Skip to main content

Advertisement

Log in

No short-term effects of climate change on the breeding of Rock Ptarmigan in the French Alps and Pyrenees

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

In the last decades, the effects of climate warming have been particularly marked in high mountain areas. High-altitude species adapted to cold temperatures are consensually held to be particularly vulnerable to climate warming. Among these species at risk, alpine birds like the Rock Ptarmigan (Lagopus muta) are expected to exhibit a strong negative response, particularly at the southern margins of their ranges in the northern hemisphere. In this study, conducted from 1998 to 2011, we investigated whether variations in the local climate affected the breeding biology of Rock Ptarmigan in the French Alps and Pyrenees. The median hatching date did not significantly advance in either massif, suggesting that Rock Ptarmigan did not breed earlier during this period. The date of snowmelt and spring temperatures influenced the onset of breeding but not consistently in both sites. In the Alps, the median hatching date was significantly correlated with the date of snowmelt, but this correlation was less clear in the Pyrenees. Unlike woodland grouse which inhabit lower elevations, the onset of breeding in Rock Ptarmigan may be related to both date of snowmelt and spring temperatures. Reproductive success varied greatly over the years and among sites. On average, the number of young per adult in the Pyrenean population was greater than that recorded in the two populations in the Alps. A significant positive trend of reproductive success over the period of 2000–2009 was detected in the Pyrenees but not in the Alps. The model that best explained annual variation in reproductive success included the additive effects of site, date of total snowmelt and rainfall after hatching. The estimates from this model showed that for all sites, reproductive success was much lower when snowmelt was late, and rainfall after hatching was high. We did not detect any altitudinal changes in locations of either breeding females or nests, suggesting that the breeding habitat of the species has not shifted upward from 1998 to 2011. To conclude, although the Rock Ptarmigan is generally considered a potential sentinel species for indicating temperature-induced changes in alpine avifauna, our study did not show a short-term effect of climate change on the breeding biology of the southern populations of this species.

Zusammenfassung

Bei Alpenschneehühnern in den französischen Alpen und Pyrenäen sind keine Kurzzeiteffekte des Klimawandels zu beobachten

Während der letzten Jahrzehnte waren die Auswirkungen der Klimaerwärmung in den Hochgebirgen besonders ausgeprägt. Hochgebirgsarten, die an kalte Temperaturen angepasst sind, gelten durch die Klimaerwärmung allgemein als besonders gefährdet. Unter diesen Risikoarten erwartet man von Gebirgsvögeln wie dem Alpenschneehuhn (Lagopus muta) eine stark negative Reaktion, speziell an den Südgrenzen ihrer Verbreitung auf der Nordhalbkugel. In dieser zwischen 1998 und 2011 durchführten Studie untersuchten wir, ob Variationen des örtlichen Klimas die Brutbiologie von Alpenschneehühnern in den französischen Alpen und Pyrenäen beeinflussten. Das mittlere Schlupfdatum war in keinem der beiden Gebirgszüge signifikant verfrüht, was nahelegt, dass die Alpenschneehühner während des Untersuchungszeitraumes nicht früher brüteten. Das Datum der Schneeschmelze und die Frühjahrstemperaturen beeinflussten den Brutbeginn, aber nicht durchgängig in beiden Regionen. In den Alpen korrelierte das mittlere Schlupfdatum signifikant mit dem Datum der Schneeschmelze, für die Pyrenäen war dieser Zusammenhang weniger deutlich. Anders als die Waldland bewohnenden Raufußhühner, die in geringeren Höhen leben, könnte der Brutbeginn bei Alpenschneehühnern sowohl an das Datum der Schneeschmelze als auch an die Frühjahrstemperaturen gekoppelt sein. Der Reproduktionserfolg variierte stark von Jahr zu Jahr und von Ort zu Ort. Im Schnitt lag die Anzahl Junge pro Altvogel in der Pyrenäenpopulation höher als bei den beiden Populationen in den Alpen. Ein signifikant positiver Trend im Reproduktionserfolg über den Zeitraum von 2000–2009 zeigte sich in den Pyrenäen, nicht jedoch in den Alpen. Das Modell, welches die jährlichen Schwankungen im Reproduktionserfolg am besten erklären konnte, beinhaltete die kombinierten Effekte von Ort, Datum der vollständigen Schneeschmelze und Regenfälle nach dem Schlupf. Schätzungen mit diesem Modell zeigten, dass an allen Orten der Bruterfolg viel niedriger war, wenn die Schneeschmelze spät eintrat und nach dem Schlupf viel Regen fiel. Wir konnten keine Höhenveränderungen bezüglich der Aufenthaltsorte brütender Weibchen oder der Neststandorte feststellen, was nahelegt, dass sich das Bruthabitat dieser Art zwischen 1998 und 2011 nicht nach oben verschoben hat. Abschließend ist zu sagen, dass—obwohl das Alpenschneehuhn generell als potenzielle Indikatorart für temperaturbedingte Veränderungen der alpinen Avifauna gilt—unsere Studie keinen kurzfristigen Effekt des Klimawandels auf die Brutbiologie der südlichen Populationen dieser Vogelart feststellen konnte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Archaux F (2004) Breeding upwards when climate is becoming warmer: no bird response in the French Alps. Ibis 146:138–144

