Skip to main content
Log in

Mechanisms of antimicrobial defense in avian eggs

  • Review
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

One of the greatest threats to the survival of avian eggs is the risk of infection by microbes; as such, a large number of parental defense mechanisms have evolved in response to the decreased fitness imposed by microbial infection. The existing literature on this topic has focused largely on the mechanisms of microbial invasion through eggshells and the identification of molecules with antimicrobial properties in eggs of commercial species. However, little is still known about antimicrobial mechanisms in wild birds or how they vary with environmental pressures. This review concentrates on recent findings that shed new light on the role of parental behaviors (including incubation and placement of vegetation with antifungal activity in the nest) and the physical properties of eggshells (including nanometer-scale spheres that prevent microbial attachment) that protect eggs from contamination in high-risk environments. In addition to presenting a summary of current information, we identify evident gaps in knowledge and highlight research avenues for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Afton AD, Paulus SL (1992) Incubation and brood care. In: Batt B, Afton A, Anderson M (eds) Ecology and management of breeding waterfowl. University of Minnesota Press, Minneapolis, pp 62–108

    Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    PubMed  PubMed Central  CAS  Google Scholar 

  • Baron F, Jan S, Nys Y, Bain M, Immerseel FV (2011) Egg and egg product microbiology. In: Nys Y, Bain M, Van Immerseel F (eds) Improving the safety and quality of eggs and egg products Vol 1: Egg chemistry, production and consumption. Woodhead Publishing, Cambridge, pp 330–350

    Chapter  Google Scholar 

  • Baxter M, Trotter MD (1969) The effect of fatty acids extracted from keratins on the growth of fungi, with particular reference to the free fatty acid content. Sabouraudia 7:199–206

    Article  PubMed  CAS  Google Scholar 

  • Berger S, Disko R, Gwinner H (2003) Bacteria in starling nests. J Ornithol 144:317–322

    Article  Google Scholar 

  • Berrang ME, Cox NA, Frank JF, Buhr RJ (1999) Bacterial penetration of the eggshell and shell membranes of the chicken hatching egg: a review. J App Poultry Res 8:499–504

    Article  Google Scholar 

  • Board RG, Tranter HS (1995) The microbiology of eggs. In: Stadelman WJ, Cotterill OJ (eds) Egg Science and Technology. 4th edn. Binghamton, Food Products, pp 81–104

    Google Scholar 

  • Board R et al. (1982) A novel pore system in the eggshells of the mallee fowl, Leipoa ocellata. J Exp Zool. 220

  • Bain Panheleux M, Fernandez M, Morales S, Gautron I, Arias J, Solomon JL, Hincke S, Nys MY (1999) Organic matrix composition and ultrastructure of eggshell: a comparative study. Br Poult Sci 40:240–252

    Article  PubMed  Google Scholar 

  • Board RG (1966) Review article: the course of microbial infection of the hen’s egg. J of App Bacteriol 29(2):319–341

    Article  CAS  Google Scholar 

  • Board RG (1980) The avian eggshell—a resistance network. J of App Bacteriol 48:303–303 (I3)

    Article  Google Scholar 

  • Board RG (1982) Properties of avian egg shells and their adaptive value. Biol Rev 57:1–28

    Article  Google Scholar 

  • Board RG, Ayres JC (1965) Influence of iron on the course of bacterial infection of the hen’s egg. Appl Microbiol 13:358–364

    PubMed  PubMed Central  CAS  Google Scholar 

  • Board RG, Fuller R (1974) Non-specific antimicrobial defences of the avian egg, embryo and neonate. BioI Rev 49:15–49

    Article  CAS  Google Scholar 

  • Board RG, Fuller R (1994) Microbiology of the avian egg. Chapman and Hall, London

    Book  Google Scholar 

  • Board RG, Hornsey DJ (1978) Plasma and Egg white proteins In: Brush AH (ed) Chemical zoology Academic Press, New York 10:53–67

