Skip to main content
Log in

Characterization of Titanium Tiles as Novel Platforms for Micro-Flame Ionization Detection in Miniature Gas Chromatography

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A titanium miniature gas chromatography device with an on-board micro-flame ionization detector (Ti µGC-FID) is presented. The design is based on a counter-current method that establishes a stable flame (~240 µm diameter) inside a 1.44 mm circular cavity within the Ti tile. The width of this cavity is found to have a significant impact on flame stability and detector performance. Through polarizing the conductive Ti tile body and situating a collector adjacent to the cavity, useful µFID response is obtained from the flame. The 7.5 cm × 15 cm rectangular monolithic Ti device contains a serpentine column layout (5 m long × 100 μm wide) coated with OV-101 stationary phase that is directly integrated with the on-board μFID. The column produces reasonable analyte peak symmetry and separation performance with a plate height of 1.5 mm for dodecane. Under optimized conditions, the Ti μGC-FID device yields a detection limit of 9 × 10−12 gC s−1, a linear response over 3 orders of magnitude, a sensitivity of 60 mC gC−1, and a signal reproducibility within 5% RSD (n = 10). Some samples are analyzed using the Ti µGC-FID device and results indicate that this approach can potentially provide a useful alternative means of achieving sensitive and stable μFID performance within a robust, integrated miniaturized GC platform.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang Y, Xu X, Yin L, Cheng H, Mao T, Zhang K, Lin W, Meng Z, Palasota JA (2014) J Chromatogr A 1361:229–239

    Article  CAS  Google Scholar 

  2. Cazes J (2005) Ewing’s analytical instrumentation handbook. Marcel Dekker, New York

    Google Scholar 

  3. Ye JS (2009) Chem Pap 63:506–511

    Article  CAS  Google Scholar 

  4. Samuel HC, Quan S (2013) Sci China Chem 56:833–839

    Article  Google Scholar 

  5. Putri SP, Yamamoto S, Tsugawa H, Fukusaki E (2013) J Biosci Bioeng 116:9–16

    Article  CAS  Google Scholar 

  6. Tyburezy C, Mossoba MM, Rader JL (2013) Anal Bioanal Chem 405:5759–5772

    Article  Google Scholar 

  7. Reid VR, McBrady AD, Synovec RE (2007) J Chromatogr A 1148:236–243

    Article  CAS  Google Scholar 

  8. Sacks R, Smith H, Nowak M (1998) Anal Chem News Features 70:29A–37A

    CAS  Google Scholar 

  9. Whitesides GM (2006) Nature 442:368–371

    Article  CAS  Google Scholar 

  10. Agah M, Potkay JA, Lambertus GR, Sacks R, Wise KD (2005) J Microelectromech S 14:1039–1050

    Article  Google Scholar 

  11. Agah M, Lambertus GR, Sacks R, Wise KD (2006) J Microelectromech S 15:1371–1378

    Article  CAS  Google Scholar 

  12. Lee CY, Sharma R, Radadia AD (2008) Masel RI Prof, Strano MS Prof. Angew Chem Ger Edit 120:5096–5099

    Article  Google Scholar 

  13. Haghighi F, Talebpour Z, Sanati-Nezhad A (2015) Lab Chip 15:2559–2575

    Article  CAS  Google Scholar 

  14. Shakeel H, Wang D, Heflin JR, Agah M (2015) Sensor Actuat B Chem 216:349–357

    Article  CAS  Google Scholar 

  15. Terry SC, Jerman JH, Angell JB (1979) IEEE Trans Electron Dev 26:1880–1886

    Article  Google Scholar 

  16. Lu CJ, Steinecker WH, Tian WC, Oborny MC, Nichols JM, Agah M, Potkay JA, Chan HK, Driscoll J, Sacks RD, Wise KD, Pang SW, Zellers ET (2005) Lab Chip 5:1123–1131

    Article  CAS  Google Scholar 

  17. Reidy S, Lambertus GR, Reece J, Sacks RD (2006) Anal Chem 78:2623–2630

    Article  CAS  Google Scholar 

  18. Cesar W, Flourens F, Kaiser C, Sutour C, Angelescu DE (2015) Anal Chem 87:5620–5625

    Article  CAS  Google Scholar 

  19. McMinn DG, Hill HH (1992) In: Hill HH, McMinn DG (eds) Detectors for capillary chromatography. Wiley, New York, pp 1–7

