Skip to main content
Log in

Doxorubicin Encapsulation Investigated by Capillary Electrophoresis with Laser-Induced Fluorescence Detection

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Doxorubicin (DOX) belongs to the group of anthracycline antibiotics with very effective anticancer properties. On the other hand, the cardiotoxic effects limit its application over the maximum cumulative dose. To overcome this obstacle, encapsulation of this drug into the protective nanotransporter such as apoferritin is beneficial. In this study, fluorescent behavior of DOX in various solvents was determined by fluorescence spectrometry, demonstrating the fluorescence quenching effect of water, which is often used as a solvent. It was found that by increasing the amount of the organic phase in the DOX solvent the dynamic quenching is significantly suppressed. Ethanol, acetonitrile and dimethyl sulfoxide were tested and the best linearity of the calibration curve was obtained when above 50 % of the solvent was present in the binary mixture with water. Moreover, pH influence on the DOX fluorescence was also observed within the range of 4–10. Two times higher fluorescence intensity was observed at pH 4 compared to pH 10. Further, the DOX behavior in capillary electrophoresis (CE) was investigated. Electrophoretic mobilities (CE) in various pH of the background electrolyte were determined within the range from 16.3 to −13.3 × 10 −9 m−2 V−1 s−1. Finally, CE was also used to monitor the encapsulation of DOX into the cavity of apoferritin as well as the pH-triggered release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Weiss RB (1992) Semin Oncol 19:670–686

    CAS  Google Scholar 

  2. Zagotto G, Gatto B, Moro S, Sissi C, Palumbo M (2001) J Chromatogr B 764:161–171

    Article  CAS  Google Scholar 

  3. Singal PK, Iliskovic N (1998) N Engl J Med 339:900–905

    Article  CAS  Google Scholar 

  4. Zhen ZP, Tang W, Guo CL, Chen HM, Lin X, Liu G, Fei BW, Chen XY, Xu BQ, Xie J (2013) ACS Nano 7:6988–6996

    Article  CAS  Google Scholar 

  5. Meng LJ, Zhang XK, Lu QH, Fei ZF, Dyson PJ (2012) Biomaterials 33:1689–1698

    Article  CAS  Google Scholar 

  6. Tacar O, Sriamornsak P, Dass CR (2013) J Pharm Pharmacol 65:157–170

    Article  CAS  Google Scholar 

  7. Wang YG, Wei XL, Zhang CL, Zhang FY, Liang W (2010) Ther Del 1:273–287

    Article  CAS  Google Scholar 

  8. Blazkova I, Nguyen HV, Dostalova S, Kopel P, Stanisavljevic M, Vaculovicova M, Stiborova M, Eckschlager T, Kizek R, Adam V (2013) Int J Mol Sci 14:13391–13402

    Article  Google Scholar 

  9. Drbohlavova J, Chomoucka J, Adam V, Ryvolova M, Eckschlager T, Hubalek J, Kizek R (2013) Curr Drug Metab 14:547–564

    Article  CAS  Google Scholar 

  10. Tmejova K, Hynek D, Kopel P, Dostalova S, Smerkova K, Stanisavljevic M, Nguyen HV, Nejdl L, Vaculovicova M, Krizkova S, Kizek R, Adam V (2013) Int J Electrochem Sci 8:12658–12671

    CAS  Google Scholar 

  11. Baran TM, Foster TH (2013) Laser Surg Med 45:542–550

    Google Scholar 

  12. Li DA, Zhang YT, Yu M, Guo J, Chaudhary D, Wang CC (2013) Biomaterials 34:7913–7922

    Article  CAS  Google Scholar 

  13. Schenone AV, Culzoni MJ, Campiglia AD, Goicoechea HC (2013) Anal Bioanal Chem 405:8515–8523

    Article  CAS  Google Scholar 

  14. Karukstis KK, Thompson EHZ, Whiles JA, Rosenfeld RJ (1998) Biophys Chem 73:249–263

    Article  CAS  Google Scholar 

  15. Perez-Ruiz T, Martinez-Lozano C, Sanz A, Bravo E (2001) Electrophoresis 22:134–138

    Article  CAS  Google Scholar 

  16. Ali RMM, Reimold I, Fricker G, Haefeli WE, Burhenne J (2009) Br J Clin Pharmacol 68:34

    Article  Google Scholar 

  17. Riley CM, Runyan AK, Grahampole J (1987) Anal Lett 20:97–116

    Article  CAS  Google Scholar 

  18. Mazuel C, Grove J, Gerin G, Keenan KP (2003) J Pharm Biomed Anal 33:1093–1102

    Article  CAS  Google Scholar 

  19. Kim HS, Wainer IW (2010) J Pharm Biomed Anal 52:372–376

    Article  CAS  Google Scholar 

  20. Griese N, Blaschke G, Boos J, Hempel G (2002) J Chromatogr A 979:379–388

    Article  CAS  Google Scholar 

  21. Franzen U, Nguyen T, Vermehren C, Gammelgaard B, Ostergaard J (2011) J Pharm Biomed Anal 55:16–22

    Article  CAS  Google Scholar 

  22. Mross K, Niemann B, Massing U, Drevs J, Unger C, Bhamra R, Swenson C (2004) Cancer Chemother Pharmacol 54:514–524

    Article  CAS  Google Scholar 

  23. Dospivova D, Hynek D, Kopel P, Bezdekova A, Sochor J, Krizkova S, Adam V, Trnkova L, Hubalek J, Babula P, Provaznik I, Vrba R, Kizek R (2012) Int J Electrochem Sci 7:6378–6395

    CAS  Google Scholar 

Download references

Acknowledgments

The financial support from GA CR CYTORES P301/10/0356 is highly acknowledged.

Conflict of interest

Authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rene Kizek.

Additional information

Published in the topical collection Advances in Chromatography and Electrophoresis & Chiranal 2014 with guest editor Jan Petr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konecna, R., Nguyen, H.V., Stanisavljevic, M. et al. Doxorubicin Encapsulation Investigated by Capillary Electrophoresis with Laser-Induced Fluorescence Detection. Chromatographia 77, 1469–1476 (2014). https://doi.org/10.1007/s10337-014-2733-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-014-2733-6

Keywords

Navigation