  • Board RG, Loseby S, Miles VR (1979) A note on microbial growth on hen egg-shells. Br Poultry Sci 20:413–420

    Article  Google Scholar 

  • Board RG, Clay C, Lock J, Dolman J (1994) The egg: a compartmentalized, aseptically packaged food In microbiology of the avian egg. Springer, US, pp 43–61

    Book  Google Scholar 

  • Bonisoli-Alquati A et al (2010) Egg antimicrobials, embryo sex and chick phenotype in the yellow-legged gull. Behav Ecol Sociobiol 64:845–855

    Article  Google Scholar 

  • Brandl HB, van Dongen WF, Darolová A, Krištofík J, Majtan J, Hoi H (2014) Composition of bacterial assemblages in different components of reed warbler nests and a possible role of egg incubation in pathogen regulation. PLoS One 9(12):e114861

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brooks J, Taylor DJ (1955) Eggs and egg products department of science and industrial research food investigation special report. Her Majesty’s Stationery Office, London

    Google Scholar 

  • Brouwer L, Komdeur J (2004) Green nesting material has a function in mate attraction in the European starling. Anim Behav 67:539–548

    Article  Google Scholar 

  • Bruce J, Drysdale EM (1991) Egg hygiene: routes of infection. In: Tullett SG (ed) Avian incubation. Butterworth Heinemann, Northampton, pp 257–276

    Google Scholar 

  • Bruce J, Drysdale EM (1994) Trans-shell transmission. In: Board RG, Fuller R (eds) Microbiology of the avian egg. Chapman and Hall, London, pp 63–91

    Chapter  Google Scholar 

  • Chattock AP (1925) On the physics of incubation Phil Trans Roy Soc London. Ser B 213:397–450

    Google Scholar 

  • Clark L (1991) The nest protection hypothesis: the adaptive use of plant secondary compounds by European starlings. In: Loye JE, Zuk M (eds) Bird–parasite interactions: ecology, evolution and behavior. Oxford University Press, Oxford, pp 205–221

    Google Scholar 

  • Clark L, Mason JR (1985) Use of nest material as insecticidal and anti- pathogenic agents by the European starling. Oecologia 67:169–176

    Article  Google Scholar 

  • Cook MI, Beissinger SR, Toranzos GA, Rodriguez RA, Arendt WJ (2003) Trans-shell infection by pathogenic micro-organisms reduces the shelf life of non-incubated bird’s eggs: a constraint on the onset of incubation? Proc R Soc Lond B Biol Sci 270:2233–2240

    Article  Google Scholar 

  • Cook MI, Beissinger SR, Toranzos GA, Arendt WJ (2005a) Incubation reduces microbial growth on eggshells and the opportunity for trans-shell infection. Ecol Lett 8:532–537

    Article  PubMed  Google Scholar 

  • Cook MI, Beissinger SR, Toranzos GA, Rodriguez RA, Arendt WJ (2005b) Microbial infection affects egg viability and incubation behavior in a tropical passerine. Behav Ecol 16:30–36

    Article  Google Scholar 

  • Cooper J (1986) Biology of the bank cormorant, part 4: nest construction and characteristics. Ostrich 57(3):170–179

    Article  Google Scholar 

  • Cox NA, Berrang ME, Cason JA (2000) Salmonella penetration of egg shells and proliferation in broiler hatching eggs: a review. Poultry Sci 79:1571–1574

    Article  CAS  Google Scholar 

  • Cox NA, Stern NJ, Musgrove MT, Bailey JS, Craven SE, Cray PF, Buhr RJ, Hiett KL (2002) Prevalence and level of Campylobacter in commercial broiler breeders (parents) and broilers. J App Poultry Res. 11:187–190

    Article  Google Scholar 

  • Cramp S (1998) Cramp’s the complete birds of the Western Palearctic. Oxford University Press, Oxford

    Google Scholar 

  • D’Alba L et al (2010a) Differential deposition of antimicrobial proteins in blue tit (Cyanistes caeruleus) clutches by laying order and male attractiveness. Behav Ecol Sociobiol 64(6):1037–1045

