Skip to main content

Advertisement

Log in

To fledge or not to fledge: factors influencing the number of eggs and the eggs-to-fledglings rate in White Storks Ciconia ciconia in an agricultural environment

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Numerous studies have explored the relationship between environmental factors and White Stork Ciconia ciconia reproduction, mainly expressing breeding success as the number of fledglings. Nonetheless, one of the most critical life-history stages in birds falls between egg-laying and fledging, and identifying the factors causing offspring mortality during this period provides valuable knowledge. We quantified the number of laid White Stork eggs and the proportion of eggs that turned into fledglings in an agriculture-dominated region in Eastern Germany. Moreover, we identified the factors among land cover, weather and arrival dates, which influenced these two reproductive measures the most, and analysed the monitored mortality causes. On average, four eggs were laid per nest, and 57.8 % of the eggs turned into fledglings. The number of eggs laid was best explained by the negative effect of the arrival date of the second stork, while the percentage of eggs that turned into fledglings was more dependent on weather: most important parameters were mean temperature in the fifth and seventh weeks after the assumed breeding start (i.e. around the assumed hatching date), and the number of consecutive days with precipitation when nestlings are assumed to be approximately 3 weeks old. In an agricultural environment, weather effects that potentially disturb food availability might be more important than effects directly affecting the survival of White Stork offspring. The most frequent observed mortality cause, nest fights, furthermore revealed the relevance of intraspecific competition in the study population.

Zusammenfassung

Flügge oder nicht flügge: Gelegegröße und Überlebensrate beim Weißstorch Ciconia ciconia in einer Agrarlandschaft

Zahlreiche Studien untersuchten bereits den Einfluss von Umweltfaktoren auf die Reproduktion des Weißstorchs Ciconia ciconia, wobei der Bruterfolg meist als Anzahl von flüggen Jungen definiert wurde. Gerade im Hinblick auf die vorhergesagte Zunahme von Umweltveränderungen ist es aber von besonderer Bedeutung, auch Faktoren zu identifizieren, die bereits in einem der kritischsten Entwicklungsstadien bei Vögeln, der Phase zwischen Eiablage und Flüggewerden, für Verluste sorgen. In einer stark von Landwirtschaft geprägten ostdeutschen Region erfassten wir über einen langen Zeitraum die Anzahl gelegter Eier und den Anteil derer, aus denen erfolgreich Junge ausflogen. Wir bestimmten die wichtigsten Faktoren, die diese beiden Brutparameter beeinflussten, indem wir Landnutzung, Wetter und Ankunftsdaten als Prädiktoren verwendeten. Zusätzlich quantifizierten wir die erfassten Verlustumstände von Eiern und Nestlingen.Durchschnittlich wurden pro Nest vier Eier gezählt. Im Mittel gingen aus 57.8 % der Eier flügge Jungstörche hervor. Die Anzahl der gelegten Eier wurde am besten durch das Ankunftsdatum des zweiten Storchs am Nest erklärt, während der Anteil der Eier, aus denen flügge Jungstörche hervorgingen, vor allem von Wetterbedingungen abhing. Wichtigste Wetterfaktoren waren die mittlere Temperatur rund um den geschätzten Schlupfzeitpunkt (in den Wochen 5 und 7 nach dem geschätzten Brutbeginn) sowie die Anzahl aufeinanderfolgender Tage mit Niederschlag im geschätzten Nestlingsalter von drei Wochen (neun Wochen nach dem geschätzten Brutbeginn). Aufgrund unserer Beobachtungen vermuten wir, dass in einem landwirtschaftlich geprägten Gebiet die Wettereffekte, die potentiell die Nahrungsverfügbarkeit beeinflussen, wichtiger sind als die Effekte, die sich direkt auf das Überleben des Weißstorchennachwuchses auswirken. Die häufigste Mortalitätsursache, Nestkämpfe, wies darüber hinaus auf die Relevanz von intraspezifischer Konkurrenz in der beobachteten Population hin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. This led to the exclusion of the following variables: for Eggs: the arrival date of the first stork, Tmean in arrival weeks 1, 10, consecP in arrival weeks 1, 2, 9, 12, maxP in arrival weeks 3, 4, 5, 8, and the land cover class “non-irrigated arable land”; for EFR: arrival dates of both storks, Tmean in arrival weeks 9, 12, maxP in arrival weeks 4, 12, consecP in arrival weeks 1, 2, 3, 5, 8, and the land cover class “Non-irrigated arable land”.