    Article  Google Scholar 

  • Attinger S, Fallot JM (2003) Fréquence des intempéries et des précipitations abondantes en Valais (Alpes suisses occidentales) durant le 20ème siècle. Publication de l’Association Internationale de Climatologie 15:253–259

    Google Scholar 

  • Barnagaud JY, Crochet PA, Magnani Y, Bernard Laurent A, Menoni E, Novoa C, Gimenez O (2011) Short-term response to the North Atlantic Oscillation but no long-term effects of climate change on the reproductive success of an alpine bird. J Ornithol 152:631–641

    Article  Google Scholar 

  • Barrett EC, Curtis LF (1999) Introduction to environmental remote sensing. Chapman and Hall, London

    Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48. doi:10.18637/jss.v067.i01

    Article  Google Scholar 

  • Beniston M (1997) Variations of snowdepth and duration in the Swiss Alps over the last 50 years: links to changes in large-scale climatic forcing. Clim Change 36:281–300

    Article  Google Scholar 

  • Beniston M, Keller F, Goyette S (2003) Snow pack in the Swiss Alps under changing climatic conditions: an empirical approach for climate impacts studies. Theoret Appl Climatol 74:19–31

    Article  Google Scholar 

  • Boulangeat I, Georges D, Dentant C, Bonet R, Es JV, Abdulhak S, Zimmermann NE, Thuiller W (2014) Anticipating the spatio-temporal response of plant diversity and vegetation structure to climate and land use change in a protected area. Ecography 37:001–010. doi:10.1111/ecog.00694

    Article  Google Scholar 

  • Brockie K (1993) Mountains reflexions. Mainstream publishing, Edinburgh

    Google Scholar 

  • Brommer JE (2004) The range margins of northern birds shift polewards. Ann Zool Fennici 41:391–397

    Google Scholar 

  • Buffet N, Dumont-Dayot E, Bernard-Laurent A, Berducou C, Magnani Y, Menoni E, Montadert M, Novoa C (2011) Suivi patrimonial des galliformes: bilan de la décennie 2000–2009. Observatoire des Galliformes de Montagne, Sevrier, France, p 34

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information theoretic approach. Springer, New-York

    Google Scholar 

  • Chamberlain D, Pearce-Higgings J (2013) Impacts of climate change on upland birds: complex interactions, compensatory mechanisms and the need for long-term data. Ibis 155:451–455