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Alba L, Oborn A, Shawkey M (2010b) Experimental evidence that keeping eggs dry is a mechanism for the antimicrobial effects of avian incubation. Naturwissenschaften 97:1–7

    Article  CAS  Google Scholar 

  • D’Alba L, Spencer KA, Nager RG, Monaghan P (2011) State dependent effects of elevated hormone: nest site quality, corticosterone levels and reproductive performance in the common eider. Gen Comp Endocrinol 172:218–224

    Article  PubMed  CAS  Google Scholar 

  • D’Alba L et al (2014) Antimicrobial properties of a nanostructured eggshell from a compost-nesting bird. J Exp Biol 217(7):1116–1121

    Article  PubMed  Google Scholar 

  • Davies JW, Anderson RC, Karstad L, Trainer DO (1971) Infectious and parasitic diseases of wild birds. Iowa State University Press, Ames

    Google Scholar 

  • del Hoyo J, Elliott A, Sargatal AJ (1994) Handbook of the birds of the world vol 2: new world vultures to guineafowl. Lynx Edicions, Barcelona

    Google Scholar 

  • Drent RH (1975) Incubation. In: Farner DS, King JR (eds) Avian biology, vol 5. Academic Press, NY, pp 333–420

    Chapter  Google Scholar 

  • Dubiec A, Góźdź I, Mazgajski TD (2013) Green plant material in avian nests Avian. Biol Res 6:133–146

    Google Scholar 

  • Eckert J, Glock H, Schade R et al (1986) Synthesis of a precursor polypeptide of eggshell matrix in the liver of laying hen. J Anim Physiol Anim Nutr 56:258–265

    Article  CAS  Google Scholar 

  • Jacob J, Eigener, U and Hoppe, U 1997 The structure of preen gland waxes from pelecaniform birds containing 3,7-dimethyloctan-1-ol. An active ingredient against dermatophytes, Zeit Naturforsch C 52: 114/123

  • Elder W (1954) The oil gland of birds Wilson Bull 66(1):6–31

    Google Scholar 

  • Franz CM, Van Belkum MJ, Holzapfel WH, Abriouel H, Gálvez A (2007) Diversity of enterococcal bacteriocins and their grouping in a new classification scheme. FEMS Microbiol Rev 31:293–310

    Article  PubMed  CAS  Google Scholar 

  • Giraudeau M, Duval C, Czirják GÁ, BretagnolleV Eraud C, McGraw KJ, Heeb P (2011) Maternal investment of female mallards is influenced by male carotenoid-based coloration. Proc R Soc B 278:781–788

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giraudeau M, Czirják GÁ, Duval C, Bretagnolle V, Gutierrez C, Heeb P (2014) An experimental test in Mallards (Anas platyrhynchos) of the effect of incubation and maternal preen oil on eggshell microbial load. J Ornithol 155:671–677

    Article  Google Scholar 

  • Godard R et al (2007) The effects of exposure and microbes on hatchability of eggs in open-cup and cavity nests. J Avian Biol 38:709–716

    Article  Google Scholar 

  • Goodenough AE, Stallwood B (2010) Intraspecific variation and interspecific differences in the bacterial and fungal assemblages of Blue tit (Cyanistes caeruleus) and Great tit (Parus major) nests. Microb Ecol 59:221–232

    Article  PubMed  Google Scholar 

  • Graves R, MacLaury D (1962) The effect of temperature, vapour pressure, and absolute humidity on bacteria contamination of shell eggs. Poultry Sci. 41:1219–1225

    Article  Google Scholar 

  • Grizard S, Dini-Andreote F, Tieleman BI, Salles JF (2014) Dynamics of bacterial and fungal communities associated with eggshells during incubation. Ecol Evol 4(7):1140–1157

    Article  PubMed  PubMed Central  Google Scholar 

  • Gwinner H (1997) The function of green plants in nests of European starlings (Sturnus vulgaris). Behaviour 134:337–351