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723

    Google Scholar 

  • Alonso JC, Alonso JA, Carrascal LM (1991) Habitat selection by foraging white storks, Ciconia ciconia, during the breeding season. Can J Zool 69:1957–1962

    Google Scholar 

  • Alonso JA, Alonso JC, Carrascal LM, Muñoz-Pulido R (1994) Flock size and foraging decisions in central place foraging white storks, Ciconia Ciconia. Behaviour 129:279–292

    Google Scholar 

  • Anctil A, Franke A, Bêty J (2014) Heavy rainfall increases nestling mortality of an arctic top predator: experimental evidence and long-term trend in peregrine falcons. Oecologia 174:1033–1043

    PubMed Central  PubMed  Google Scholar 

  • Antczak M, Konwerski S, Grobelny S, Tryjanowski P (2002) The food composition of immature and non-breeding white storks in Poland. Waterbirds 25:424–428

    Google Scholar 

  • Archaux F, Balança G, Henry P, Zapata G (2004) Wintering of white storks in Mediterranean France. Waterbirds 27:441–445

    Google Scholar 

  • BAG Weißstorchschutz im NABU (2013) Mitteilungsblatt 105

  • Baos R, Jovani R, Serrano D, Tella JL, Hiraldo F, Iwaniuk A (2012) Developmental exposure to a toxic spill compromises long-term reproductive performance in a wild, long-lived bird: the white stork (Ciconia ciconia). PLoS ONE 7(1-7):e34716

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barbraud C, Barbraud JC (1999) Is there age assortative mating in the european white stork? Waterbirds Int J Waterbird Biol 22:478–481

    Google Scholar 

  • Barbraud C, Barbraud JC, Barbraud M (1999) Population dynamics of the white stork Ciconia ciconia in western France. Ibis 141:469–479

    Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2013) lme4: Linear mixed-effects models using Eigen and S4. R package version 1:0–4. http://CRAN.R-project.org/package=lme4

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377

    PubMed Central  PubMed  Google Scholar 

  • Berthold P, van dem Bossche W, Leshem Y, Kaatz C, Kaatz M, Nowak E, Querner U (1997) Satelliten-Telemetrie beim Weißstorch Ciconia ciconia: Wanderung eines Ost-Storchs in den Süd-Jemen. J Ornithol 138:546–549

    Google Scholar 

  • Berthold P, Kaatz M, Querner U (2004) Long-term satellite tracking of white stork (Ciconia ciconia) migration: constancy versus variability. J Ornithol 145:356–359

    Google Scholar 

  • Bionda R, Brambilla M (2012) Rainfall and landscape features affect productivity in an alpine population of Eagle Owl Bubo bubo. J Ornithol 153:167–171

    Google Scholar 

  • Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135

    PubMed  Google Scholar 

  • Butchart SHM, Walpole M, Collen B, van Strien A, Scharlemann JPW, Almond REA, Baillie JEM, Bomhard B, Brown C, Bruno J, Carpenter KE, Carr GM, Chanson J, Chenery AM, Csirke J, Davidson NC, Dentener F, Foster M, Galli A, Galloway JN, Genovesi P, Gregory RD, Hockings M, Kapos V, Lamarque J, Leverington F, Loh J, McGeoch MA, McRae L, Minasyan A, Morcillo MH, Oldfield TEE, Pauly D, Quader S, Revenga C, Sauer JR, Skolnik B, Spear D, Stanwell-Smith D, Stuart SN, Symes A, Tierney M, Tyrrell TD, Vie J, Watson R (2010) Global biodiversity: indicators of recent declines. Science 328:1164–1168

    CAS  PubMed  Google Scholar 

  • Butler S, Boccaccio L, Gregory R, Vorisek P, Norris K (2010) Quantifying the impact of land-use change to European farmland bird populations. Agric Ecosyst Environ 137:348–357

    Google Scholar 

  • Carrascal L, Bautista L, Lázaro E (1993) Geographical variation in the density of the white stork Ciconia ciconia in Spain: influence of habitat structure and climate. Biol Conserv 65:83–87

