Skip to main content
Log in

Changes in phytohaemagglutinin skin-swelling responses during the breeding season in a multi-brooded species, the Eurasian Tree Sparrow: do males with higher testosterone levels show stronger immune responses?

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Life-history theory assumes that the fitness costs of immunity may have negative effects on reproductive success. Similarly, the immunocompetence handicap hypothesis is based on findings that testosterone (T) has immunosuppressive effects, although the basis of this hypothesis has recently been challenged. As much of the work examining the relationship between T levels and immune function has been carried out in captive-housed species, these results may not accurately reflect the situation of animals living in natural environments. To better understand the relationship between plasma T levels and immune function, studies focusing on free-living animals are needed. A previous study by our group determined the changes in both baseline and stress-induced T levels in free-living Eurasian Tree Sparrows (Passer montanus) across different annual cycle stages. In this study, we further report the phytohaemagglutinin skin-swelling (PHA) immune response in this multi-brooded species during different breeding sub-stages, and then determine the relationships between the PHA response and both baseline and stress-induced T levels. Our results show that the PHA response varied across the different sub-stages and differed significantly between the first and second brood stage. Furthermore, T levels in male Tree Sparrows are positively correlated with the PHA response during the breeding season, whereas this relationship is negative in females, suggesting that the biological function of T differs between the sexes. Therefore, our results suggest that free-living animals have evolved the ability to orchestrate trade-offs between reproduction and immune functions based on changes in physiology and the environment, which should provide further opportunities to study the flexibility and plasticity of physiological and ecological adaptations in natural environments.

Zusammenfassung

Unterschiedliche Immunantworten anhand Phytohaemagglutinin-Hautschwellung bei Feldsperlingen während der Brutzeit: Zeigen Männchen mit höheren Testosteronwerten stärkere Immunantworten?

Die “Life-history”-Theorie besagt, dass die Kosten für Fitness des Immunsystems negative Auswirkungen auf den Reproduktionserfolg haben können. In gleicher Weise basiert die Immunkompetenz-Handicap-Hypothese darauf, dass Testosteron (T) immunsuppressive Effekte hat, wobei die Basis dieser Hypothese jüngst in Frage gestellt wurde. Da die meisten Arbeiten den Zusammenhang zwischen T-Levels und Immunfunktion an Arten in Gefangenschaft untersucht wurden, spiegeln die dort erzielten Ergebnisse nicht unbedingt die Situation wild lebender Tiere in ihren natürlichen Lebensräumen wider. Um den Zusammenhang zwischen T-Werten im Blutplasma und der Immunfunktion besser zu verstehen, sind Studien an frei lebenden Tieren notwendig. Eine frühere Studie unserer Arbeitsgruppe bestimmte die Veränderungen sowohl der Basis-Testosteronwerte als auch der stressinduzierten Werte bei freilebenden Feldsperlingen zwischen verschiedenen Phasen im Jahreszyklus. In der vorliegenden Studie dokumentieren wir die Immunantwort durch Phytohämagglutinin Hautschwellung (PHA) von Feldsperlingen während unterschiedlicher Brutstadien und bestimmten anschließend die Verhältnisse zwischen der PHA Immunantwort und den Basis- wie stressinduzierten T-Werte. Die Ergebnisse zeigen, dass die PHA Antwort zwischen verschiedenen Brutstadien variiert und sich signifikant zwischen der ersten und zweiten Brutphase unterscheidet. Darüber hinaus waren die T-Werte der Männchen positive korreliert mit der PHA Anwort während der Brutsaison, wohingegen das Verhältnis bei den Weibchen negativ ist. Das deutet auf eine unterschiedliche biologische Funktion von Testosteron für die Geschlechter hin. Daher weisen unsere Ergebnisse daraufhin, dass wildlebende Tiere die Fähigkeit entwickelt haben, den Konflikt zwischen Reproduktion und Immunfunktionen, basierend auf physiologischen und Umweltveränderungen, abzustimmen. Diese Ergebnisse sollten Anlass dazu geben, die Flexibilität und Plastizität physiologischer und ökologischer Anpassungen in natürlichen Lebensräumen weiter zu untersuchen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adamo SA, Jensen M, Younger M (2001) Changes in lifetime immunocompetence in male and female Gryllus texensis (formerly G. integer): trade-offs between immunity and reproduction. Anim Behav 62:417–425

    Google Scholar 

  • Berzins LL, Tilman-Schindel E, Burness G (2008) Sex-specific effects of handling time on an index of immune activity in zebra finches. Physiol Biochem Zool 81:383–387

    PubMed  Google Scholar 

  • Bilbo SD, Nelson RJ (2001) Sex steroid hormones enhance immune function in male and female Siberian hamsters. Am J Physiol Reg I 280:R207–R213

    CAS  Google Scholar 

  • Bonneaud C, Mazuc J, Gonzalez G, Haussy C, Chastel O, Faivre B, Sorci G (2003) Assessing the cost of mounting an immune response. Am Nat 161:367–379

    PubMed  Google Scholar 

  • Boughton RK, Bridge ES, Schoech SJ (2007) Energetic trade-offs between immunity and reproduction in male Japanese quail (Coturnix coturnix). J Exp Zool A 307:479–487