    Article  Google Scholar 

  • Gwinner H, Berger S (2005) European starlings: nestling condition, parasites and green nest material during the breeding season. J Ornithol 146:365–371

    Article  Google Scholar 

  • Gwinner H, Oltrogge M, Trost L, Nienaber U (2000) Green plants in starling nests: effects on nestlings. Anim Behav 59:301–309

    Article  PubMed  Google Scholar 

  • Hansell M (2000) Bird nests and construction behaviour. Cambridge University Press, Cambridge, p 2000

    Book  Google Scholar 

  • Hincke M, Gautron J, Nys Y, Rodriguez-Navarro AB, McKee MD, Bain M, van Immerseel F (2011) The eggshell: structure and protective function. In: Nys Y, Bain M, Van Immerseel F (eds) Improving the safety and quality of eggs and egg products Volume 1: Egg chemistry, production and consumption. Woodhead Publishing, Cambridge, pp 151–182

    Chapter  Google Scholar 

  • Horrocks NP et al (2014) Are antimicrobial defences in bird eggs related to climatic conditions associated with risk of trans-shell microbial infection? Front Zool 11:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Hubalek Z (1978) Coincidence of fungal species with birds. Ecology 59:438–442

    Article  Google Scholar 

  • Gautron J, Hincke MT, Garcia-Ruiz JM, Dominguez J, Nys Y (1997) Ovotransferrin and lysozyme are constituent in eggshell matrix. In: Proceedings VII European symposium, Pozhaus, Poland, pp 66–75

  • Gautron J, Réhault-Godbert S, Nys Y, Mann K, Righetti PG, Bain M, Immerseel FV (2011) Use of high-throughput technology to identify new egg components. In: Nys Y, Bain M, Van Immerseel F (eds) Improving the safety and quality of eggs and egg products Volume 1: Egg chemistry, production and consumption. Woodhead Publishing, Cambridge, pp 133–150

    Chapter  Google Scholar 

  • Jacob J, Schoffeniels E, Balthazart J (1979) Sex differences in the chemical composition of uropygial gland waxes in domestic ducks. Biochem Syst Ecol 7:149–153

    Article  CAS  Google Scholar 

  • Jacob J, Zisweiler V (1982) The uropygial gland. In: Farner DS, King JR, Parkes KC (eds) Avian Biology, Vol 6. Academic, New York, pp 199–314

    Chapter  Google Scholar 

  • Javŭrková V, Albrecht T, Mrázek J, Kreisinger J (2014) Effect of intermittent incubation and clutch covering on the probability of bacterial trans-shell infection. Ibis 156:374–386

    Article  Google Scholar 

  • Jones D (1988) Hatching success of the Australian brush-turkey Alectura lathami in south-east Queensland. Emu 88(4):260–262

    Article  Google Scholar 

  • Kim JW, Slavik MF (1996) Changes in eggshell surface microstructure after washing with cetylpyridinium chloride or trisodium phosphate. J Food Protect 59:859–863

    CAS  Google Scholar 

  • Krištofík J, Darolová A, Majtan J, Okuliarová M, Zeman M, Hoi H (2014) Do females invest more into eggs when males sing more attractively? Postmating sexual selection strategies in a monogamous reed passerine. Ecol Evol 4:1328–1339

    Article  PubMed  PubMed Central  Google Scholar 

  • Lafuma L, Lambrechts MM, Raymond M (2001) Aromatic plants in bird nests as a protection against blood-sucking flying insects? Behav Processes 56:113–120

    Article  PubMed  Google Scholar 

  • Law-Brown J, Meyers PR (2003) Enterococcus phoeniculicola sp. nov., a novel member of the enterococci isolated from the uropygial gland of the red-billed Woodhoopoe, Phoeniculus purpureus Int J Syst Evol Microbiol 53:683–685

