Skip to main content

Advertisement

Log in

Stress response assessment during translocation of captive-bred Greater Rheas into the wild

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Translocation is an extensively used conservation tool that involves exposing animals to stressful situations that may influence the post-release survival. In this study, 20 Greater Rhea (Rhea americana) adults hatched and reared in captivity were translocated to a wildlife refuge. After transport and before release, animals were kept in pens at the liberation site to make a “soft-release” strategy. Fecal glucocorticoid metabolites (FGM) were monitored during pre-transportation, post-transportation and pre-release, and post-release phases as an indicator of the stress of translocation and acclimation to the new environment. During pre-transportation phase, FGM levels found were consistent with the baseline concentrations described for this species for males and females, respectively. On day 1 after transportation, FGM levels were increased in both sexes, returning to baseline values during the maintenance in the pens. Although the handling and transportation triggered an acute stress response, the procedures used and the soft release in pens allowed Rheas to reestablish quickly baseline FGM levels. After release into the novel wildlife refuge, FGM levels were increased again and remained similarly increased during the following 2 months of the study. Findings suggest a strong chronic stress response, probably triggered by a combination of many factors (i.e. novelty, attacks from predators, social interactions, human related disturbances such as poaching, vehicular noise, hunting dogs) that may reduce the bird’s ability to solve new challenging situations, especially the illegal hunting pressure that seems to be a significant threat in this species.

Zusammenfassung

Bewertung der Stress-Reaktion auf die Umsiedlung von in Gefangenschaft aufgezogenen Nandus ( Rhea americana ) ins Freiland.

Im Naturschutz werden Umsiedlungen häufig vorgenommen und stellen für die betroffenen Tiere stets einen besonderen Stress dar, der möglicherweise einen Einfluss auf ihr Überleben nach der Umsiedlung hat. In unserer Untersuchung wurden 20 adulte, in Gefangenschaft geschlüpfte und aufgezogene Nandus in ein Naturschutzgebiet umgesiedelt. Nach dem Transport, aber vor ihrer Freilassung, wurden die Tiere im Sinne einer „sanften Freilassung“zunächst noch in Gehegen innerhalb des Naturschutzgebiets gehalten. In den Phasen „vor Transport“, „nach Transport“, „vor Freilassung“und „nach Freilassung“wurden fäkale Glukococorticoid-Metaboliten (FGM) als Indikatoren für den Stress durch den Transport und durch das Einleben in die neue Umgebung gemessen Die FGM-Konzentrationen in der Phase vor dem Transport entsprachen den für beide Geschlechter bereits bekannten Basiswerten. Am Tag 1 nach dem Transport waren die Werte für beide Geschlechter erhöht, gingen aber während des Aufenthalts in den Gehegen wieder auf die Basiswerte hinunter. Obwohl das Einfangen und der Transport bei den Tieren eine akute Stress-Antwort auslösten, bewirkten die eingesetzten Methoden und die „sanfte Freilassung“in die Gehege, dass die Tiere ihre Basis-FGM-Konzentrationen rasch wieder einstellten. Nach der endgültigen Freilassung in das für sie neue Naturschutzgebiet stiegen die FGM-Werte wieder an und blieben danach noch zwei Monate lang auf dem erhöhten Niveau. Diese Ergebnisse weisen auf eine intensive Stress-Antwort hin, die von der Kombination vieler Faktoren (neue Umgebung, Angriffe durch Räuber, soziale Interaktionen, Störungen durch Menschen wie z.B. Wilderei, Fahrzeuglärm, streunende Hunde) getriggert wird und eventuell die Fähigkeit der Vögel vermindert, neuen Herausforderungen erfolgreich zu begegnen, vor allem der illegalen Jagd, die gerade für diese Art eine ganz besondere Bedrohung darstellt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Aguilar-Cucurachi MAS, Rangel-Negrín A, Chavira R, Boeck L, Canales-Espinosa D (2010) Preliminary evidence of accumulation of stress during translocation in mantled howlers. Am J Primatol 72:805–810

    Article  PubMed  Google Scholar 

  • Armstrong DP, Seddon PJ (2008) Directions in reintroduction biology. Trends Ecol. Evolut 23:20–25

