Skip to main content
Log in

Analysis of Two-Component Non-Equilibrium Model of Linear Reactive Chromatography

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

This article presents semi-analytical solutions and analytical temporal moments of a two-component linear reactive lumped kinetic model incorporating irreversible (\(A\rightarrow B\)) and reversible (\(A\leftrightarrows B\)) reactions in a fixed-bed liquid chromatographic column. Both solid and liquid phase reactions and two sets of boundary conditions are considered. The current model equations contain a coupled system of two partial differential equations (PDEs) and two ordinary differential equations (ODEs). The solution methodology successively employs the Laplace transform and linear transformation steps to uncouple the governing set of coupled differential equations. The resulting system of uncoupled ODEs is solved by applying an elementary solution technique. The numerical Laplace inversion is employed to transform back the solutions in the actual time domain. To further analyze the effects of different kinetic parameters, statistical temporal moments are derived from the Laplace-transformed solutions. The current solutions extend and generalize our recent solutions for single-solute transport models of non-reactive liquid chromatography. For verification, the analytical results are compared with the numerical solutions of a high-resolution finite volume scheme. Several case studies of practical interest are considered. Good agreements in the results validate the correctness of semi-analytical solutions and the accuracy of proposed numerical algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ganetsos G, Barker PE (1993) Preparative and production scale chromatography, vol 61. Marcel Dekker Inc, New York, pp 375–523

    Google Scholar 

  2. Guiochon G, Lin B (2003) Modeling for preparative chromatography. Academic Press, New York

    Google Scholar 

  3. Guiochon G, Shirazi G, Katti M (2006) Fundamentals of preparative and nonlinear chromatography, 2nd edn. Elsevier Inc., The Netherlands

    Google Scholar 

  4. Mazzotti M, Kruglov A, Neri B, Gelosa D, Morbidelli M (1996) A continuous chromatographic reactor: SMBR. Chem Eng Sci 51:1827–1836

    Article  CAS  Google Scholar 

  5. Yamaoka K, Nakagawa T (1976) Moment analysis for reaction chromatography. J Chromatogr A 117:1–10

    Article  CAS  Google Scholar 

  6. Takeuchi K, Uraguchi Y (1976) Separation conditions of the reactant and the product with a chromatographic moving bed reactor. J Chem Eng Jpn 9:164–166

    Article  CAS  Google Scholar 

  7. Takeuchi K, Uraguchi Y (1976) Basic design of chromatographic moving-bed reactors for product refining. J Chem Eng Jpn 9:246–248

    Article  Google Scholar 

  8. Takeuchi K, Uraguchi Y (1977) The effect of the exhausting section on the performance of a chromatographic moving-bed reactor. J Chem Eng Jpn 10:72–74

    Article  Google Scholar 

  9. Takeuchi K, Uraguchi Y (1977) Experimental studies of a chromatographic moving-bed reactor-catalytic oxidation of carbon monoxide on activated alumina as a model reactor. J Chem Eng Jpn 10:455–460

    Article  CAS  Google Scholar 

  10. Takeuchi K, Miyauchi T, Uraguchi Y (1978) Computational studies of a chromatographic moving bed reactor for consecutive and reversible reactions. J Chem Eng Jpn 11:216–220

    Article  CAS  Google Scholar 

  11. Schweich D, Villermaux J (1978) The chromatographic reactor. A new theoretical approach. Ind Eng Chem Fundam 17:1–7

    Article  CAS  Google Scholar 

  12. Villermaux J (1981) The chromatographic reactor. In: Rodrigues AE, Tondeur D (eds) percolation processes: theory and applications. Sijthoff & Noordhoff, Maryland

  13. Cho BK, Aris R, Carr RW (1982) The mathematical theory of a countercurrent catalytic reactor. Proc R Soc Lond 383:147–189

    Article  CAS  Google Scholar 

  14. Petroulas T, Aris R, Carr RW (1985) Analysis of the counter-current moving-bed chromatographic reactor. Comput Math Appl 11:5–34

    Article  Google Scholar 

  15. Carta G (1991) Simultaneous reaction and chromatography, in: Chromatographic and membrane processes in biotechnology. In: Costa CA, Cabral JS (eds) NATO ASI. Kluwer Academic Publishers, Deventer, pp 429–447

    Google Scholar 

  16. Binous H, McCoy B (1992) Chromatographic reactions of the three components: application to separations. Chem Eng Sci 47:4333–4343

    Article  CAS  Google Scholar 

  17. Sardin M, Schweich D, Villermaux J, Ganetsos G, Barker PE (eds) (1993) Preparative fixed-bed chromatographic reactor. Preparative and production scale chromatography. Marcel Dekker Inc., New York