    Google Scholar 

  • CLC2000 (2004) CORINE Land Cover; Federal Environment Agency. DLR-DFD

  • CLC2006 (2009) CORINE Land Cover; Federal Environment Agency. DLR-DFD

  • Crawley MJ (2007) The R book. Wiley, Chichester

    Google Scholar 

  • Creutz G (1988) Der Weißstorch. Westarp Wissenschaften, Hohenwarsleben

    Google Scholar 

  • Crick HQP (2004) The impact of climate change on birds. Ibis 146:48–56

    Google Scholar 

  • Cubasch U, Kadow C (2011) Global climate change and aspects of regional climate change in the Berlin–Brandenburg region. Erde 142:3–20

    Google Scholar 

  • Dallinga JH, Schoenmakers S (1987) Regional decrease in the number of white storks (Ciconia ciconia) in relation to food resources. Colon Waterbird 10:167–177

    Google Scholar 

  • Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM (2011) Beyond predictions: biodiversity conservation in a changing climate. Science 332:53–58

    CAS  PubMed  Google Scholar 

  • Del Hoyo J, Elliott A, Sargatal J (1992) Handbook of the birds of the world. Lynx, Barcelona

    Google Scholar 

  • Denac D (2006a) Intraspecific exploitation competition as cause for density dependent breeding success in the white stork. Waterbirds 29:391–394

    Google Scholar 

  • Denac D (2006b) Resource-dependent weather effect in the reproduction of the white stork Ciconia ciconia. Ardea 94:233–240

    Google Scholar 

  • Djerdali S, Tortosa FS, Hillstrom L, Doumandji S (2008) Food supply and external cues limit the clutch size and hatchability in the white stork Ciconia ciconia. Acta Ornithol 43:145–150

    Google Scholar 

  • Djikstra C, Vuurstreen L, Daan S, Masman D (1982) Clutch size and laying date in the kestrel Falco tinnunculus: effect of supplementary food. Ibis 124:210–213

    Google Scholar 

  • Donald PF, Sanderson FJ, Burfield IJ, van Bommel FP (2006) Further evidence of continent-wide impacts of agricultural intensification on European farmland birds, 1990–2000. Agric Ecosyst Environ 116:189–196

    Google Scholar 

  • Dormann C, Purschke O, Garcia Marquez JR, Lautenbach S, Schröder B (2008) Components of uncertainty in species distribution analysis: a case study of the great grey shrike. Ecol Lett 89:3371–3386

    Google Scholar 

  • Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T, McClean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Zurell D, Lautenbach S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46

    Google Scholar 

  • DWD: Deutscher Wetterdienst/German Weather Service (2013) Daten der Klimastationen des Deutschen Wetterdienstes. Offenbach

  • Dziewiaty K (1992) Nahrungsökologische Untersuchungen am Weiβstorch Ciconia ciconia in der Dannenberger Elbmarch (Niedersachsen). Vogelwelt 113:133–144

    Google Scholar 

  • Dziewiaty K (2005) Nahrungserwerbsstrategien, Ernährungsökologie und Populationsdichte des Weißstorchs (Ciconia ciconia, L. 1758) - untersucht an der Mittleren Elbe und im Drömling. Ad fontes Hamburg

    Google Scholar 

  • Edwards C, Bohlen P (1996) Biology and ecology of earthworms. Chapman and Hall, London

    Google Scholar 

  • Eeva T, Lehikoinen E, Ronka M, Lummaa V, Currie D (2002) Different responses to cold weather in two pied flycatcher populations. Ecography 25:705–713

    Google Scholar 

  • Forbes S, Mock DW (2000) A tale of two strategies: life-history aspects of family strife. Condor 102:23–34

    Google Scholar 

  • Fulín M, Jerzak L, Sparks TH, Tryjanowski P (2009) Relationship between arrival date, hatching date and breeding success of the white stork (Ciconia ciconia) in Slovakia. Biologia 64:361–364

    Google Scholar 

  • Gadenne H, Cornulier T, Eraud C, Barbraud J, Barbraud C (2014) Evidence for density-dependent habitat occupancy at varying scales in an expanding bird population. Popul Ecol 56:493–506

    Google Scholar 

  • Gaines KF, Bryan AL Jr, Dixon PM (2000) The effects of drought on foraging habitat selection of breeding Wood Storks in Coastal Georgia. Waterbirds 23:64–73

    Google Scholar 

  • Germer SJ, Kaiser K, Bens O, Hüttl RF (2011) Water balance changes and responses of ecosystems and society in the Berlin–Brandenburg region—a review. Erde 142:65–95

