • Woodruff Carr K, White-Schwoch T, Tierney AT, Strait DL, Kraus N (2014) Beat synchronization predicts neural speech encoding and reading readiness in preschoolers. In: Proceedings of the National Academy of Sciences, 201406219

  • Zendel BR, Alain C (2012) Musicians experience less age-related decline in central auditory processing. Psychol Aging 27:410

    Article  PubMed  Google Scholar 

  • Zendel BR, Tremblay CD, Belleville S, Peretz I (2015) The impact of musicianship on the cortical mechanisms related to separating speech from background noise. J Cogn Neurosci 27:1044–1059. doi:10.1162/jocn_a_00758

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Britta Swedenborg, Emily Spitzer and Andrea Azem for assistance with data collection and processing, and Trent Nicol, Kali Woodruff Carr, Travis White-Schwoch and Adam Tierney who provided comments on an earlier version of this manuscript. This work was supported by the National Institutes of Health grant F31DC014891-01 to J.S., the National Association of Music Merchants (NAMM) and Knowles Hearing Center, Northwestern University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Kraus.

Additional information

Handling Editor: Marta Olivetti Belardinelli, Sapienza University of Rome.

Reviewers: Mari Tervaniemi, University of Helsinki; Riccardo Brunetti, European University of Rome.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slater, J., Kraus, N. The role of rhythm in perceiving speech in noise: a comparison of percussionists, vocalists and non-musicians. Cogn Process 17, 79–87 (2016). https://doi.org/10.1007/s10339-015-0740-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10339-015-0740-7

Keywords

Navigation