  18. Lin B, Song F, Guiochon G (2003) Analytical solution of the ideal, nonlinear model of reaction chromatography for a reaction A \(\leftarrow \) B and a parabolic isotherm. J Chromatogr A 1003:91–100

    Article  CAS  Google Scholar 

  19. Borren T, Fricke J, Schmidt-Traub H (eds) (2005) Chromatographic reactors in preparative chromatography of fine chemicals and pharmaceutical agents. Wiley-VCH Verlag, Weinheim, pp 371–395

    Google Scholar 

  20. Fricke J, Schmidt-Traub H, Kawase M (2005) Chromatographic reactor. Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag, Weinheim

  21. Javeed S, Qamar S, Seidel-Morgenstern A, Warnecke G (2011) A discontinuous Galerkin method to solve chromatographic models. J Chromatogr A 1218:7137–7146

    Article  CAS  Google Scholar 

  22. Javeed S, Qamar S, Seidel-Morgenstern A, Warnecke G (2012) Parametric study of thermal effects in reactive liquid chromatography. Chem Eng J 191:426–440

    Article  CAS  Google Scholar 

  23. Qamar S, Bibi S, Khan FU, Shah M, Javeed S, Seidel-Morgenstern A (2014) Irreversible and reversible reactions in a liquid chromatographic column: analytical solutions and moment analysis. Ind Eng Chem Res 53:2461–2472

    Article  CAS  Google Scholar 

  24. Ruthven DM (1984) Principles of adsorption and adsorption processes. Wiley-Interscience, New York

    Google Scholar 

  25. Van Genuchten MTh (1981) Analytical solutions for chemical transport with simultaneous adsorption, zeroth-order production and first order decay. J Hydrol 49:213–233

    Article  Google Scholar 

  26. Rice RG, Do DD (1995) Applied mathematics and modeling for chemical engineers. Wiley-Interscience, New York

    Google Scholar 

  27. Durbin F (1974) Numerical Inversion of Laplace Transforms: an efficient improvement to Dubner and Abate’s Method. Comput J 17:371–376

    Article  Google Scholar 

  28. Schneider P, Smith JM (1968) Adsorption rate constants from chromatography. AIChE J 14:762–771

    Article  CAS  Google Scholar 

  29. Mehta RV, Merson RL, McCoy BJ (1974) Hermite polynomial representation of chromatography elution curves. J Chromatogr A 88:1–6

    Article  CAS  Google Scholar 

  30. Linek F, Duduković MP (1982) Representation of breakthrough curves for fixed-bed adsorbers and reactors using moments of the impulse response. Chem Eng J 23:31–36

    Article  CAS  Google Scholar 

  31. Javeed S, Qamar S, Ashraf W, Warnecke G, Seidel-Morgenstern A (2013) Analysis and numerical investigation of two dynamic models for liquid chromatography. Chem Eng Sci 90:17–31

    Article  CAS  Google Scholar 

  32. Qamar S, Abbasi JN, Javeed S, Shah M, Khan FU, Seidel-Morgenstern A (2013) Analytical solutions and moment analysis of chromatographic models for rectangular pulse injections. J Chromatogr A 1315:92–106

    Article  CAS  Google Scholar 

  33. Suzuki M, Smith JM (1971) Kinetic studies by chromatography. Chem Eng Sci 26:221–235

    Article  CAS  Google Scholar 

  34. Bibi S, Qamar S, Seidel-Morgenstern A (2015) Irreversible and reversible reactive chromatography: analytical solutions and moment analysis for rectangular pulse injections. J Chromatogr A 1385:49–62

    Article  CAS  Google Scholar 

  35. Quezada CR, Clement TP, Lee KK (2004) Generalized solution to multi-dimensional multi-species transport equations coupled with a first-order reaction network involving distinct retardation factors. Adv Water Res 27:507–520

    Article  Google Scholar 

  36. Abramowitz M, Stegun IA (1970) Handbook of mathematical functions. Dover, New York, NY

    Google Scholar 

  37. Carslaw HS, Jaeger JD (1959) Conduction of heat in solids, 2nd edn. Oxford Unversity Press, London

    Google Scholar 

  38. Javeed S, Qamar S, Seidel-Morgenstern A, Warnecke G (2011) Efficient and accurate numerical simulation of nonlinear chromatographic processes. J Comput Chem Eng 35:2294–2305

    Article  CAS  Google Scholar 

  39. Danckwerts PV (1953) Continuous flow systems. Chem Eng Sci 2:1–9

    Article  CAS  Google Scholar 

  40. Koren B (1993) A robust upwind discretization method for advection, diffusion and source terms. In: Vreugdenhil CB, Koren B (eds) Numerical methods for advection-diffusion problems, vol 45 of notes on numerical fluid mechanics, chapter 5. Vieweg Verlag, Braunschweig, pp 117-138

