Skip to main content
Log in

Interaction of E6 Gene from Human Papilloma Virus 16 (HPV-16) with CdS Quantum Dots

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

The aim of this study was to analyze the interactions of blue and yellow fluorescent CdS quantum dots (CdS-QDs) with human papillomavirus 16 (HPV-16) oncogene E6. The interactions were investigated using chip capillary electrophoresis, spectrophotometry and square wave voltammetry (SWV). Using chip capillary electrophoresis we proved that blue fluorescent CdS-QDs (0.5 mM) caused an increase of the migration time of the E6 HPV-16 DNA–CdS-QDs complex by 42 s compared to control DNA (E6 HPV-16). The same concentration of yellow fluorescent CdS-QDs caused an increase in the migration time of the DNA–CdS-QDs complex by 108 s compared to the control DNA (E6 HPV-16). The difference in the migration times between both complexes was 66 s. Using square wave voltammetry (SWV), the reduction signal of cytosine and adenine (peak CA) was observed, after the complex with 2.5 µg mL−1 DNA was formed. A decrease of the peak CA reduction signal of the complex DNA–CdS-QDs by 90 % was caused when yellow fluorescent CdS-QDs (0.03 mM) were used. The same concentration of blue fluorescent CdS-QDs caused only a 50 % decrease of the C and A reduction signal of the DNA–CdS-QDs complex. The difference between both CdS-QDs was 40 %. Electrochemical measurements and chip electrophoresis analyses confirmed that the yellow fluorescent CdS-QDs show higher affinity to the DNA (E6 HPV-16) compared to blue ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ruttkay-Nedecky B, Jimenez AMJ, Nejdl L, Chudobova D, Gumulec J, Masarik M, Adam V, Kizek R (2013) Int J Oncol 43:1754–1762

    CAS  Google Scholar 

  2. Beerheide W, Bernard HU, Tan YJ, Ganesan A, Rice WG, Ting AE (1999) J Natl Cancer Inst 91:1211–1220

    Article  CAS  Google Scholar 

  3. Mighty KK, Laimins LA (2014) Rec Res Cancer Res 193:135–148

    Article  Google Scholar 

  4. Jin S, Hu YX, Gu ZJ, Liu L, Wu HC (2011) J Nanomaterials 2011:1–13

    Article  Google Scholar 

  5. Wang W, Zhu JJ (2011) Sci China Chem 54:1177–1184

    Article  CAS  Google Scholar 

  6. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Nat Mater 4:435–446

    Article  CAS  Google Scholar 

  7. Cywinski PJ, Moro AJ, Lohmannsroben HG (2014) Biosens Bioelectron 52:288–292

    Article  CAS  Google Scholar 

  8. Skalickova S, Zitka O, Nejdl L, Krizkova S, Sochor J, Janu L, Ryvolova M, Hynek D, Zidkova J, Zidek V, Adam V, Kizek R (2013) Chromatographia 76:345–353