    Google Scholar 

  • Gerstengarbe F, Badeck F, Hattermann F, Krysanova V, Lahmer W, Lasch P, Stock M, Suckow F, Wechsung F, Werner PC (2003) Studie zur klimatischen Entwicklung im Land Brandenburg bis 2055 und deren Auswirkungen auf den Wasserhaushalt, die Forst- und Landwirtschaft sowie die Ableitung erster Perspektiven, Potsdam

  • Glutz von Blotzheim and Wassmann (2004) Handbuch der Vögel Mitteleuropas. Vogelzug, Wiebelsheim

    Google Scholar 

  • Gordo O (2007) Why are bird migration dates shifting? A review of weather and climate effects on avian migratory phenology. Clim Res 35:37–58

    Google Scholar 

  • Gordo O, Sanz JJ (2006) Climate change and bird phenology: a long-term study in the Iberian Peninsula. Glob Change Biol 12:1993–2004

    Google Scholar 

  • Gordo O, Sanz JJ, Lobo JM (2007) Spatial patterns of white stork (Ciconia ciconia) migratory phenology in the Iberian Peninsula. J Ornithol 148:293–308

    Google Scholar 

  • Gordo O, Tryjanowski P, Kosicki JZ, Fulín M, Both C (2013) Complex phenological changes and their consequences in the breeding success of a migratory bird, the white stork Ciconia ciconia. J Anim Ecol 82:1072–1086

    PubMed  Google Scholar 

  • Grishchenko V (2004) Number dynamics of the white stork in Ukraine in 1994–2003. Berkut 13:38–61

    Google Scholar 

  • Grosbois V, Gimenez O, Gaillard J, Pradel R, Barbraud C, Clobert J, Møller AP, Weimerskirch H (2008) Assessing the impact of climate variation on survival in vertebrate populations. Biol Rev 83:357–399

    CAS  PubMed  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Google Scholar 

  • Hamann J, Cooke F (1989) Intra-seasonal decline of clutch size in Lesser Snow Geese. Oecologia 79:83–90

    Google Scholar 

  • Hansen J, Sato M, Ruedy R (2012) Perception of climate change. Proc Natl Acad Sci 109:E2415

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hattermann FF, Weiland M, Huang S, Krysanova V, Kundzewicz ZW (2011) Model-supported impact assessment for the water sector in central Germany under climate change—a case study. Water Resour Manag 25:3113–3134

    Google Scholar 

  • Hulme PE (2005) Adapting to climate change: is there scope for ecological management in the face of a global threat? J Appl Ecol 42:784–794

    Google Scholar 

  • Huntley B, Green RE, Collingham YC, Willis SG (2007) A climatic atlas of European breeding birds. Lynx Edicions, Barcelona

    Google Scholar 

  • Hušek J, Adamík P, Albrecht T, Cepák J, Kania W, Mikolášková E, Tkadlec E, Stenseth NC (2013) Cyclicity and variability in prey dynamics strengthens predator numerical response: the effects of vole fluctuations on white stork productivity. Popul Ecol 55:363–375

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change), Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds) (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. a special report of working groups I and II of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change), Stocker T, Qin D, Plattner G, Tignor M, Allen S, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (2013) Climate change 2013: the physical science basis. contribution of working group I to the fifth assessment report of the intergovern—mental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Janiszewski T, Minias P, Wojciechowski Z (2013) Reproductive consequences of early arrival at breeding grounds in the white stork Ciconia ciconia. Bird Study 60:280–284

    Google Scholar 

  • Jentsch A, Beierkuhnlein C (2008) Research frontiers in climate change: effects of extreme meteorological events on ecosystems. CR Geosci 340:621–628

    Google Scholar 

  • Johst K, Brandl R, Pfeifer R (2001) Foraging in a patchy and dynamic landscape: human land use and the white stork. Ecol Appl 11:60–69

    Google Scholar 

  • Jovani R, Tella JL (2004) Age-related environmental sensitivity and weather mediated nestling mortality in white storks Ciconia ciconia. Ecography 27:611–618

    Google Scholar 

  • Kanyamibwa S, Schierer A, Pradel R, Lebreton JD (1990) Changes in adult annual survival rates in a western European population of the white stork Ciconia ciconia. Ibis 132:27–35

    Google Scholar 

  • Kanyamibwa S, Bairlein F, Schierer A (1993) Comparison of survival rates between populations of the white stork Ciconia ciconia in Central Europe. Ornis Scand 24:297–302