  41. Trapp O, Schurig V (2001) ChromWin: A computer program for the determination of enantiomerization barriers in dynamic chromatography. Comput Chem 25:187–195

    Article  CAS  Google Scholar 

  42. Trapp O, Trapp G, Schurig V (2002) Direct calculation and computer simulation of the enantiomerization barrier of oxazepam in dynamic HPLC experiments-a comparative study. J Biochem Biophys Methods 54:301–313

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shamsul Qamar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Appendices

Appendix

Analytical Moments

Here, the analytical temporal moments are presented for two different sets of boundary conditions. For the derivation of the moments, \(c_{i,\mathrm init}=0\,\mathrm{g}/\mathrm{l}\) (for \(i=1,2\)), \(\eta _i=0\), and \(c_{2,\mathrm inj}=0\,\mathrm{g}/\mathrm{l}\) are considered, i.e. we are considering an empty column initially and injecting only component 1 into the reactor. Moreover, only the effect of solid-phase reaction is taken into account, while the liquid-phase reaction is neglected.

Irreversible Reaction and Dirichlet BCs

Here, we neglect the liquid-phase reaction, i.e. \(\eta _1=0\,\mathrm{min}^{-1}\). Eqs. (60) and (61) are used to derived the moments \(\mu _n^{(i)}\) of Laplace-transformed solutions given in Eqs. (32) and (35) for \(i=1,2\) and \(n=0,1,2,3\). Let us define

$$\begin{aligned} r&=\,a_1F\widetilde{\nu }_1 \mathrm{Pe},\quad \gamma =\sqrt{\mathrm{Pe}(\mathrm{Pe}+4a_1F\nu ) },\quad \delta _{1,2}=\mathrm{Pe}\mp \gamma ,\nonumber \\ \chi _{1,2}&=\frac{\gamma \mathrm{Pe}^4}{64}+\frac{3\gamma ^3 \mathrm{Pe}^2}{32}+\frac{\gamma ^5}{64}\mp \ r^2\mathrm{Pe}\mp \frac{3rPe^3}{4}\mp \frac{ \mathrm{Pe}^5}{8},\nonumber \\ \chi _{3,4}&=\frac{\gamma ^3\mathrm{Pe}}{8}\mp \ \frac{\gamma ^2(\mathrm{Pe}^2+2r)}{8},\,\,\, \chi _5=\frac{\gamma ^3(\mathrm{Pe}^2-4r)-\gamma \mathrm{Pe}^4}{32},\,\,\,\chi _6:=F(a_1-a_2)\mathrm{Pe}+(1+a_2F)r,\nonumber \\ \chi _{7,8}&=\frac{\mathrm{Pe}^2\ \,\mathrm{e}^{\mathrm{Pe}}}{2}\biggr (\biggr [\frac{F(a_1-a_2)\mathrm{Pe}}{4}+\frac{r(1+a_1F)}{8}\biggr ]\gamma ^3+\frac{rPe^2(1+a_1F) \gamma }{8}\mp \frac{F(a_1-a_2)\mathrm{Pe}^4}{4}\nonumber \\&\quad \mp \,\frac{3Fr(a_1-a_2)\mathrm{Pe}^2}{2}\mp \frac{r(1+a_1F)^3\mathrm{Pe}}{4}\mp \ r^2(1+a_1F)\mathrm{Pe}\mp \ r^2[1+(3a_1-2a_2)F]\biggr ). \end{aligned}$$
(64)

Using Eq. (60), the zeroth moments are given as

$$\begin{aligned} \mu ^{(1)}_{0}=C_{1,\mathrm inj}\tau _\mathrm{inj}\,\mathrm{e}^{\frac{\delta _1}{2}},\quad \mu ^{(2)}_{0}=C_{1,\mathrm inj}\tau _\mathrm{inj}\left( 1-\,\mathrm{e}^{\frac{\delta _1}{2}}\right) . \end{aligned}$$
(65)

From Eq. (65), we get \(\mu ^{(1)}_0+\mu ^{(2)}_0=C_{1,\mathrm inj}\tau _\mathrm{inj}\), as \(C_{2,\mathrm inj}=0\) is considered.

The first moments are calculated using the Eq. (61) for \(n=1\):

$$\begin{aligned} \mu ^{(1)}_{1}&=\frac{\tau _\mathrm{inj}}{2}+\frac{\mathrm{Pe}(1+a_1F)}{\gamma } ,\end{aligned}$$
(66)
$$\begin{aligned} \mu ^{(2)}_1&=\frac{\tau _\mathrm{inj}}{2}+\frac{\mathrm{Pe}[\gamma F(a_2-a_1)-r(1+a_1F)]e^\frac{\delta _1}{2}-\gamma [F(a_2- a_1) \mathrm{Pe}-r(1+a_2F)]}{r\gamma \left( 1-e^\frac{\delta _1}{2}\right) }. \end{aligned}$$
(67)