    Article  Google Scholar 

  • Balzarini MG, Gonzalez L, Tablada M, Casanoves F, Di Rienzo JA, Robledo CW (2008) Infostat. Editorial Brujas, Manual del Usuario

    Google Scholar 

  • Bazzano G, Navarro JL, Martella MB (2014) Linking landscape data with population viability analysis for evaluating translocation as a conservation strategy for Greater Rhea (Rhea americana) in central Argentina. Ornitol. Neotrop 25:25–35

    Google Scholar 

  • Bellis L, Martella MB, Navarro JL (2004) Habitat use by wild and captive-reared greater rheas (Rhea americana) in agricultural landscapes in Argentina. Oryx 38:304–310

    Article  Google Scholar 

  • Beuving G, Blokhuis HJ (1997) Effect of novelty and restraint on catecholamines in plasma of laying hens. Br Poult Sci 38:297–300

    Article  CAS  PubMed  Google Scholar 

  • Blas J (2015) Stress in birds. In: Sturkie’s Avian Physiology, 6th Edition: 769–810 Scanes, C.G. (Ed). Elsevier: USA

  • Boonstra R, Hik D, Singleton GR, Tinnikov A (1998) The impact of predator-induced stress on the snowshoe hare cycle. Ecol Monogr 68:371–394

    Article  Google Scholar 

  • Bryan HM, Smits JEG, Koren L, Paquet PC, Wynne-Edwards KE, Musiani M (2014) Heavily hunted wolves have higher stress and reproductive steroids than wolves with lower hunting pressure. Funct Ecol 29:347–356

    Article  Google Scholar 

  • Cabezas S, Calvete C, Moreno S (2011) Survival of translocated wild rabbits: importance of habitat, physiological and immune condition. Anim Conserv 14:665–675

    Article  Google Scholar 

  • Cantero JJ, Nuñez C, Giayetto O, Cisneros JM (1994) Composición florística y dinámica de pastizales naturales: propuesta de utilización. Argentina, Estancia Las Dos Hermanas, p 49

    Google Scholar 

  • Ciuti S, Muhly TB, Paton DG, McDevitt AD, Musiani M, Boyce MS (2012) Human selection of elk behavioural traits in a landscape of fear. Proc R Soc Lond 279:4407–4416

    Article  Google Scholar 

  • Creel S, Fox JE, HardyA Sands J, Garrott B, Peterson RO (2002) Snowmobile activity and glucocorticoid stress responses in wolves and elk. Conserv Biol 16:809–814

    Article  Google Scholar 

  • Crowther C, Davies R, Glass W (2003) The effect of night transportation on the heart rate and skin temperature of ostriches during real transportation. Meat Sci 64:365–370

    Article  PubMed  Google Scholar 

  • Della Costa NS, Lèche A, Guzmán D, Navarro JL, Marin RH, Martella MB (2013) Behavioral responses to short-term transport in male and female Greater Rheas (Rhea americana) reared in captivity. Poult Sci 92:849–857

    Article  CAS  PubMed  Google Scholar 

  • Devineau O, Shenk TM, Doherty PFJ, White GC, Kahn RH (2011) Assessing release protocols for Canada Lynx reintroduction in Colorado. J Wildl Manage 75:623–630

    Article  Google Scholar 

  • Di Rienzo JA, Casanoves F, Balzarini MG, Gonzales L, Tablada M, Robledo CV (2012) Infostat statistical software package version 2012. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar

  • Dickens MJ, Delehanty DJ, Romero LM (2010) Stress: an inevitable component of animal translocation. Biol Cons 143:1329–1341

    Article  Google Scholar 

  • Fazio E, Ferlazzo A (2003) Evaluation of stress during transport. Vet Res Commun 27:519–524

    Article  PubMed  Google Scholar 

  • Fischer J, Lindenmayer DB (2000) An assessment of the published results of animal relocations. Biol Cons 96:1–11

    Article  Google Scholar 

  • Franceschini MD, Rubenstein DI, Low B, Romero LM (2008) Fecal glucocorticoid metabolite analysis as an indicator of stress during translocation and acclimation in an endangered large mammal, the Grevy’s zebra. Anim Conserv 11:263–269