    Article  Google Scholar 

  • Chamberlain D, Arlettaz R, Caprio E, Maggini R, Pedrini P, Rolando A, Zbinden N (2012) The altitudinal frontier in avian climate impact research. Ibis 154:205–209

    Article  Google Scholar 

  • Crick HQ (2004) The impact of climate change on birds. Ibis 146(Suppl. 1):48–56

    Article  Google Scholar 

  • Crick HQP, Dudley C, Glue DE, Thomson DL (1997) UK birds are laying eggs earlier. Nature 388:526

    Article  CAS  Google Scholar 

  • Desmet JF (2014) Quel avenir pour le Lagopède alpin en France ? In: Gauthier-Clerc M, Mesleard F, Blondel J (eds) Sciences de la conservation. De Boeck, Bruxelles, pp 210–211

    Google Scholar 

  • Dunn P (2004) Breeding dates and reproductive performance. In: Møller A, Fiedler W, Berthold P (eds) Birds and climate change. Advances in ecological research, vol 35. Elsevier, pp 69–87

  • Ellison LN, Léonard P (1996) Validation d’un critère d’âge chez le lagopède alpin Lagopus mutus et sexe et âge ratios dans des tableaux de chasse des Alpes et des Pyrénées. Gibier Faune Sauvage 13:1495–1509

    Google Scholar 

  • Ellison LN, Bernard-Laurent A, Magnani Y, Gindre R, Corti R (1984) Le tétras lyre, Lyrurus tétrix, dynamique des populations, chasse et biotope de reproduction dans les Alpes françaises. Office National de la Chasse, Paris, p 80

    Google Scholar 

  • Ellison L, Magnani Y, Novoa C (2003) Management of black grouse and Rock Ptarmigan in France. In: Brugnoli A, Zamboni U (eds) Atti del Seminario ‘Esperienze di Gestione dei Galliformi di Montagna con Particolare Riferimento alla Programmazione Venatoria’. Associazione Cacciatori della Provincia di Trento, Trento, pp 5–11

    Google Scholar 

  • Erikstad KE, Spidsø TK (1982) The influence of weather on food intake, insect prey selection and feeding behaviour in Willow Grouse chicks in northern Norway. Ornis Scand. 13:176–182

    Article  Google Scholar 

  • Fallot JM (2000) Evolution du nombre de jours avec des précipitations abondantes en Suisse durant le 20ème siècle. Publications de l’Association Internationale de Climatologie 13:100–109

    Google Scholar 

  • Fletcher K, Howarth D, Kirby A, Dunn R, Smith A (2013) Effect of climate change on breeding phenology, clutch size and chick survival of an upland bird. Ibis 155:456–463

    Article  Google Scholar 

  • Gardarsson A (1988) Cyclic population changes and some related events in rock ptarmigan in Iceland. In: Bergerud AT, Gratson MW (eds) Adaptive strategies and population ecology of Northern Grouse. University of Minnesota Press, Minneapolis, pp 300–329

    Google Scholar 

  • Gehrig-Fasel J, Guisan A, Zimmermann NE (2007) Tree line shifts in the Swiss Alps: climate change or land abandonment? J Veg Sci 18:571–582

    Article  Google Scholar 

  • Grosbois V, Gimenez O, Gaillard J-M, Pradel R, Barbraud C, Clobert J, Møller AP, Weimerskirch H (2008) Assessing the impact of climate variation on survival in vertebrate populations. Biol Rev 83:357–399

    Article  CAS  PubMed  Google Scholar 

  • Gullet P, Evans KL, Robinson RA, Hatchwell BJ (2014) Climate change and annual survival in a temperate passerine: partitioning seasonal effects and predicting future patterns. Oikos 123:389–400

    Article  Google Scholar 

  • Harsch MA, Hulme PE, McGlone MS, Duncan RP (2009) Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol Lett 12:1040–1049

    Article  PubMed  Google Scholar 

  • Holder K and Montgomerie R (1993) Rock ptarmigan (Lagopus mutus). In Poole A, Gill F (eds) The birds of North America, No. 51. Academy of Natural Sciences, Philadelphia; American Ornithologists’ Union, Washington, D.C.