The second moments are expressed as

$$\begin{aligned} \mu ^{(1)}_{2}=\frac{\tau ^2_\mathrm{inj}}{3}+\frac{\mathrm{Pe}(1+a_1F)\tau _\mathrm{inj}}{\gamma }+\frac{\mathrm{Pe}^2(1+a_1F)(\gamma +2)}{\gamma ^3}+\frac{2Pea_1F (1-\epsilon )}{\gamma \widetilde{k}_1}, \end{aligned}$$
(68)
$$\begin{aligned} \mu ^{(2)}_2&=\frac{\tau ^2_\mathrm{inj}}{3}+\left[ \frac{\mathrm{Pe}\Bigr (\gamma F(a_2-a_1)-r(1+a_1F)\Bigl )e^\frac{\delta _1}{2}-\gamma \Bigr (F(a_2- a_1) \mathrm{Pe}-r(1+a_2F)\Bigl )}{r\gamma \Bigr (1-e^\frac{\delta _1}{2}\Bigl )}\right] \tau _\mathrm{inj}\nonumber \\&\quad +\,\frac{1}{1-\,\mathrm{e}^{\frac{\delta _1}{2}}}\left( e^\frac{\delta _1}{2} \left[ -\frac{2Pea_1F(1-\epsilon )}{\gamma \widetilde{k}_1}-\frac{2PeF(1-\epsilon )(a_1\widetilde{k}_2-a_2\widetilde{k}_1)}{r\widetilde{k}_1\widetilde{k}_2}-\frac{2\mathrm{Pe}^2(1+ a_1F)^2}{\gamma ^3}-\,\frac{\mathrm{Pe}^2F^2(a_2-a_1)^2}{r^2}\right] \right. \nonumber \\&\quad \left. +\,\frac{2PeF(1-\epsilon )(a_1\widetilde{k}_2-a_2\widetilde{k}_1)}{r\widetilde{k}_1\widetilde{k}_2}+\frac{\mathrm{Pe}^2F^2(a_2- a_1)^2}{r^2} +\frac{2(1+a_2F)^2}{\mathrm{Pe}}+\frac{2a_2F(1-\epsilon )}{\widetilde{k}_2}\right) \nonumber \\&\quad -\,\frac{\mathrm{Pe}^2[ \gamma F(a_2-a_1)-r(1+a_1F)]^2e^\frac{\delta _1}{2}-\gamma ^2[F (a_2-a_1) \mathrm{Pe}-r(1+a_2F)]^2}{r^2\gamma ^2\left( 1-e^\frac{\delta _1}{2}\right) } . \end{aligned}$$
(69)

The above equations are helpful to calculate the second central moments using the relations:

$$\begin{aligned} {\mu '}^{(i)}_2=\mu ^{(i)}_2-\left( \mu ^{(i)}_1\right) ^2,\quad i=1,2. \end{aligned}$$
(70)

Thus, the second central moments are given as

$$\begin{aligned} {\mu '}^{(1)}_2&=\frac{\tau ^2_\mathrm{inj}}{12}+\frac{2\mathrm{Pe}\left[ \gamma ^2a_1 F(1-\epsilon )+\mathrm{Pe}\widetilde{k}_1(1+a_1F)^2\right] }{\gamma ^3 \widetilde{k}_1},\end{aligned}$$
(71)
$$\begin{aligned} {\mu '}^{(2)}_2&=\frac{\tau ^2_\mathrm{inj}}{12}+\,\frac{1}{1-\,\mathrm{e}^{\frac{\delta _1}{2}}}\left( e^\frac{\delta _1}{2} \bigg [-\frac{2Pea_1F(1-\epsilon )}{\gamma \widetilde{k}_1}-\frac{2PeF(1-\epsilon )(a_1\widetilde{k}_2-a_2 \widetilde{k}_1)}{r\widetilde{k}_1\widetilde{k}_2}-\frac{2\mathrm{Pe}^2 (1+a_1F)^2}{\gamma ^3}\right. \nonumber \\&\quad -\,\left. \frac{\mathrm{Pe}^2F^2(a_2-a_1)^2}{r^2}\bigg ] +\,\frac{2PeF(1-\epsilon )(a_1\widetilde{k}_2-a_2\widetilde{k}_1)}{r\widetilde{k}_1\widetilde{k}_2}+\frac{\mathrm{Pe}^2F^2 (a_2-a_1)^2}{r^2} +\frac{2(1+a_2F)^2}{\mathrm{Pe}}+\frac{2a_2F(1-\epsilon )}{\widetilde{k}_2}\right) \nonumber \\&\quad -\,\left[ \frac{\mathrm{Pe}^2 [\gamma F(a_2-a_1)-r(1+a_1F)]^2e^\frac{\delta _1}{2}-\gamma ^2[ F(a_2-a_1) \mathrm{Pe}-r(1+a_2F)]^2}{r^2\gamma ^2\left( 1-e^\frac{\delta _1}{2}\right) }\right] \nonumber \\&\quad -\,\left[ \frac{\mathrm{Pe}[\gamma F(a_2-a_1)-r(1+a_1F)]e^\frac{\delta _1}{2}-\gamma [F(a_2- a_1) \mathrm{Pe}-r(1+a_2F)]}{r\gamma \left( 1-e^\frac{\delta _1}{2}\right) }\right] ^2. \end{aligned}$$
(72)