    Article  Google Scholar 

  • Galicia E, Baldassare GA (1997) Effects of motorized tourboats on the behavior of nonbreeding American flamingos in Yucatan. Mexico Conserv Biol 11:1159–1165

    Article  Google Scholar 

  • Gelling M, Johnson PJ, Moorhouse TP, Macdonald DW (2012) Measuring animal welfare within a reintroduction: an assessment of different indices of stress in water voles Arvicola amphibius. PLoS One 7:e41081. doi:10.1371/journal.pone.0041081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giordano PF, Bellis L, Navarro JL, Martella MB (2008) Abundance and spatial distribution of Greater Rhea (Rhea americana) in two sites on the pampas grasslands with different land use. Bird Conserv Int 18:63–70

    Article  Google Scholar 

  • Giordano PF, Navarro JL, Martella MB (2010) Building large-scale spatially explicit models to predict the distribution of suitable habitat patches for the Greater Rhea (Rhea americana), a near-threatened species. Biol Cons 143:357–365

    Article  Google Scholar 

  • Griffith B, Scott JM, Carpenter JW, Reed C (1989) Translocation as a species conservation tool —status and strategy. Science 245:477–480

    Article  CAS  PubMed  Google Scholar 

  • Guzman DA, Marin RH (2008) Social reinstatement responses of meat-type chickens to familiar and unfamiliar conspecifics after exposure to an acute stressor. Appl Anim Behav Sci 110:282–293

    Article  Google Scholar 

  • Hartup BK, Olsen GH, Czekala NM (2005) Fecal corticoid monitoring in Whooping Cranes (Grus americana) undergoing reintroduction. Zoo Biol 24:15–28

    Article  Google Scholar 

  • Harvey S, Phillips JG, Rees A, Hall TR (1984) Stress and adrenal function. J Exp Zool 232:633–645

    Article  CAS  PubMed  Google Scholar 

  • IUCN, 2014. IUCN Red List of threatened species. version 2014.2. http://www.iucnredlist.org. Accessed 7 Nov 2014

  • Jachowski DS, Slotow R, Millspaugh JJ (2012) Physiological stress and refuge behavior by african elephants. PLoS One 7:e31818. doi:10.1371/journal.pone.0031818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jachowski DS, Slotow R, Millspaugh JJ (2013) Delayed physiological acclimatization by African elephants following reintroduction. Anim Conserv. doi:10.1111/acv.12031

    Google Scholar 

  • Jenni L, Keller N, Almasi B, Duplain J, Homberger B, Lanz M, Korner-Nievergelt F, Schaub M, Jenni-Eiermann J (2015) Transport and release procedures in reintroduction programs: stress and survival in grey partridges. Anim Conserv 18:62–72

    Article  Google Scholar 

  • Kay R, Hall C (2009) The use of a mirror reduces isolation stress in horses being transported by trailer. Appl Anim Behav Sci 116:237–243

    Article  Google Scholar 

  • Kembro JM, Satterlee DG, Schmidt JB, Perillo MA, Marin RH (2008) Open-field temporal pattern of ambulation in Japanese quail genetically selected for contrasting adrenocortical responsiveness to brief manual restraint. Poult Sci 87:2186–2195

    Article  CAS  PubMed  Google Scholar 

  • Kuenzel WJ, Jurkevich A (2010) Molecular neuroendocrine events during stress in poultry. Poult Sci 89:832–840

    Article  CAS  PubMed  Google Scholar 

  • Lèche A (2012) Evaluación de la respuesta adrenocortical de estrés en ñandúes (Rhea americana) criados en condiciones artificiales y en vida silvestre. PhD thesis, Universidad Nacional de Córdoba

  • Lèche A, Busso JM, Hansen C, Navarro JL, Marin RH, Martella MB (2009) Physiological stress in captive Greater Rheas (Rhea americana): highly sensitive plasma corticosterone response to an ACTH challenge. Gen Comp Endocrinol 162:188–191

    Article  PubMed  Google Scholar 

  • Lèche A, Busso JM, Navarro JL, Hansen C, Marin RH, Martella MB (2011) Non-invasive monitoring of adrenocortical activity in Greater rhea (Rhea americana) by fecal glucocorticoid analysis. J Orrnithol 152:839–847