  • Imperio S, Bionda R, Viterbi R, Provenzale A (2013) Climate change and human disturbance can lead to local extinction of alpine Rock Ptarmigan: new insight from the Western Italian Alps. PLoS One 8:e81598. doi:10.1371/journal.pone.0081598

    Article  PubMed  PubMed Central  Google Scholar 

  • Inouye DW, Barr B, Armitage KB, Inouye B (2000) Climate change is affecting altitudinal migrants and hibernating species. Proc Natl Acad Sci USA 97:1630–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenkins D, Watson A, Miller GR (1963) Population studies on red grouse, Lagopus lagopus scoticus (Lath.) in North–East Scotland. J Anim Ecol 32:317–376

    Article  Google Scholar 

  • Jiguet F, Julliard R, Thomas CD, Dehorter O, Newson SE, Couvet D (2006) Thermal range predicts bird population resilience to extreme high temperatures. Ecol Lett 9:1321–1330

    Article  PubMed  Google Scholar 

  • Kobayashi A, Nakamura H (2013) Chick and juvenile survival of Japanese Rock Ptarmigan Lagopus muta japonica. Wild Biol 19:357–358

    Google Scholar 

  • Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystems, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Lehikoinen E, Sparks TH, Zalakevicius M (2004) Arrival and departures dates. In: Møller A, Fiedler W, Berthold P (eds) Birds and climate change. Advances in ecological research, vol 35. Elsevier, pp 1–31

  • Lehikoinen A, Green M, Husby M, Kålås JA, Lindström Å (2014) Common montane birds are declining in northern Europe. J Avian Biol 45:3–14

    Article  Google Scholar 

  • Ludwig GX, Alatato RV, Helle P, Lindén H, Lindström J, Siitari H (2006) Short- and long-term population dynamical consequences of asymmetric climate change in black grouse. Proc R Soc Lond B 273:2009–2016

    Article  Google Scholar 

  • Maggini R, Lehmann A, Kéry M, Schmid H, Beniston M, Jenni L, Zbinden N (2011) Are Swiss birds tracking climate change? Detecting elevational shifts using response curve shapes. Ecol Model 222:21–32

    Article  Google Scholar 

  • Martin K (2001) Wildlife communities in alpine and sub-alpine habitats. In: Johnson DH, O’Neil TA (eds) Wildlife-habitat relationships in Oregon and Washington. Oregon State University Press, Corvallis, pp 285–310

    Google Scholar 

  • Martin K, Wiebe LK (2004) Coping mechanisms of alpine and arctic breeding birds: extreme weather conditions and limitations to reproductive resilience. Integr Comp Biol 44:177–185

    Article  PubMed  Google Scholar 

  • McCarty JP (2001) Ecological consequences of recent climate change. Conserv Biol 15:320–331

    Article  Google Scholar 

  • Møller AP, Berthold P, Fiedler W (2004) The challenge of future research on climate change and avian biology. In: Møller A, Fiedler W, Berthold P (eds) Birds and climate change. Advances in ecological research, vol 35. Elsevier, pp 237–245

  • Moss R, Watson A (1984) Maternal nutrition, egg quality and breeding success of Scottish Ptarmigan Lagopus mutus. Ibis 126:212–220

    Article  Google Scholar 

  • Moss R, Oswald J, Baines D (2001) Climate change and breeding success: decline of the Capercaillie in Scotland. J Anim Ecol 70:47–61

    Article  Google Scholar 

  • Muffat-Joly B and Desmet JF (2013) Critères d’identification des classes d’âge et de sexe du lagopède alpin. Publication Oncfs-Grifem-Asters, Sevrier, France