    Google Scholar 

  • Klosowski G, Klosowski T, Zielinski P (2002) A case of parental infanticide in the black stork Ciconia nigra. Avian Sci 2:56–59

  • Kosicki JZ (2004) Does arrival date influence autumn departure of the white stork Ciconia ciconia? Ornis Fenn 81(81):91–95

    Google Scholar 

  • Kosicki JZ (2010) Reproductive success of the white stork Ciconia ciconia population in intensively cultivated farmland in western Poland. Ardeola 57:243–255

    Google Scholar 

  • Kosicki JZ (2012) Effect of weather conditions on nestling survival in the white stork Ciconia ciconia population. Ethol Ecol Evol 24:140–148

    Google Scholar 

  • Kosicki JZ, Indykiewicz P (2011) Effects of breeding date and weather on nestling development in white storks Ciconia ciconia. Bird Study 58:178–185

    Google Scholar 

  • Kosicki JZ, Profus P, Dolata PT, Tobółka M (2006) Food composition and energy demand of the white stork Ciconia ciconia breeding population. In: the white stork in Poland: studies in biology, ecology and conservation. Bogucki Wydawnictwo Naukowe, Poznań

    Google Scholar 

  • Latus C, Kujawa K (2005) The effect of land cover and fragmentation of agricultural landscape on the density of white stork (Ciconia ciconia L.) in Brandenburg, Germany. Pol J Ecol 53:535–543

    Google Scholar 

  • Ludwig B (1996) 30 Jahre Weißstorchbestandserfassung im Land Brandenburg und Berlin. In: Kaatz C, Kaatz Me (eds) Jubiläumsband Weißstorch/Jubilee Edition White Stork. Tagungsbandreihe des Storchenhofes Loburg, Loburg, pp 81–88

  • Massemin-Challet S, Gendner J, Samtmann S (2006) The effect of migration strategy and food availability on white stork Ciconia ciconia breeding success. Ibis 148:503–508

    Google Scholar 

  • McDonald PG, Olsen PD, Cockburn A (2004) Weather dictates reproductive success and survival in the Australian brown falcon Falco berigora. J Anim Ecol 73:683–692

    Google Scholar 

  • Møller AP, Flensted-Jensen E, Klarborg K, Mardal W, Nielsen JT (2010) Climate change affects the duration of the reproductive season in birds. J Anim Ecol 79:777–784

    PubMed  Google Scholar 

  • Monadjem AR, Bamford AJ (2009) Influence of rainfall on timing and success of reproduction in marabou storks Leptoptilos crumeniferus. Ibis 151:344–351

    Google Scholar 

  • Moreno J (2012) Parental infanticide in birds through early eviction from the nest: rare or under-reported? J Avian Biol 43:43–49

    Google Scholar 

  • Moritzi M, Maumary L, Schmid D, Steiner I, Vallotton L, Spaar R, Biber O (2001) Time budget, habitat use and breeding success of white storks Ciconia ciconia under variable foraging conditions during the breeding season in Switzerland. Ardea 89:457–470

    Google Scholar 

  • Murphy MT (1986) Temporal components of reproductive variability in Eastern kingbirds (Tyrannus tyrannus). Ecology 67:1483

    Google Scholar 

  • Nevoux M, Barbraud J, Barbraud C (2008) Breeding experience and demographic response to environmental variability in white storks. Condor 110:55–62

    Google Scholar 

  • Newton I (1998) Population limitation in birds. Academic Press, San Diego

    Google Scholar 

  • Nowakowski J (2003) Habitat structure and breeding parameters of the white stork Ciconia ciconia the case of the kolno upland (NE Poland). Acta Ornithol 38:39–46

    Google Scholar 

  • O’Connor RJ (1984) The growth and development of birds. Wiley, London

    Google Scholar 

  • Olias P, Gruber AD, Boehmer W, Hafez HM, Lierz M (2010) Fungal pneumonia as a major cause of mortality in white stork (Ciconia ciconia) chicks. Avian Dis 54:94–98

    PubMed  Google Scholar 

  • Olsson O, Rogers DJ (2009) Predicting the distribution of a suitable habitat for the white stork in Southern Sweden: identifying priority areas for reintroduction and habitat restoration. Anim Conserv 12:62–70

    Google Scholar 

  • Orlowsky B, Gerstengarbe F, Werner PC (2008) A resampling scheme for regional climate simulations and its performance compared to a dynamical RCM. Theor Appl Climatol 92:209–223