    Article  Google Scholar 

  • Lèche A, Della Costa NS, Hansen C, Navarro JL, Marin RH, Martella MB (2013) Corticosterone stress response of Greater Rhea (Rhea americana) during short-term road transportation. Poult Sci 92:60–63

    Article  PubMed  Google Scholar 

  • Lèche A, Bazzano G, Hansen C, Navarro JL, Marin RH, Martella MB (2014) Stress in wild Greater Rhea populations Rhea americana: effects of agricultural activities on seasonal excreted glucocorticoid metabolite levels. J Orrnithol 155:919–926

    Article  Google Scholar 

  • Lèche A, Hansen C, Navarro JL, Marin RH, Martella MB (2015) Influence of breeding season on fecal glucocorticoid levels in captive Greater Rhea (Rhea americana). Zoo Biol 34:71–75

    Article  PubMed  Google Scholar 

  • Lewis CRG, Hulbert LE, McGlone JJ (2008) Novelty causes elevated heart rate and immune changes in pigs exposed to handling, alleys, and ramps. Livestock Science 116:338–341

    Article  Google Scholar 

  • Marin RH, Martijena ID, Arce A (1997) Effect of diazepam and a β-carboline on open-field and T-maze behaviors in 2-day-old chicks. Pharmacol Biochem Behav 58:915–921

    Article  CAS  PubMed  Google Scholar 

  • Marin RH, FreytesP Guzman D, Jones RB (2001) Effects of an acute stressor on fear and on the social reinstatement responses of domestic chicks to cagemates and strangers. Appl Anim Behav Sci 71:57–66

    Article  PubMed  Google Scholar 

  • Martella MB, Navarro JL (2006) Proyecto Ñandú. Manejo de Rhea americana y R. pennata en la Argentina. In: Manejo de fauna en Argentina: proyectos de uso sustentable: 39–50. Bolkovic, M.L., Ramadori, D.E. (Eds.) Buenos Aires, Argentina Dirección de Fauna Silvestre, Secretaría de Ambiente y Desarrollo Sustentable

  • McEwen BS, Wingfield JC (2003) The concept of allostasis in biology and biomedicine. Horm Behav 43:2–15

    Article  PubMed  Google Scholar 

  • Menon DG, Bennett DC, Schaefer AL, Cheng KM (2014) Transportation stress and the incidence of exertional rhabdomyolysis in emus (Dromaius novaehollandiae). Poult Sci 93:273–284

    Article  CAS  PubMed  Google Scholar 

  • Navarro JL, Martella MB (2008) The relevance of captive breeding to conservation of native ratites in Argentina: an overview. Aust J Exp Agric 48:1302–1307

    Article  Google Scholar 

  • Navarro JL, Martella MB (2011) Ratite Conservation: linking captive-release and welfare. In: Glatz P, Lunam C, Malecki I (eds) The welfare of farmed ratites: 237–258. Springer, New York

    Google Scholar 

  • Palme R (2005) Measuring fecal steroids: Guidelines for practical application. Ann N Y Acad Sci 1046:75–80

    Article  CAS  PubMed  Google Scholar 

  • Palme R (2012) Monitoring stress hormone metabolites as a useful, non-invasive tool for welfare assessment in farm animals. Anim Welfare 21:331–337

    Article  CAS  Google Scholar 

  • Palme R, Rettenbacher S, Touma C, El-Bahr SM, Möstl E (2005) Stress hormones in mammals and birds: comparative aspects regarding metabolism, excretion and noninvasive measurement in fecal samples. Ann N Y Acad Sci 1040:162–171

    Article  CAS  PubMed  Google Scholar 

  • Parker ID, Watts DE, Lopez RR, Silvy NJ, Davis DS, McCleery RA, Frank PA (2008) Evaluation of the efficacy of Florida Key deer translocations. J Wildl Manage 72:1069–1075

    Article  Google Scholar 

  • Pinter-Wollman N, Isbell LA, Hart LA (2009) Assessing translocation outcome: comparing behavioral and physiological aspects of translocated and resident african elephants (Loxodonta africana). Biol Cons 142:1116–1124