  • Newton I (1998) Population limitation in birds. Academic Press, San Diego

    Google Scholar 

  • Novoa C (coord.), Desmet JF, Muffat-Joly B, Arvin-Bérod M, Belleau E, Birck C (2014) Le lagopède alpin en Haute-Savoie, biologie des populations et impact des activités humaines. Publication Oncfs-Grifem-Asters, Sevrier, France, p 64

  • Novoa C, Besnard A, Brenot J-F, Ellison LN (2008) Effect of weather on the reproductive rate of Rock Ptarmigan Lagopus muta in the eastern Pyrenees. Ibis 150:270–278

    Article  Google Scholar 

  • ONERC (2008) Changements climatiques dans les Alpes:impacts et risques naturels. Rapport Technique n°1, ONERC, Paris, France, p 100

  • Pearce-Higgins JW, Green RE (2014) Birds and climate change: impacts and conservation responses. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Pedersen HC, Steen JB (1979) Behavioural thermoregulation in Willow Ptarmigan Lagopus lagopus chicks. Ornis Scand 10:17–21

    Article  Google Scholar 

  • Pernollet CA, Korner-Nievergelt F, Jenni L (2015) Regional changes in the elevational distribution of the Alpine Rock Ptarmigan Lagopus muta helvetica in Switzerland. Ibis 157:823–836

    Article  Google Scholar 

  • Popy S, Bordignon L, Prodon R (2010) A weak upward elevational shift in the distributions of breeding birds in the Italian Alps. J Biogeogr 37:57–67

    Article  Google Scholar 

  • Pounds JA, Fogden MPL, Campbell JH (1999) Biological response to climate change on a tropical mountain. Nature 398:611–615

    Article  CAS  Google Scholar 

  • Revermann R, Schmid H, Zbinden N, Spaar R, Schröder B (2012) Habitat at the mountain tops: how long can Rock Ptarmigan (Lagopus muta helvetica) survive rapid climate change in the Swiss Alps? A multi-scale approach. J Ornithol 153:891–905

    Article  Google Scholar 

  • Saether BE, Tufto J, Engen S, Jerstad K, Røstad OW, Såktan JE (2000) Population dynamical consequences of climate change for a small temperate songbird. Science 287:854–856

    Article  CAS  PubMed  Google Scholar 

  • Saether BE, Sutherland WJ, Engen S (2004) Climate influences on avian population dynamics. In: Møller A, Fiedler W, Berthold P (eds) Birds and climate change. Advances in ecological research, vol 35. Elsevier, pp 186–209

  • Sandercock BK, Martin K, Hannon SJ (2005) Demographic consequences of age-structure in extreme environments: population models for arctic and alpine ptarmigan. Oecologia 146:13–24

    Article  PubMed  Google Scholar 

  • Scherini GC, Tosi G, Wauters LA (2003) Social behaviour, reproductive biology and breeding success of alpine Rock Ptarmigan Lagopus mutus helveticus in northern Italy. Ardea 91:11–23

    Google Scholar 

  • Shoo LP, Williams SE, Hero JM (2006) Detecting climate change induced range shifts: where and how should we be looking? Austral Ecol 31:22–29

    Article  Google Scholar 

  • Skalski JR, Hoffman A, Smith SG (1993) Testing the significance of individual- and cohort-level covariates in animal survival studies. In: Lebreton JD, North PM (eds) Marked individuals in the study of bird population. Birkaüser Verlag, Basel, pp 9–28

    Google Scholar 

  • Steen JB, Unander S (1985) Breeding biology of Svalbard Rock Ptarmigan Lagopus mutus hyperboreus. Ornis Scand. 16:191–197

    Article  Google Scholar 

  • Storch I (2007) Grouse: status survey and conservation action plan 2006–2010. Gland, Switzerland and Cambridge, UK and World Pheasant Association, Fordingbridge

    Google Scholar 

  • Theberge JB, West GC (1973) Significance of brooding to the energy demands of Alaskan Rock Ptarmigan chicks. Arctic 26:138–148