    Google Scholar 

  • Oropesa A, Gravato C, Guilhermino L, Soler F (2013) Antioxidant defences and lipid peroxidation in wild white storks, Ciconia ciconia, from Spain. J Ornithol 154:971–976

    Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Google Scholar 

  • Pearce J, Ferrier S (2001) The practical value of modelling relative abundance of species for regional conservation planning: a case study. Biol Conserv 98:33–43

    Google Scholar 

  • Perrins CM, McCleery RH (1989) Laying dates and clutch size in the great Tit. Wilson Bull 101:236–253

    Google Scholar 

  • Pipoly I, Bókony V, Seress G, Szabó K, Liker A (2013) Effects of extreme weather on reproductive success in a temperate-breeding songbird. PLoS ONE 8:e80033

    CAS  PubMed Central  PubMed  Google Scholar 

  • Plath L (1976) Verluste während der Zeit der Brut und Jungenaufzucht beim Weißstorch. Der Falke 23:26–28

    Google Scholar 

  • Pressey RL, Cabeza M, Watts ME, Cowling RM, Wilson KA (2007) Conservation planning in a changing world. Trends Ecol Evol 22:583–592

    PubMed  Google Scholar 

  • R Development Core Team (2013) R: a language and environment for statistical computing. R version 3.0.2 (2013-09-25). R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

  • Radović A, Tepić N (2009) Using corine land cover habitat database for the analysis of breeding bird habitat: case study of white storks (Ciconia ciconia) from northern Croatia. Biologia 64:1212–1218

    Google Scholar 

  • Redpath SM, Arroyo BE, Etheridge B, Leckie F, Bouwman K, Thirgood SJ (2002) Temperature and hen harrier productivity: from local mechanisms to geographical patterns. Ecography 25:533–540

    Google Scholar 

  • Renwick AR, Massimino D, Newson SE, Chamberlain D, Pearce-Higgins JW, Johnston A (2012) Modelling changes in species abundance in response to projected climate change. Divers Distrib 18:121–132

    Google Scholar 

  • Reupke V, Kaatz J (1994) Die Weißstorchreproduktion im Kreis Pritzwalk - eine Unwetterbilanz. In: Kaatz Ch, Kaatz Me (eds) Sachsen-Anhaltischer Storchentag, Tagungsbandreihe des Storchenhofes, Loburg, pp 34–36

  • Revermann R, Schmid H, Zbinden N, Schröder B (2012) Habitat at the mountain tops: how long can Rock Ptarmigan (Lagopus muta helvetica) survive rapid climate change in the Swiss Alps? A multiscale approach. J Ornithol 153:891–905

    Google Scholar 

  • Reyer C, Bachinger J, Bloch R, Hattermann F, Ibisch PL, Kreft S, Lasch P, Lucht W, Nowicki C, Spathelf P, Stock M, Welp M (2011) Climate change adaptation and sustainable regional development: a case study for the Federal State of Brandenburg, Germany. Reg Environ Change 12:523–542

    Google Scholar 

  • Rodgers JA, Schwikert S (1997) Breeding success and chronology of Wood Storks Mycteria americana in northern and central Florida, USA. Ibis 139:76–91

    Google Scholar 

  • Rowe L, Ludwig D, Schluter D (1994) Time, condition, and the seasonal decline of avian clutch size. Am Nat 143:698–722

    Google Scholar 

  • Sæther B, Engen S, Moller AP, Matthysen E, Adriaensen F, Fiedler W, Leivits A, Lambrechts MM, Visser ME, Anker-Nilssen T, Both C, Dhondt AA, McCleery RH, McMeeking J, Potti J, Rostad O, Thomson D (2003) Climate variation and regional gradients in population dynamics of two hole–nesting passerines. Proc R Soc Lond B 270:2397–2404

    Google Scholar 

  • Sæther BE, Sutherland WJ, Engen S (2004) Climate influences on avian population dynamics. Adv Ecol Res 35:185–209

    Google Scholar 

  • Sæther BE, Grotan V, Tryjanowski P (2006) Climate and spatio-temporal variation in the population dynamics of a long distance migrant, the white stork. J Anim Ecol:80–90

  • Sala OE (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    CAS  PubMed  Google Scholar 

  • Sasvári L, Hegyi Z (2001) Condition-dependent parental effort and reproductive performance in the white stork Ciconia ciconia. Ardea 89:281–291