    Article  Google Scholar 

  • Sheriff MJ, Dantzer B, Delehanty B, Palme R, Boonstra R (2011) Measuring stress in wildlife: techniques for quantifying glucocorticoids. Oecologia 166:869–887

    Article  PubMed  Google Scholar 

  • Shier DM (2006) Effect of family support on the success of translocated blacktailed prairie dogs. Conserv Biol 20:1780–1790

    Article  CAS  PubMed  Google Scholar 

  • Shirley EA (1987) Application of ranking methods to multiple comparison procedures and factorial 492 experiments. Appl Statistics 36:205–213

    Article  Google Scholar 

  • Stewart J (1994) Ratites. In: Ritchie BW, Harrison GJ, Harrison LR (eds) Avian Medicine: Principles and Applications: 1284–1326. Wingers Publishing, Lake Worth

    Google Scholar 

  • Strasser EH, Heath JA (2013) Reproductive failure of a human-tolerant species, the American kestrel, is associated with stress and human disturbance. J Appl Ecol 50:912–919

    Article  Google Scholar 

  • Tamashiro KL, Nguyen MM, Sakai RR (2005) Social stress: from rodents to primates. Front Neuroendocrinol 26(1):27–40

    Article  PubMed  Google Scholar 

  • Teixeira CP, Schetini de Azevedo C, Mendl M, Cipreste CF, Young RJ (2007) Revisiting translocation and reintroduction programmes: the importance of considering stress. Anim Behav 73:1–13

    Article  Google Scholar 

  • Touma C, Palme R (2005) Measuring fecal glucocorticoid metabolites in mammals and birds: the importance of validation. Ann N Y Acad Sci 1046:54–74

    Article  CAS  PubMed  Google Scholar 

  • Tuberville TD, Clark EE, Buhlmann KA, Gibbons JW (2005) Translocation as a conservation tool: site fidelity and movement of repatriated gopher tortoises (Gopherus polyphemus). Anim Conserv 8:349–358

    Article  Google Scholar 

  • Vera Cortez M, Valdez DJ, Navarro JL, Martella MB (2015) Efficiency of antipredator training in captive-bred greater rheas reintroduced into the wild. Acta Ethologica 18(2):187–195. doi:10.1007/s10211-014-0206-4

    Article  Google Scholar 

  • Weinberg J, Wong R (1986) Adrenocortical responsiveness to novelty in the hamster. Physiol Behav 37:669–672

    Article  CAS  PubMed  Google Scholar 

  • Wolf CM, Griffith B, Reed C, Temple SA (1996) Avian and mammalian translocations: update and reanalysis of 1987 survey data. Conserv Biol 10:1142–1154

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Córdoba Zoo (Argentina) and their staff for allowing us to use its facilities for this study. We are very grateful to Las Dos Hermanas Ranch owners and the Rachel and Pamela Schiele Foundation for allowing us to conduct this translocation research in their property. A particular thanks to Carla Dal Borgo for her invaluable help in breeding the animals. Thanks to Diego Valdez, Verónica Marinero, and Carla de Aranzamendi for helping in the field work. We are grateful to Prof. Iliana Martínez for English corrections. Funding was provided through grants to M.B.M. from the Secretaría de Ciencia y Tecnología of Universidad Nacional de Córdoba (SECyT–UNC) and Agencia Nacional de Promoción Científica y Tecnológica (FONCyT). A. L. is a Postdoctoral fellow from the Fundación Bunge y Born. M. V. C. and N. S. D. C. are Doctoral fellows of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and graduate students of Doctorado en Ciencias Biológicas, FCEFyN, UNC, Argentina. J. L. N., R. H. M. and M. B. M. are researchers of CONICET. The proposal of this work was approved by the ethics committee of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Resolution No. 1047 ANNEX II, 2005) before its implementation, as part of the author’s fellowship project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Lèche.

Additional information

Communicated by L. Fusani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lèche, A., Vera Cortez, M., Della Costa, N.S. et al. Stress response assessment during translocation of captive-bred Greater Rheas into the wild. J Ornithol 157, 599–607 (2016). https://doi.org/10.1007/s10336-015-1305-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-015-1305-3

Keywords

Navigation