    Article  CAS  Google Scholar 

  9. Jie GF, Zhang J, Jie GX, Wang L (2014) Biosens Bioelectron 52:69–75

    Article  CAS  Google Scholar 

  10. Okubo K, Yoshizumi Y, Asakawa K, Suzuki H, Yokokawa M (2014) Sens Actuator B-Chem 190:975–981

    Article  CAS  Google Scholar 

  11. Ma N, Kelley SO (2013) Wiley Interdiscip. Rev.-Nanomed Nanobiotechnol 5:86–95

    Article  CAS  Google Scholar 

  12. Li JM, Zhao MX, Su H, Wang YY, Tan CP, Ji LN, Mao ZW (2011) Biomaterials 32:7978–7987

    Article  CAS  Google Scholar 

  13. Yu-Hong W, Rui C, Ding L (2011) Nanoscale Res Lett 6:1–9

    Article  Google Scholar 

  14. Giri A, Goswami N, Lemmens P, Pal SK (2012) Mater Res Bull 47:1912–1918

    Article  CAS  Google Scholar 

  15. Hu XF, Zhang XL, Jin WR (2013) Electrochim Acta 94:367–373

    Article  CAS  Google Scholar 

  16. Li MY, Li J, Sun L, Zhang XL, Jin WR (2012) Electrochim Acta 80:171–179

    Article  CAS  Google Scholar 

  17. Zhao D, Li JT, Yang TM, He ZK (2014) Biosensors Bioelectron 52:29–35

    Article  CAS  Google Scholar 

  18. Ryvolova M, Smerkova K, Chomoucka J, Hubalek J, Adam V, Kizek R (2013) Electrophoresis 34:801–808

    Article  CAS  Google Scholar 

  19. Krejcova L, Hynek D, Kopel P, Rodrigo MAM, Tmejova K, Trnkova L, Adam V, Hubalek J, Kizek R (2013) Int J Electrochem Sci 8:4457–4471

    CAS  Google Scholar 

  20. Wang QS, Yang L, Fang TT, Wu S, Liu P, Min XM, Li X (2011) Appl Surf Sci 257:9747–9751

    Article  CAS  Google Scholar 

  21. Xiang DS, Zeng GP, He ZK (2011) Biosensors Bioelectron 26:4405–4410

    Article  CAS  Google Scholar 

  22. Dittrich PS, Tachikawa K, Manz A (2006) Anal Chem 78:3887–3907

    Article  CAS  Google Scholar 

  23. Auroux PA, Iossifidis D, Reyes DR, Manz A (2002) Anal Chem 74:2637–2652

    Article  CAS  Google Scholar 

  24. Uchiyama K, Nakajima H, Hobo T (2004) Anal Bioanal Chem 379:375–382

    Article  CAS  Google Scholar 

  25. Mirasoli M, Guardigli M, Michelini E, Roda A (2014) J Pharmaceut Biomed Anal 87:36–52

    Article  CAS  Google Scholar 

  26. Sang FM, Huang XY, Ren JC (2014) Electrophoresis 35:793–803

    Article  CAS  Google Scholar 

  27. Li H, Shih WY, Shih WH (2007) Ind Eng Chem Res 46:2013–2019

    Article  CAS  Google Scholar 

  28. Pereira M, Lai EPC (2008) J Nanobiotech 6:1–15

    Article  Google Scholar 

  29. Kuang H, Zhao Y, Ma W, Xu LG, Wang LB, Xu CL (2011) TRAC-trends. Anal Chem 30:1620–1636

    CAS  Google Scholar 

  30. Mo YM, Tang Y, Gao F, Yang J, Zhang YM (2012) Ind Eng Chem Res 51:5995–6000

    Article  CAS  Google Scholar 

  31. Palecek E (2002) Talanta 56:809–819

    Article  CAS  Google Scholar 

  32. Krejcova L, Huska D, Hynek D, Kopel P, Adam V, Hubalek J, Trnkova L, Kizek R (2013) Int J Electrochem Sci 8:689–702

    CAS  Google Scholar 

  33. Sawosz E, Chwalibog A, Szeliga J, Sawosz F, Grodzik M, Rupiewicz M, Niemiec T, Kacprzyk K (2010) Int J Nanomed 5:631–637

    CAS  Google Scholar 

  34. Xu Q, Wang JH, Wang Z, Yin ZH, Yang Q, Zhao YD (2008) Electrochem Commun 10:1337–1339

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to CEITEC CZ.1.05/1.1.00/02.0068 for financial support. The authors wish to thank also Ana Jimenez Jimenez for technical assistance.

Conflict of interest

The authors have declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rene Kizek.

Additional information

Published in the topical collection Advances in Chromatography and Electrophoresis & Chiranal 2014 with guest editor Jan Petr.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 258 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nejdl, L., Skalickova, S., Kudr, J. et al. Interaction of E6 Gene from Human Papilloma Virus 16 (HPV-16) with CdS Quantum Dots. Chromatographia 77, 1433–1439 (2014). https://doi.org/10.1007/s10337-014-2734-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-014-2734-5

Keywords

Navigation