The third moments are given as

$$\begin{aligned} \mu ^{(1)}_3&=\frac{\tau ^3_\mathrm{inj}}{4}+\frac{\mathrm{Pe}(1+a_1F)\tau ^2_\mathrm{inj}}{\gamma } +\left[ \frac{\mathrm{Pe}^2(1+a_1F)^2(\gamma +2)}{\gamma ^3}+\frac{2Pea_1F(1- \epsilon )}{\gamma \widetilde{k}_1}\right] \frac{3\tau _\mathrm{inj}}{2}\nonumber \ \\&\quad +\,\frac{\mathrm{Pe}^3(1+a_1F)^3(\gamma ^2+6\gamma +12)}{\gamma ^5}+\frac{6\mathrm{Pe}^2 a_1F(1+a_1F)(\gamma +2)(1-\epsilon )}{\gamma ^3\widetilde{k}_1} + \frac{6Pea_1F(1-\epsilon )^2}{\gamma \widetilde{k}^2_1}, \end{aligned}$$
(73)
$$\begin{aligned} \mu ^{(2)}_3&=\frac{\tau ^3_\mathrm{inj}}{4}\,+\,\Biggr (\frac{\mathrm{Pe}[\gamma F(a_2-a_1)-r(1+a_1F)]e^\frac{\delta _1}{2}-\gamma [F(a_2- a_1) \mathrm{Pe}-r(1+a_2F)]}{r\gamma \left( 1-e^\frac{\delta _1}{2}\right) }\Biggr )\tau ^2_\mathrm{inj}\nonumber \\&\quad +\,\frac{3\tau _\mathrm{inj}}{2\left( 1-\,\mathrm{e}^{\frac{\delta _1}{2}}\right) }\biggr (\,\mathrm{e}^{ \frac{\delta _1}{2}}\Bigg [ \frac{-2\mathrm{Pe}^2(1+a_1F)^2}{\gamma ^3}-\frac{\mathrm{Pe}^2F^2(a_2-a_1)^2}{r^2}- \frac{2Pea_1F(1-\epsilon )}{\gamma \widetilde{k}_1}+\nonumber \\&\quad -\,\frac{2PeF(1-\epsilon )(a_1\widetilde{k}_2-a_2\widetilde{k}_1)}{r\widetilde{k}_1\widetilde{k}_2}\Biggr ] +\frac{\mathrm{Pe}^2F^2(a_2-a_1)^2}{r^2}+\frac{2PeF(1-\epsilon )(a_1 \widetilde{k}_2-a_2\widetilde{k}_1)}{r\widetilde{k}_1\widetilde{k}_2} \nonumber \\&\quad +\,\frac{2(1+a_2F)^2}{\mathrm{Pe}}+\frac{2a_2F(1-\epsilon )}{\widetilde{k}_2} \biggr )\nonumber \ \\&\quad -\,\left( \frac{\mathrm{Pe}^2[\gamma F(a_2-a_1)-r(1+a_1F)]^2e^\frac{\delta _1}{2}-\gamma ^2[F (a_2-a_1) \mathrm{Pe}-r(1+a_2F)]^2}{2r^2\gamma ^2\left( 1-e^\frac{\delta _1}{2}\right) }\right) 3\tau _\mathrm{inj}\nonumber \\&\quad -\,\frac{6\mathrm{Pe}^3F^3(a_2-a_1)^3}{r^3}-\frac{1}{\left( 1-\,\mathrm{e}^{\frac{\delta _1}{2}} \right) }\left[ \frac{\mathrm{Pe}^3\,\mathrm{e}^{\frac{\delta _1}{2}}(1+a_1F)^3(\gamma ^2+ 6\gamma +12)}{\gamma ^5}\right. \nonumber \\&\quad \left. \,-\,\frac{3FPe^3\,\mathrm{e}^{\frac{\delta _1}{2}}(1+a_1F)^2(a_2-a_1)(\gamma +2)}{r\gamma ^3}+\frac{6F^2\mathrm{Pe}^3(1+a_1F)(a_2-a_1)^2}{r^2\gamma }\right. \nonumber \\&\quad \left. +\frac{6F(1+a_2F)^2(a_2-a_1)}{r}-\frac{(\mathrm{Pe}^2+12)(1+a_2F)^3}{\mathrm{Pe}^2}\right] \nonumber \\&\quad +\,\frac{12\mathrm{Pe}^2F^2(a_2-a_1) (1-\epsilon )(a_2\widetilde{k}_1-a_1\widetilde{k}_2)}{r^2\widetilde{k}_1\widetilde{k}_2} -\frac{\,\mathrm{e}^{\frac{\delta _1}{2}}\mathrm{Pe}^2(1-\epsilon )}{(1-\,\mathrm{e}^{\frac{\delta _1}{2}})}\left[ \frac{12a_1F(1+a_1F)^2}{\gamma ^3\widetilde{k}_1}\right. \nonumber \\ &\quad \left. -\frac{6a_1F^2 (a_2-a_1)}{r\gamma \widetilde{k}_1}+\frac{6a_1F(1+a_1F)}{\gamma ^2\widetilde{k}_1} -\frac{6F(1+a_1F)(a_2\widetilde{k}_1-a_1\widetilde{k}_2)}{r\gamma \widetilde{k}_1\widetilde{k}_2}\right] \nonumber \\&\quad -\,\frac{1}{(1-\,\mathrm{e}^{\frac{\delta _1}{2}})}\left[ \frac{-12a_2F(1+a_2F)(1-\epsilon )}{\mathrm{Pe}\widetilde{k}_2}-\frac{6\mathrm{Pe}^2F^2(1+a_2F)(a_2-a_1)^2}{r^2}\right] \nonumber \\&\quad -\,\frac{6PeF(1- \epsilon )^2(a_2\widetilde{k}^2_1-a_1\widetilde{k}^2_2) }{r\widetilde{k}^2_1\widetilde{k}^2_2}-\frac{1}{(1-\,\mathrm{e}^{\frac{\delta _1}{2}})}\left[ \frac{6Pea_1Fe^{\frac{\delta _1}{2}}(1-\epsilon )^2}{\gamma \widetilde{k}^2_1}+\frac{6Pea_2F^2(1-\epsilon )(a_2-a_1)}{r \widetilde{k}_2}\right. \nonumber \\&\quad \left. +\,\frac{3PeF(1+a_2F)^2(a_2-a_1)}{r}+\frac{6PeF(1- \epsilon )(1+a_2F)(a_2\widetilde{k}_1-a_1\widetilde{k}_2)}{r \widetilde{k}_1 \widetilde{k}_2}\right] \nonumber \\&\quad -\,\frac{1}{\left( 1-\,\mathrm{e}^{\frac{\delta _1}{2}}\right) }\left[ \frac{-6(1+a_2F)^3}{\mathrm{Pe}}-\frac{6a_2F(1-\epsilon )^2}{\widetilde{k}^2_2} -\frac{6a_2F(1-\epsilon )(1+a_2F)}{\widetilde{k}_2}\right] . \end{aligned}$$
(74)