    Article  Google Scholar 

  • Thomas CD, Lennon JJ (1999) Birds extend their ranges northwards. Nature 399:213

    Article  CAS  Google Scholar 

  • Tryjanowski P, Sparks TH, Profus P (2005) Uphill shifts in the distribution of the white stork Ciconia ciconia in southern Poland: the importance of nest quality. Divers Distrib 11:219–223

    Article  Google Scholar 

  • Visinoni L, Pernollet CA, Desmet JF, Korner-Nievergelt F, Jenni L (2014) Microclimate and microhabitat selection by the Alpine Rock Ptarmigan (Lagopus muta helvetica) during summer. J Ornithol. doi:10.1007/s10336-014-1138-5

    Google Scholar 

  • Visser ME, Both C, Lambrechts MM (2004) Global climate change leads to mistimed avian reproduction. In: Møller A, Fiedler W, Berthold P (eds) Birds and climate change. Advances in ecological research, vol 35. Elsevier, pp 89–110

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fremont JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Hobbs TN, Giesen KM, Galbraith H, Ojima DS, Braun CE (2002a) Relationships between climate and population dynamics of white-tailed ptarmigan Lagopus leucurus in Rocky Mountain National Park, Colorado, USA. Clim Res 23:81–87

    Article  Google Scholar 

  • Wang G, Hobbs TN, Galbraith H, Giesen KM (2002b) Signatures of large-scale and local climates on the demography of white-tailed ptarmigan in Rocky Mountain National Park, Colorado, USA. Int J Biometeorol 46:197–201

    Article  PubMed  Google Scholar 

  • Watson A, Moss R, Rae S (1998) Population dynamics of Scottish Rock Ptarmigan cycles. Ecology 79:1174–1192

    Article  Google Scholar 

  • Wilson S, Martin K (2010) Variable reproductive effort for two sympatric ptarmigan Lagopus in response to spring weather conditions in a northern alpine ecosystem. J Avian Biol 41:1–8

    Article  Google Scholar 

  • Wolfe DH, Larsson LC, Oldenettel JR, Walker HA, Patten MA (2011) Status of populations of the White-tailed Ptarmigan at the southern edge of its range. In: Watson RT, Cade TJ, Fuller M, Hunt G, Potapov E (eds) Gyrfalcons and Ptarmigan in a Changing World. The Peregrine Fund, Boise. doi:10.4080/gpcw.2011.0122

    Google Scholar 

  • Zuckerberg B, Woods AM, Porter WF (2009) Poleward shifts in breeding bird distributions in New York State. Glob Change Biol 15:1866–1883

    Article  Google Scholar 

Download references

Acknowledgments

We are very grateful to J. & E. Resseguier, B. Muffat-Joly, M. Arvin-Bérod, Geoffrey Garcel, Josep Blanch Casadesus, Jordi Gracia Moya, J.-F. Brenot and the agents of the “Office National de la Chasse et de la Faune Sauvage” in the departments of the Pyrénées Orientales and Haute Savoie for their field assistance. We also wish to thank Météo France, the Réserve Naturelle de Mantet, and Mathieu Garel for their help in collecting meteorological data, Roger Prodon for his helpful comments on an early draft of the manuscript and Elise Bradbury and Laurence Ellison for improving the English. The study was funded in part by the European Program, Alcotra “Les Galliformes des Alpes occidentales en tant qu’indicateurs des changements de l’environnement—Monitoring, conservation et gestion des espèces”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Novoa.

Additional information

Communicated by F. Bairlein.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novoa, C., Astruc, G., Desmet, JF. et al. No short-term effects of climate change on the breeding of Rock Ptarmigan in the French Alps and Pyrenees. J Ornithol 157, 797–810 (2016). https://doi.org/10.1007/s10336-016-1335-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-016-1335-5

Keywords

Navigation