    Article  PubMed  CAS  Google Scholar 

  • Lee WY, Kim M, Jablonski PG, Choe JC, Lee SL (2014) Effect of incubation on bacterial communities of eggshells in a temperate bird, the Eurasian magpie (Pica pica). PLoS One 9(8):e103959

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li-Chan EC, Kim HO (2008) Structure and chemical composition of eggs. In: Mine Y (ed) Egg bioscience and biotechnology. Wiley, New Jersey, pp 1–96

  • Lomholt JP (1976) Relationship of weight loss to ambient humidity of bird eggs during incubation. J Comp Physiol 105:189–196

    Article  Google Scholar 

  • Lorenz FW, Starr PB, Starr MP, Ogasawara FX (1952) The development of Pseudomonas spoilage in shell eggs penetration through the shell. J Food Sci 17:351–360

    Article  Google Scholar 

  • Madigan MT, Martinko JM, Dunlap PV, Clark DP (2005) Brock biology of microorganisms. Benjamin Cummings, New York

    Google Scholar 

  • Mann K (2007) The chicken egg white proteome. Proteomics 7:3558–3568

    Article  PubMed  CAS  Google Scholar 

  • Mann K, Maček B, Olsen JV. Proteomic analysis of the acid-soluble organic matrix of the chicken calcified eggshell layer. 2006;6:3801–10

  • Martin TE (1995) Avian life history evolution in relation to nest sites, nest predation, and food. Ecol Monogr 65:101–127

    Article  Google Scholar 

  • Martín-Platero AM, Valdivia E, Ruíz-Rodríguez M et al (2006) Characterization of antimicrobial substances produced by Enterococcus faecalis MRR 10-3, isolated from the uropygial gland of the hoopoe Upupa epops. Appl Environ Microbiol 72:4245–4249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martín-Vivaldi M et al (2014) Special structures of hoopoe eggshells enhance the adhesion of symbiont-carrying uropygial secretion that increase hatching success. J Anim Ecol 83(6):1289–1301

    Article  PubMed  Google Scholar 

  • McComb WC, Noble RE (1981) Microclimates of nest boxes and natural cavities in bottomland hardwoods. J Wildl Manage 45:284–289

    Article  Google Scholar 

  • McDougall P, Milne H (1978) The anti-predator function of defecation on their own eggs by female Eiders. Wildfowl. 29:29

    Google Scholar 

  • Mennerat A, Perret P, Lambrechts MM (2009a) Local individual preferences for nest materials in a passerine bird. Plos One 4:e5104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mennerat A, Perret P, Bourgault P, Blondel J, Gimenez O, Thomas WD, Heeb P, Lambrechts MM (2009b) Aromatic plants in nests of blue tits: positive effects on nestlings. Anim Behav 77:569–574

    Article  Google Scholar 

  • Menon CK, Menon J (2000) Avian epidermal lipids: functional considerations and relationship to feathering. Am Zool 40:540–552

    CAS  Google Scholar 

  • Mikhailov KE (1997) Avian eggshells: an atlas of scanning electron micrographs. British Ornithologists’ Club, London

    Google Scholar 

  • Mills TK, Lombardo MP, Thorpe PA (1999) Microbial colonization of the cloacae of nestling tree swallows. Auk 116:947–956

    Article  Google Scholar 

  • Mine Y, Oberle C, Kassaify Z (2003) Eggshell matrix proteins as defense mechanism of avian eggs. J Agri Food Chem 51:249–253

    Article  CAS  Google Scholar 

  • Morosinotto C, Ruuskanen S, Thomson RL, Siitari H, Korpimäki E, Laaksonen T (2013) Predation risk affects the levels of maternal immune factors in avian eggs. J Avian Biol 44:427–436

    Google Scholar 

  • Nelson B (1978) The Sulidae: Gannets and Boobies. Oxford University Press, Oxford

    Google Scholar 

  • Packard G, Packard M (1980) Evolution of the cleidoic egg among reptilian antecedents of birds. Integr Comp Biol 20:351

    Google Scholar 

  • Padron M (1990) Salmonella typhimurium penetration through the eggshell of hatching eggs. Avian Dis 34:463–465