Finally, the third central moments can be deduced from the given relations as

$$\begin{aligned} {\mu '}^{(i)}_3=\mu ^{(i)}_3-3\mu ^{(i)}_1\mu ^{(i)}_2+2\left( \mu ^{(i)}_1\right) ^3,\quad i=1,2. \end{aligned}$$
(75)

The expressions of third central moments were very lengthy. Therefore, only plots of these moments are shown in the test problems.

Irreversible Reaction with Danckwerts BCs

Here, the moments are derived of the solutions given in Eqs. (40) and (41).

The zeroth moments are given as

$$\begin{aligned} \mu ^{(1)}_{0}=\frac{-4C_{1,\mathrm inj}\tau _\mathrm{inj}\gamma \mathrm{Pe}\, \,\mathrm{e}^{\mathrm{Pe}}}{\delta _1^2 \,\mathrm{e}^{\frac{\delta _1}{2}}-\delta _2^2 \,\mathrm{e}^{\frac{\delta _2}{2}}},\quad \mu ^{(2)}_{0}=C_{1,\mathrm inj} \tau _\mathrm{inj}\left[ 1+\frac{4\gamma \mathrm{Pe}\, \,\mathrm{e}^{\mathrm{Pe}}}{\delta _1^2e^\frac{\delta _1}{2}-\delta _2^2e^\frac{\delta _2}{2}} \right] . \end{aligned}$$
(76)

From Eq. (76), it follows that \(\mu ^{(1)}_0+\mu ^{(2)}_0=C_{1,\mathrm inj}\tau _\mathrm{inj}\), as \(C_{2,\mathrm inj}=0\) is considered.