    Google Scholar 

  20. Zimmermann S, Wischhusen S, Müller J (2000) Sens Actuat B Chem 63:159–166

    Article  CAS  Google Scholar 

  21. Bhushan A, Yemane D, McDaniel S, Goettert J, Murphy MC, Overton EB (2010) Analyst 135:2730–2736

    Article  CAS  Google Scholar 

  22. Bae B, Kim J, Yeom J, Chen Q, Ray C, Shannon M (2012) Development of a portable gas analyzer using a micro-gas chromatograph/flame ionization detector (micro-GC/FID) for NASA’s environmental missions. In: 42nd international conference on environmental systems. American Institute of Aeronautics and Astronautics, San Diego, p 3435

  23. Dziurdzia B, Magonski Z, Nowak S (2008) Meas Sci Technol 19:1–6

    Article  Google Scholar 

  24. Kuipers W, Müller J (2011) J Chromatogr A 1218:1891–1898

    Article  CAS  Google Scholar 

  25. Kuipers W, Müller J (2010) Talanta 82:1674–1679

    Article  CAS  Google Scholar 

  26. Chen P-Y, Tsai M-H, Yeh W-K, Jing M-H, Chang Y (2010) Microelectron Eng 87:2065–2070

    Article  CAS  Google Scholar 

  27. Darko E, Thurbide KB, Gerhardt GC, Michienzi J (2013) Anal Chem 85:5376–5381

    Article  CAS  Google Scholar 

  28. Darko E (2013) Characterization of novel materials as platforms for performing microfluidic gas chromatography. M. Sc. thesis. University of Calgary, Calgary. http://hdl.handle.net/11023/616. Accessed 24 Nov 2016

  29. Zhang YT, Bottausci F, Rao MP, Parker ER, Mezic I, MacDonald NC (2008) Biomed Microdevices 10:509–517

    Article  CAS  Google Scholar 

  30. Gupta V, Talebi M, Deverell J, Sandron S, Nesterenko PN, Heery B, Thompson F, Beirne S, Wallace GG, Paull B (2016) Anal Chim Acta 910:84–94

    Article  CAS  Google Scholar 

  31. Thurbide KB, Anderson CD (2003) Analyst 128:616–621

    Article  CAS  Google Scholar 

  32. Thurbide KB, Hayward TC (2004) Anal Chim Acta 519:121–128

    Article  CAS  Google Scholar 

  33. Hayward TC, Thurbide KB (2007) Talanta 73:583–588

    Article  CAS  Google Scholar 

  34. Hayward TC, Thurbide KB (2008) J Chromatogr A 1200:2–7

    Article  CAS  Google Scholar 

  35. Kendler S, Reidy SM, Lambertus GR, Sacks RD (2006) Anal Chem 78:6765–6773

    Article  CAS  Google Scholar 

  36. Whitting JJ, Lu CJ, Zellers ET, Sacks RD (2001) Anal Chem 73:4668

    Article  Google Scholar 

  37. Radadia AD, Masel RI, Shannon MA (2007) Solid-state sensors, actuators and microsystems conference, transducers international: 2011–2014

  38. Zareian-Jahromi, Amin M (2009) MEMS based micro gas chromatography: design, fabrication, and characterization. MSc. thesis, Virginia Polytechnic Institute and State University, Blacksburg. https://theses.lib.vt.edu/theses/available/etd-06052009-023407. Accessed 24 Nov 2016

  39. Bruderreck H, Schneider W, Halàsz I (1964) Anal Chem 36:461–473

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Waters Corporation for their support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin B. Thurbide.

Ethics declarations

Funding

This study was funded by Waters Corporation.

Conflict of interest

The authors, K. Thurbide and R. Raut, received research funding from Waters Corporation for the purpose of carrying out this research work.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raut, R.P., Thurbide, K.B. Characterization of Titanium Tiles as Novel Platforms for Micro-Flame Ionization Detection in Miniature Gas Chromatography. Chromatographia 80, 805–812 (2017). https://doi.org/10.1007/s10337-017-3281-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-017-3281-7

Keywords

Navigation