Skip to main content
Log in

Common Cuckoo home ranges are larger in the breeding season than in the non-breeding season and in regions of sparse forest cover

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Knowledge of species’ habitat requirements can be gained from studying individual variation in home range size, under the assumption that larger home ranges reflect increased resource needs or decreased habitat quality. We used satellite telemetry to delineate home ranges of South Scandinavian Common Cuckoos (Cuculus canorus) throughout their annual cycle. Annual stage (breeding or non-breeding period) and percentage of forest cover were good predictors of home range size. Average breeding season home ranges were ten times as large as those of non-breeding home ranges, suggesting strong temporal variation in the birds’ resource needs, and perhaps lower habitat quality in the breeding range compared to the African part of their annual range. Furthermore, although the Cuckoos rarely chose a home range with complete forest cover, we found a significant negative relationship between forest cover and home range area. This suggests that heterogeneous landscapes which include some dense forest cover constitute important habitat for Cuckoos, and that the continuing trend of forest loss in tropical Africa could reduce habitat quality for the Cuckoo in the non-breeding season.

Zusammenfassung

Die Streifgebiete von Kuckucken sind größer zur Brutzeit als außerhalb und in Regionen mit spärlicher Waldbedeckung

Kenntnisse zu Habitatansprüchen von Arten können durch Untersuchung individueller Variationen in den Reviergrößen erlangt werden unter der Annahme, dass größere Reviere einen gesteigerten Ressourcenbedarf oder eine verringerte Habitatqualität widerspiegeln. Mit Hilfe der Satellitentelemetrie ermittelten wir die ‚home ranges‘südskandinavischer Kuckucke (Cuculus canorus) im Jahresverlauf. Jahresperiode (Brut- oder Nicht-Brutzeit) und der Anteil der Waldbedeckung waren gute Prädiktoren für die Größe von Revieren. Die durchschnittlichen Reviergrößen in der Brutzeit waren zehnmal größer als die Reviere außerhalb der Brutzeit, was auf eine starke zeitliche Variation des Ressourcenbedarfs der Vögel hindeutet und möglicherweise auch auf eine geringere Habitatqualität im Brutgebiet verglichen mit dem afrikanischen Teil ihres Jahreslebensraumes. Darüber hinaus, obwohl die Kuckucke selten ein Revier mit kompletter Waldbedeckung besetzten, fanden wir einen signifikant negativen Zusammenhang zwischen Waldbedeckung und ‘home range’-Fläche. Dies lässt vermuten, dass heterogene Landschaften inklusive einiger dichter Waldbereiche ein wichtiges Habitat für Kuckucke darstellen und dass der anhaltende Trend des Waldverlustes im tropischen Afrika die Habitatqualität für Kuckucke außerhalb der Brutzeit verringern könnte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anich NM, Benson TJ, Bednarz JC (2010) Factors influencing home-range size of Swainson’s Warblers in Eastern Arkansas. Condor 112:149–158

    Article  Google Scholar 

  • Argos (2011) Argos User’s Manual. http://www.argos-system.org/web/en/76-user-s-manual.php. Accessed 29 May 2015

  • Bartoń K (2014) MuMIn: Multi-model inference. R package version 1.10.0. http://CRAN.R-project.org/package=MuMIn. Accessed 29 May 2015

  • Bates D, Maechler M, Bolker B, Walker S (2014) lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1-7. http://CRAN.R-project.org/package=lme4. Accessed 29 May 2015

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Calenge C (2006) The package adehabitat for the R software: a tool for the analysis of space and habitat use by animals. Ecol Model 197:516–519

    Article  Google Scholar 

  • Cardador L, Manosa S, Varea A, Bertolero A (2009) Ranging behaviour of Marsh Harriers Circus aeruginosus in agricultural landscapes. Ibis 151:766–770

    Article  Google Scholar 

  • FAO (2010) Global forest resources assessment, main report, 2010. FAO Forestry Paper 163

  • Frampton GK, Van Den Brink PJ, Gould PJL (2000) Effects of spring drought and irrigation on farmland arthropods in Southern Britain. J Appl Ecol 37:865–883

    Article  Google Scholar 

  • Galipaud M, Gillingham MAF, David M, Dechaume-Moncharmont FX (2014) Ecologists overestimate the importance of predictor variables in model averaging: a plea for cautious interpretations. Methods Ecol Evol 5:983–991

    Article  Google Scholar 

  • Global Land Cover 2000 database (2003). European Commission, Joint Research Centre. http://bioval.jrc.ec.europa.eu/products/glc2000/glc2000.php. Accessed 29 May 2015

  • Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend LRG (2013) High-resolution global maps of 21st-century forest cover change. Science 342:850–853

    Article  CAS  PubMed  Google Scholar 

  • Harestad AS, Bunnell FL (1979) Home range and body weight—a re-evaluation. Ecology 60:389–402

    Article  Google Scholar 

  • Heldbjerg H, Fox T (2010) Long-term population declines in Danish trans-Saharan migrant birds: capsule Long-distance migrant birds show less favourable trends than sedentary/short-distance species. Bird Study 55:267–279

    Article  Google Scholar 

  • Holmes RT (1967) Differences in population density, territoriality, and food supply of Dunlin on arctic and subarctic tundra. In: Watson A (ed) Animal populations in relation to their food resources: A symposium of the British Ecological Society. Blackwell, Oxford and Edinburgh, pp 303–319

    Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteor Soc 77:437–470

    Article  Google Scholar 

  • Kemp MU, van Loon EE, Shamoun-Baranes J, Bouten W (2012) RNCEP: global weather and climate data at your fingertips. Methods Ecol Evol 3:65–70

    Article  Google Scholar 

  • Moskàt C, Barta Z, Haber ME, Honza M (2006) High synchrony of egg laying in Common Cuckoos (Cuculus canorus) and their great reed warbler (Acrocephalus arundinaceus) hosts. Ethol Ecol Evolut 18:159–167

    Article  Google Scholar 

  • Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R 2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142

    Article  Google Scholar 

  • Nakamura H, Miyazawa Y, Kashiwagi K (2005) Behaviour of radio-tracked Common Cuckoo females during the breeding season in Japan. Ornithol Sci 4:31–41

    Article  Google Scholar 

  • NASA Land Processes Distributed Active Archive Center (LP DAAC). MODIS/Terra Vegetation Indices 16-Day L3 Global 1 km SIN Grid. http://reverb.echo.nasa.gov. Accessed 29 May 2015

  • Ockendon N, Johnston A, Baillie SR (2014) Rainfall on wintering grounds affects population change in many species of Afro-Palaearctic migrants. J Ornithol 155:905–917

    Article  Google Scholar 

  • Payne RD (2005) The Cuckoos. Oxford University, Oxford, p 515

    Google Scholar 

  • Peach WJ, Denny M, Cotton PA, Hill IF, Gruar D, Barritt D, Impey A, Mallord J (2004) Habitat selection by song thrushes in stable and declining farmland populations. J Appl Ecol 41:275–293

    Article  Google Scholar 

  • Pettorelli N, Ryan S, Mueller T, Bunnefeld N, Jedrzejewsja B, Lima M, Kausrud K (2011) The normalized difference vegetation index (NDVI): unforeseen successes in animal ecology. Clim Res 46:25–27

    Article  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed 29 May 2015

  • Rolstad J, Løken B, Rolstad J (2000) Habitat selection as a hierarchical spatial process: the green woodpecker at the northern edge of its distribution range. Oecologia 124:116–129

    Article  Google Scholar 

  • Sanderson FJ, Donald PF, Pain DJ, Burfield IJ, Van Bommel FP (2006) Long-term population declines in Afro-Palearctic migrant birds. Biol Conserv 131:93–105

    Article  Google Scholar 

  • Simon CA (1975) The influence of food availability on territory size in the Iguanid lizard Sclerroporus jerrovi. Ecology 56:993–998

    Article  Google Scholar 

  • Small MF, Taylor ES, Baccus JT, Schaefer CL, Simpson TR, Robertson JA (2007) Nesting home range and movements of an urban white-winged dove population. Wilson J Ornithol 119:467–471

    Article  Google Scholar 

  • Stenger J (1958) Food habits and available food of Ovenbirds in relation to territory size. Auk 75:335–346

    Article  Google Scholar 

  • Tufto J, Andersen R, Linnell J (1996) Habitat use and ecological correlates of home range size in a small cervid: the roe deer. J Anim Ecol 65:715–724

    Article  Google Scholar 

  • VanDerWal J, Falconi L, Januchowski J, Shoo L, Storlie C (2014) SDMTools: species distribution modelling tools: tools for processing data associated with species distribution modelling exercises. R package version 1.1-20. http://CRAN.R-project.org/package=SDMTools. Accessed 29 May 2015

  • Vickery JA, Ewing SR, Smith KW, Pain DJ, Bairlein F, Skorpilova J, Gregory RD, Fox T (2014) The decline of afro-palearctic migrants and an assessment of potential causes. Ibis 156:1–22

    Article  Google Scholar 

  • Vogl W, Taborsky B, Taborsky M, Teuschl Y, Honza M (2004) Habitat and space use of European Cuckoo females during the egg laying period. Behaviour 141:881–898

    Article  Google Scholar 

  • Weaving MJ, White JG, Hower K, Isaac B, Cooke R (2014) Sex-biased space-use response to urbanization in an endemic urban adapter. Landsc Urban Plan 130:73–80

    Article  Google Scholar 

  • Willemoes M, Strandberg R, Klassen RHG, Tøttrup AP, Vardanis Y, Howey PW, Thorup K, Mikelski M, Alerstam T (2014) Narrow-front loop migration in a population of the Common Cuckoo as revealed by satellite telemetry. PLoS One 9(1):e83515. doi:10.1371/journal.pone.0083515

    Article  PubMed  PubMed Central  Google Scholar 

  • Worton BJ (1989) Kernel methods for estimating the utilization distribution in home range studies. Ecology 70:164–168

    Article  Google Scholar 

Download references

Acknowledgments

We thank Chris Hewson and Thomas Alerstam for comments on an early version of this manuscript. We are also grateful to Samantha Franks and an anonymous reviewer for their constructive suggestions during the review process. K.T. thanks the Danish Council for Independent Research for support through the MATCH project (1323-00048B). M.W. and K.T. acknowledge the Danish National Research Foundation for their support of the Center for Macroecology, Evolution and Climate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather M. Williams.

Additional information

Communicated by F. Bairlein.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 8493 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williams, H.M., Willemoes, M., Klaassen, R.H.G. et al. Common Cuckoo home ranges are larger in the breeding season than in the non-breeding season and in regions of sparse forest cover. J Ornithol 157, 461–469 (2016). https://doi.org/10.1007/s10336-015-1308-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-015-1308-0

Keywords

Navigation