The first moments take the form

$$ \mu ^{(1)}_{1}=\frac{\tau _\mathrm{inj}}{2}-\frac{2\mathrm{Pe}(1+a_1F)}{\gamma ^2\left( \delta _1^2 \,\mathrm{e}^{\frac{\delta _1}{2}}-\delta _2^2 \,\mathrm{e}^{\frac{\delta _2}{2}}\right) }\Biggl [\gamma (2r+\mathrm{Pe}^2) \left( \,\mathrm{e}^{\frac{\delta _1}{2}}+\,\mathrm{e}^{\frac{\delta _2}{2}}\right) -(4r(1+\mathrm{Pe})+\mathrm{Pe}^3)\left( \,\mathrm{e}^{\frac{\delta _1}{2}}-\,\mathrm{e}^{\frac{\delta _2}{2}}\right) \Biggr ]. $$
(77)
$$\begin{aligned} \mu ^{(2)}_1&=\frac{32\tau _\mathrm{inj}\left( \chi _1\,\mathrm{e}^{\delta _1}+[\chi _5e^\frac{\delta _2}{2}-\mathrm{Pe}\, \,\mathrm{e}^{\mathrm{Pe}}\chi _3]e^\frac{\delta _1}{2} +[\chi _2e^\frac{\delta _2}{2}-\mathrm{Pe}\, \,\mathrm{e}^{\mathrm{Pe}}\chi _4]e^\frac{\delta _2}{2} \right) }{\gamma \left( \delta _1^2 \,\mathrm{e}^{\frac{\delta _1}{2}}-\delta _2^2 \,\mathrm{e}^{\frac{\delta _2}{2}}\right) \left( \delta _1^2 \,\mathrm{e}^{\frac{\delta _1}{2}}-\delta _2^2 \,\mathrm{e}^{\frac{\delta _2}{2}}+4\gamma \mathrm{Pe}\, \,\mathrm{e}^{\mathrm{Pe}}\right) }\nonumber \ \\&\quad +\,\frac{64\left[ \chi _1\chi _6\,\mathrm{e}^{\delta _1}+\left[ \chi _5\chi _6e^\frac{\delta _2}{2}-\chi _7\right] e^\frac{\delta _1}{2} +\left[ \chi _2\chi _6e^\frac{\delta _2}{2}-\chi _8\right] e^\frac{\delta _2}{2} \right] }{r\gamma \left( \delta _1^2 \,\mathrm{e}^{\frac{\delta _1}{2}}-\delta _2^2 \,\mathrm{e}^{\frac{\delta _2}{2}}\right) \left( \delta _1^2 \,\mathrm{e}^{\frac{\delta _1}{2}}-\delta _2^2 \,\mathrm{e}^{\frac{\delta _2}{2}}+4\gamma \mathrm{Pe}\, \,\mathrm{e}^{\mathrm{Pe}}\right) }. \end{aligned}$$
(78)

The second and third central moments are not given here due to their lengthy expressions.

Reversible Reaction with Dirichlet BCs

The Eqs. (60) and (61) are used to derive the moments \(\mu _n^{(i)}\) of Laplace-transformed solutions given in Eqs. (53) and (54) for \(i=1,2\) and \(n=0,1,2,3\). Let us define

$$\begin{aligned} R_1&=(a_1\widetilde{\nu }_1+ a_2\widetilde{\nu }_2)\mathrm{FPe},\quad \gamma _{1,2}=\sqrt{\mathrm{Pe}^2+2R_1\mp 2\sqrt{P+R_1^2}},\quad \delta _{1,2}=\mathrm{Pe}\mp \gamma _1,\nonumber \\ \delta _{3,4}&=\mathrm{Pe}\mp \sqrt{\mathrm{Pe}^2+2R_1+2\sqrt{P+R_1^2}},\quad \chi _{1,2}:=W\mp \sqrt{P+R_1^2} ,\nonumber \\ \chi _3&=2(P-W^2+R_1^2)\{(a_1F+a_2)\epsilon -a_2\}\gamma _{1}+\{(2+a_1F -a_2)\epsilon +a_2\}(P+R_1^2)^\frac{3}{2}\nonumber \\&\quad +\,W\left[ W\{(a_1F+a_2)\epsilon - a_2\}\sqrt{P+R_1^2}-2\epsilon (P+R_1^2)(1+a_1F)\right] ,\nonumber \\ \chi _4&=-2(P-W^2+R_1^2)\{(a_1F+a_2)\epsilon -a_2\}\gamma _{2}+\{(2+a_1F -a_2)\epsilon +a_2\}(P+R_1^2)^\frac{3}{2}\nonumber \\&\quad +\,W\left[ W\{(a_1F+a_2)\epsilon -a_2\}\sqrt{P+R_1^2}+2\epsilon (P+R_1^2)(1+ a_1F)\right] ,\nonumber \\ \chi _5&=-2W\{(a_1F+a_2)\epsilon -a_2\}\gamma _{1}+W\{(a_2+a_1F) \epsilon -a_2\}\sqrt{P+R_1^2}\nonumber \\&\quad -\,(P+R_1^2)\{(2-a_2+a_1F)\epsilon +a_2\},\nonumber \\ \chi _6&=2W\{(a_1F+a_2)\epsilon -a_2\}\gamma _{2}+W\{(a_2+a_1F) \epsilon -a_2\}\sqrt{P+R_1^2}\nonumber \\&\quad +\,(P+R_1^2)\{(2-a_2+a_1F)\epsilon +a_2\}. \end{aligned}$$
(79)