    Article  PubMed  CAS  Google Scholar 

  • Peralta-Sanchez JM, Møller AP, Martin-Platero AM, Soler JJ (2010) Number and colour composition of nest lining feathers predict eggshell bacterial community in barn swallow nests: an experimental study. Funct Ecol 24:426–433

    Article  Google Scholar 

  • Peralta-Sánchez JM et al (2012) Avian life history traits influence eggshell bacterial loads: a comparative analysis. Ibis 154:725–737

    Article  Google Scholar 

  • Peralta-Sánchez JM, Soler JJ, Martín-Platero AM, Knight R, Martínez-Bueno M, Møller AP (2014) Eggshell bacterial load is related to antimicrobial properties of feathers lining barn swallow nests. Microb Ecol 67:480–487

    Article  PubMed  CAS  Google Scholar 

  • Pinowski J, Barkowska M, Kruszewicz AH, Kruszewicz AG (1994) The causes of the mortality of eggs and nestlings of Passer sp. J Biosci 19:441–451

    Article  Google Scholar 

  • Pires AB, Belo FA, Rabaça EJ (2012) Aromatic plants in Eurasian Blue Tit nests: the ‘nest protection hypothesis’ revisited. Wilson J Ornithol 124:162–165

    Article  Google Scholar 

  • Rahn H, Ackerman R, Paganelli C (1977) Humidity in the avian nest and egg water loss during incubation. Physiol Zool 50:269–283

    Article  Google Scholar 

  • Rehault-Godbert S, Herve-Grepinet V, Gautron J, Cabau C, Nys Y, Hincke M (2011) Molecules involved in chemical defence of the chicken egg. In: Nys Y, Bain M, Van Immerseel F (eds) Improving the safety and quality of eggs and egg products volume 1: egg chemistry, production and consumption. Woodhead Publishing, Cambridge, pp 183–208

    Chapter  Google Scholar 

  • Ricklefs RE (1969) An analysis of nesting mortality in birds. Smith Contr Zool 9:1–48

    Article  Google Scholar 

  • Rose M, Hincke MT (2009) Protein constituents of the eggshell: eggshell-specific matrix proteins. Cell Molec Life Sci 66:2707–2719

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-de-Castañeda R, Vela AI, Lobato E, Briones V, Moreno J (2011) Bacterial loads on eggshells of the pied flycatcher: environmental and maternal factors. Condor 113:200–208

    Article  Google Scholar 

  • Martín-Vivaldi M, Peña A, Peralta-Sánchez JM, Sánchez L, Ananou S, Ruiz-Rodríguez M, Soler JJ (2010) Antimicrobial chemicals in hoopoe preen secretions are produced by symbiotic bacteria. Proc Biol Soc 277:123–130

    Article  CAS  Google Scholar 

  • Ruiz-Rodríguez M, Valdivia E, Soler JJ, Martín-Vivaldi M, Martin-Platero AM, Martínez-Bueno M (2009) Symbiotic bacteria living in the hoopoe’s uropygial gland prevent feather degradation. J Exp Biol 212:3621–3626

    Article  PubMed  Google Scholar 

  • Ruiz-Rodríguez M, Tomás G, Martín-Gálvez D, Ruiz-Castellano C, Soler JJ. (2014) Bacteria and the evolution of honest signals. The case of ornamental throat feathers in spotless starlings. Funct Ecol. doi:10.1111/1365-2435.12376

  • Saino N, Dall’ara P, Martinelli R, Moller AP (2002) Early maternal effects and antibacterial immune factors in the eggs nestlings and adults of the barn swallow. J Evol Biol 15:735–743

    Article  CAS  Google Scholar 

  • Shawkey MD, Pillai SR, Hill GE (2003) Chemical warfare? Effects of uropygial oil on feather-degrading bacteria. J Avian Biol 34:345–349