    Google Scholar 

  • Scharlemann JPW, Green RE, Balmford A (2004) Land-use trends in endemic bird areas: global expansion of agriculture in areas of high conservation value. Glob Change Biol 10:2046–2051

    Google Scholar 

  • Schaub M, Pradel R, Lebreton JD (2004) Is the reintroduced white stork (Ciconia ciconia) population in Switzerland self-sustainable? Biol Conserv 119:105–114

    Google Scholar 

  • Schaub M, Kania W, Köppen U (2005) Variation of primary production during winter induces synchrony in survival rates in migratory white storks Ciconia ciconia. J Anim Ecol 74:656–666

    Google Scholar 

  • Schulz H (1998) Ciconia ciconia white stork. In: Cramp S, Simmons KE (eds) BWP update: the journal of birds of the western Palearctic, vol 2. Oxford University Press, Oxford, pp 69–105

    Google Scholar 

  • Si Bachir A, Chenchouni H, Djeddou N, Barbraud C, Céréghino R, Santoul F (2013) Using self-organizing maps to investigate environmental factors regulating colony size and breeding success of the white stork (Ciconia ciconia). J Ornithol 154:481–489

    Google Scholar 

  • Skinner WR, Jefferies RL, Carleton TJ, Rockwell RF, Abraham KF (1998) Prediction of reproductive success and failure in lesser snow geese based on early season climatic variables. Glob Change Biol 4:3–16

    Google Scholar 

  • Starck JM, Ricklefs RE (1998) Avian growth and development. Oxford University Press, New York

    Google Scholar 

  • Stokes MK, Slade NA, Blair SM (2001) Influences of weather and moonlight on activity patterns of small mammals: a biogeographical perspective. Can J Zool 79:966–972

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, de Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Townsend Peterson A, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148

    CAS  PubMed  Google Scholar 

  • Tobółka M, Sparks TH, Tryjanowski P (2012) Does the white stork Ciconia ciconia reflect farmland bird diversity? Orn Fenn 81(89):222–228

    Google Scholar 

  • Tortosa FS, Castro F (2003) Development of thermoregulatory ability during ontogeny in the white stork Ciconia ciconia. Ardeola 50:39–45

    Google Scholar 

  • Tortosa F, Máñez M, Barcell M (1995) Wintering white storks (Ciconia ciconia) in South West Spain in the years 1991 and 1992. Die Vogelwarte 17(38):41–45

    Google Scholar 

  • Tortosa FS, Redondo T (1992) Motives for parental infanticide in white storks (Ciconia ciconia). Orn Scand 23:185–189

    Google Scholar 

  • Tortosa FS, Caballero JM, Reyes-López J (2002) Effect of rubbish dumps on breeding success in the white stork in southern Spain. Waterbirds 25:39–43

    Google Scholar 

  • Tortosa FS, Pérez L, Hillström L (2003) Effect of food abundance on laying date and clutch size in the white stork Ciconia ciconia. Bird Study 50:112–115

    Google Scholar 

  • Tryjanowski P, Kuźniak S (2002) Population size and productivity of the white stork Ciconia ciconia in relation to common vole Microtus arvalis density. Ardea 90:213–217

    Google Scholar 

  • Tryjanowski P, Sparks TH, Ptaszyk J, Kosicki JZ (2004) Do white storks Ciconia ciconia always profit from an early return to their breeding grounds? Bird Study 51:222–227

    Google Scholar 

  • Tryjanowski P, Sparks TH, Jakubiec Z, Jerzak L, Kosicki JZ, Kuźniak S, Profus P, Ptaszyk J, Wuczyński A (2005) The relationship between population means and variances of reproductive success differs between local populations of white stork (Ciconia ciconia). Popul Ecol 47:119–125

    Google Scholar 

  • Tryjanowski P, Sparks TH, Profus P (2009) Severe flooding causes a crash in production of white stork (Ciconia ciconia) chicks across central and eastern Europe. Basic Appl Ecol 10:387–392

    Google Scholar 

  • Vergara P, Aguirre JI (2006) Age and breeding success related to nest position in a white stork Ciconia ciconia colony. Acta Oecol 30:414–418

    Google Scholar 

  • Vergara P, Aguirre JI, Fargallo JA, Dávila JA (2006) Nest-site fidelity and breeding success in white stork Ciconia ciconia. Ibis 148:672–677