Using Eq. (60), the zeroth moments can be calculated as

$$\begin{aligned} \mu ^{(1)}_0=\frac{C_{1,\mathrm inj}\tau _\mathrm{inj}\left( \chi _2\,\mathrm{e}^{\frac{\delta _3}{2}}-\chi _1\,\mathrm{e}^{\frac{\delta _1}{2}}\right) }{2\sqrt{P+R_1^2}},\quad \mu ^{(2)}_0=\frac{r_3C_{1,\mathrm inj}\tau _ \mathrm{inj}}{\sqrt{P+R_1^2}}\,\left( \,\mathrm{e}^{\frac{\delta _1}{2}}-\,\mathrm{e}^{\frac{\delta _3}{2}}\right) . \end{aligned}$$
(80)

The first moments are derived using Eq. (61) for \(n=1\)

$$\begin{aligned} \mu ^{(1)}_1=&\frac{\tau _\mathrm{inj}}{2}+\frac{\mathrm{Pe}\left( \gamma _2\chi _3\,\mathrm{e}^{\frac{\delta _1}{2}}+\gamma _1\chi _4\,\mathrm{e}^{\frac{\delta _3}{2}}\right) }{2\epsilon \gamma _1\gamma _2(P+R_1^2)\left( \chi _2\,\mathrm{e}^{\frac{\delta _3}{2}} -\chi _1\,\mathrm{e}^{\frac{\delta _1}{2}}\right) },\end{aligned}$$
(81)
$$\begin{aligned} \mu ^{(2)}_1=&\frac{\tau _\mathrm{inj}}{2}+\frac{\mathrm{Pe}\left( \gamma _2\chi _5\,\mathrm{e}^{\frac{\delta _1}{2}}+\gamma _1\chi _6\,\mathrm{e}^{\frac{\delta _3}{2}}\right) }{2\epsilon \gamma _1\gamma _2(P+R_1^2)\left( \mathrm{e}^{\frac{\delta _3}{2}} -\,\mathrm{e}^{\frac{\delta _1}{2}}\right) }. \end{aligned}$$
(82)

Moreover, the expressions of analytical \({\mu }_2^{(i)}\) and \({\mu }_3^{(i)}\) were very lengthy. Therefore, the plots of second and third central moments are shown in Fig. 6.

Reversible Reaction with Danckwerts BCs

Here, the moments are derived for the solutions given in Eqs. (58) and (59). The zeroth moments are given as

$$\begin{aligned} \mu ^{(1)}_0=&\frac{2C_{1,\mathrm inj}\tau _\mathrm{inj}\mathrm{Pe} \,\mathrm{e}^{\mathrm{Pe}}}{\sqrt{P+R_1^2}}\left[ \frac{\chi _1\gamma _1}{\delta ^2_1 \,\mathrm{e}^{\frac{\delta _1}{2}} -\delta ^2_{2}\,\mathrm{e}^{\frac{\delta _2}{2}}}-\frac{\chi _2\gamma _2}{\delta ^2 _3 \,\mathrm{e}^{\frac{\delta _3}{2}} -\delta ^2_{4}\,\mathrm{e}^{\frac{\delta _4}{2}}}\right] ,\end{aligned}$$
(83)
$$\begin{aligned} \mu ^{(2)}_0=&\frac{-4r_3C_{1,\mathrm inj}\tau _\mathrm{inj}\mathrm{Pe} \,\mathrm{e}^{\mathrm{Pe}}}{\sqrt{P+R_1^2}}\left[ \frac{\gamma _1}{\delta ^2_1 \,\mathrm{e}^{\frac{\delta _1}{2}} -\delta ^2_{2}\,\mathrm{e}^{\frac{\delta _2}{2}}}-\frac{\gamma _2}{\delta ^2 _3 \,\mathrm{e}^{\frac{\delta _3}{2}} -\delta ^2_{4}\,\mathrm{e}^{\frac{\delta _4}{2}}}\right] . \end{aligned}$$
(84)

Other moments are not presented here due to their lengthy expressions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qamar, S., Bibi, S., Akram, N. et al. Analysis of Two-Component Non-Equilibrium Model of Linear Reactive Chromatography. Chromatographia 80, 383–400 (2017). https://doi.org/10.1007/s10337-017-3248-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-017-3248-8

Keywords

Navigation