    Article  Google Scholar 

  • Shawkey M, Kosciuch K, Liu M, Rohwer F, Loos E, Wang J, Beissinger S (2008) Do birds differentially distribute antimicrobial proteins within clutches of eggs? Behav Ecol 19:920–927

    Article  Google Scholar 

  • Shawkey MD, Firestone MK, Brodie EL, Beissinger SR (2009) Avian incubation inhibits growth and diversification of bacterial assemblages on eggs. PLoS One 4:e4522

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singleton DR, Harper RG (1998) Bacteria in old house wren nests. J Field Ornithol 69:71–74

    Google Scholar 

  • Soler JJ et al (2008) Symbiotic association between hoopoes and antibiotic-producing bacteria that live in their uropygial gland. Funct Ecol 22:864–871

    Article  Google Scholar 

  • Soler JJ, Martín-Vivaldi M, Peralta-Sánchez JM, Ruiz-Rodríguez M (2010) Antibiotic-producing bacteria as a possible defence of birds against pathogenic microorganisms. Open Ornithol J3:93–100

    Article  Google Scholar 

  • Sparks NHC (1994) Shell accessory materials: structure and function. In: Board RG, Fuller R (eds) Microbiology of the avian egg. Springer, USA, pp 25–42

    Chapter  Google Scholar 

  • Sparks NHC, Board RG (1984) Cuticle, shell porosity and water uptake through hens’ eggshells. Br Poult Sci 25:267–276

    Article  Google Scholar 

  • Stein LR, Badyaev AV (2011) Evolution of eggshell structure during rapid range expansion in a passerine bird. Funct Ecol 25:1215–1222

    Article  Google Scholar 

  • Booth DT, Thompson MB (1991) A comparison of reptilian eggs with those of megapode birds. In: Deeming DC et al. (eds.) Egg incubation: its effects on embryonic development in birds and reptiles. Cambridge University Press, Cambridge, pp 325–344

    Book  Google Scholar 

  • Veiga PJ, Polo V, Viñuela J (2006) Nest green plants as a male status signal and courtship display in the spotless starling. Ethology 112:196–204

    Article  Google Scholar 

  • Vincze O, Vágási CI, Kovács I, Galván I, Pap PL (2013) Sources of variation in uropygial gland size in European birds. Biol J Linnean Soc 110:543–563

    Article  Google Scholar 

  • Walls JG, Hepp GR Eckhardt LG (2011) Effects of incubation delay on viability and microbial growth of Wood Duck (Aix sponsa) eggs. Auk 128:663–670

    Article  Google Scholar 

  • Walsberg GE (1980) The gaseous microclimate of the avian nest during incubation. Am Zool 20:363–372

    Article  Google Scholar 

  • Wang J, Firestone M, Beissinger S (2011) Microbial and environmental effects on avian egg viability: do tropical mechanisms act in a temperate environment? Ecology 92:1137–1145

    Article  PubMed  Google Scholar 

  • Webb DR (1987) Thermal tolerance of avian embryos: a review. Condor 89:874–898

    Article  Google Scholar 

  • Wedral EM, Vadehra DU, Baker RC (1974) Chemical composition of the cuticle and inner and outer memebranes from eggs of Gallus gallus. Comp Biochem Physiol 47B:231–240

    Google Scholar 

  • Wellman-Labadie O, Picman J, Hincke M (2008) Antimicrobial activity of the Anseriform outer eggshell and cuticle. Comp Biochem Phys B Biochem Mol Biol 149:640–649

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks to Juan J. Soler and Kevin Matson for their useful comments to previous versions of this manuscript. This work was supported by Human Frontier Science Program Young Investigator’s grant RGY-0083 and AFOSR FA9550-13-1-0222, both to M.D.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liliana D’Alba.

Additional information

Communicated by E. Matthysen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Alba, L., Shawkey, M.D. Mechanisms of antimicrobial defense in avian eggs. J Ornithol 156 (Suppl 1), 399–408 (2015). https://doi.org/10.1007/s10336-015-1226-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-015-1226-1

Keywords

Navigation