  • Vergara P, Aguirre JI, Fernández-Cruz M (2007) Arrival date, age and breeding success in white stork Ciconia ciconia. J Avian Biol 38:573–579

    Google Scholar 

  • Vergara P, Gordo O, Aguirre JI (2010) Nest size, nest building behaviour and breeding success in a species with nest reuse: the white stork Ciconia ciconia. Ann Zool Fenn 47:184–194

    Google Scholar 

  • Verhulst S, Nilsson J (2008) The timing of birds breeding seasons: a review of experiments that manipulated timing of breeding. Philos Trans R Soc Lond B 363:399–410

    Google Scholar 

  • Vincze O, Székely T, Küpper C, AlRashidi M, Amat JA, Argüelles AT, Burgas D, Burke T, Cavitt J, Figuerola J, Shobrak M, Montalvo T, Kosztolányi A (2013) Local environment but not genetic differentiation influences biparental care in ten plover populations. PLoS ONE 8(4):e60998

  • Vondem Bussche J, Spaar R, Schmid H, Schröder B (2008) Modelling the recent and potential future spatial distribution of ring ouzel (Turdus torquatus) and blackbird (T. merula) in Switzerland. J Ornithol 149:529–544

    Google Scholar 

  • Walsh C, Mac Nally R (2013) hier.part: Hierarchical Partitioning. R package version 1:0–4. http://CRAN.R-project.org/package=hier.part

  • Wickert C, Wallschläger D, Huettmann F (2010) Spatially predictive habitat modeling of a white stork (Ciconia ciconia) population in former East Prussia in 1939. Open Ornithol J 3:1–12

    Google Scholar 

  • Zurell D, Grimm V, Rossmanith E, Zbinden N, Zimmermann N, Schröder B (2012) Uncertainty in predictions of range dynamics: black grouse climbing the Swiss Alps. Ecography 35:590–603

    Google Scholar 

  • Zurell D, Eggers U, Kaatz M, Rotics S, Sapir N, Wikelski M, Nathan R, Jeltsch F (2014) Individual-based modelling of resource competition to predict density-dependent population dynamics: a case study with white storks. Oikos. doi:10.1111/oik.01294

    Google Scholar 

Download references

Acknowledgments

This monitoring program would not have been possible without the commitment and the dedication of numerous persons, including Thomas Bich, Eckhart Held, Christoph Kaatz and Günter Stachowiak†. We furthermore want to thank Bernd Weisbach for providing his elevation truck and his time. Meteorological data were kindly provided by Fred Hattermann and Ylva Hauf from Potsdam Institute for Climate Impact Research (PIK), after authorisation of the German Weather Service (DWD). U.E. would like to further thank Rita Engemaier, Anett Schibalski, Peter Vorpahl, Damaris Zurell, and especially Susanne Stang for advice on data management, modelling and GIS, Jens Lehmann for proof reading, and three anonymous reviewers for their valuable and constructive feedback. U.E. was funded by a PhD scholarship of the Deutsche Bundesstiftung Umwelt (DBU), by a grant from the science faculty of the University of Potsdam (GFK/Mathematisch-Naturwissenschaftliche Fakultät), and also received financial support from the German Science Foundation DFG (WI 3576/1-1) for which she is grateful. We declare that this study complies with the current laws in Saxony-Anhalt, Germany.

Conflict of interest

We have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ute Eggers.

Additional information

Communicated by C. Barbraud.

Appendix 1

Appendix 1

Proportions of CORINE Land Cover classes (averaged from 2000 to 2006) in 2-km radii around White Stork nests in the former district Kalbe (Milde). ‘Agrar_extensive’ sums the classes “complex cultivation patterns” and “land principally occupied by agriculture with significant areas of natural vegetation”, while ‘forest’ pools the three classes “Broad-leaved forest”, “Coniferous forest” and “Mixed forest”.

See Table 2.

Table 2 Proportions of CORINE Land Cover classes (averaged from 2000 to 2006) in 2-km radii around White Stork nests in the former district Kalbe (Milde)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eggers, U., Arens, M., Firla, M. et al. To fledge or not to fledge: factors influencing the number of eggs and the eggs-to-fledglings rate in White Storks Ciconia ciconia in an agricultural environment. J Ornithol 156, 711–723 (2015). https://doi.org/10.1007/s10336-015-1182-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-015-1182-9

Keywords

Navigation