    Google Scholar 

  • Bryant DM, Tatner P (1991) Intraspecies variation in avian energy expenditure: correlates and constraints. Ibis 133:236–245

    Google Scholar 

  • Buchanan KL, Evans MR, Goldsmith AR (2003) Testosterone, dominance signalling and immunosuppression in the house sparrow, Passer domesticus. Behav Ecol Sociobiol 55:50–59

    Google Scholar 

  • Buehler DM, Piersma T, Irene Tieleman B (2008) Captive and free-living red knots Calidris canutus exhibit differences in non-induced immunity that suggest different immune strategies in different environments. J Avian Biol 39:560–566

    Google Scholar 

  • Carmona-Isunza MC, Núñez-de la Mora A, Drummond H (2013) Chronic stress in infancy fails to affect body size and immune response of adult female blue-footed boobies or their offspring. J Avian Biol 44:390–398

    Google Scholar 

  • Casto JM, Nolan V Jr, Ketterson ED (2001) Steroid hormones and immune function: experimental studies in wild and captive dark-eyed juncos (Junco hyemalis). Am Nat 157:408–420

    CAS  PubMed  Google Scholar 

  • Chin EH, Quinn JS, Burness G (2013) Acute stress during ontogeny suppresses innate, but not acquired immunity in a semi-precocial bird (Larus delawarensis). Gen Comp Endocrinol 193:185–192

    CAS  PubMed  Google Scholar 

  • Deerenberg C, Arpanius V, Daan S, Bos N (1997) Reproductive effort decreases antibody responsiveness. Proc R Soc Lond B 264:1021–1029

    Google Scholar 

  • Deviche PJ, Hurley LL, Fokidis HB, Lerbour B, Silverin B, Sabo J, Sharp PJ (2010) Acute stress rapidly decreases plasma testosterone in a free-ranging male songbird: potential site of action and mechanism. Gen Comp Endocrinol 169:82–90

    CAS  PubMed  Google Scholar 

  • Duffy DL, Ball GF (2002) Song predicts immunocompetence in male European starlings (Sturnus vulgaris). Proc R Soc Lond B 269:847–852

    Google Scholar 

  • Duffy DL, Bentley GE, Drazen DL, Ball GF (2000) Effects of testosterone on cell-mediated and humoral immunity in non-breeding adult European starlings. Behav Ecol 11:654–662

    Google Scholar 

  • Edler R, Goymann W, Schwabl I, Friedl TWP (2011) Experimentally elevated testosterone levels enhance courtship behaviour and territoriality but depress acquired immune response in red bishops Euplectes orix. Ibis 153:46–58

    Google Scholar 

  • Fargallo JA, Martínez-Padilla J, Toledano-Díaz A, Santiago-Moreno J, Davila JA (2007) Sex and testosterone effects on growth, immunity and melanin coloration of nestling Eurasian kestrels. J Anim Ecol 76:201–209

    PubMed  Google Scholar 

  • Folstad I, Karter AJ (1992) Parasites, bright males, and the immunocompetence handicap. Am Nat 139:603–622

    Google Scholar 

  • French SS, Moore MC, Demas GE (2009) Ecological immunology: the organism in context. Integr Comp Biol 49:246–253

    CAS  PubMed  Google Scholar 

  • Gonzalez G, Sorci G, Møller AP, Ninni P, Haussy C, De Lope F (1999) Immunocompetence and condition-dependent sexual advertisement in male house sparrows (Passer domesticus). J Anim Ecol 68:1225–1234

    Google Scholar 

  • Greenman CG, Martin LB, Hau M (2005) Reproductive state, but not testosterone, reduces immune function in male house sparrows (Passer domesticus). Physiol Biochem Zool 78:60–68

    CAS  PubMed  Google Scholar 

  • Greiner S, Stefanski V, Dehnhard M, Voigt CC (2010) Plasma testosterone levels decrease after activation of skin immune system in a free-ranging mammal. Gen Comp Endocrinol 168:466–473

    CAS  PubMed  Google Scholar 

  • Hasselquist D (2007) Comparative immunoecology in birds: hypotheses and tests. J Ornithol 148:571–582

    Google Scholar 

  • Hasselquist D, Nilsson JÅ (2012) Physiological mechanisms mediating costs of immune responses: what can we learn from studies of birds? Anim Behav 83:1303–1312

    Google Scholar 

  • Hasselquist D, Marsh JA, Sherman PW, Wingfield JC (1999) Is avian humoral immunocompetence suppressed by testosterone? Behav Ecol Sociobiol 45:167–175

    Google Scholar 

  • Hau M (2007) Regulation of male traits by testosterone: implications for the evolution of vertebrate life histories. Bio Essays 29:133–144

    CAS  Google Scholar 

  • Haussmann MF, Winkler DW, Huntington CE, Vleck D, Sanneman CE, Hanley D, Vleck CM (2005) Cell-mediated immunosenescence in birds. Oecologia 145:269–274

    Google Scholar 

  • Hegemann A, Matson KD, Both C, Tieleman BI (2012) Immune function in a free-living bird varies over the annual cycle, but seasonal patterns differ between years. Oecologia 170:605–618

    PubMed  PubMed Central  Google Scholar 

  • Hegemann A, Matson KD, Versteegh MA, Villegas A, Tieleman BI (2013) Immune response to an endotoxin challenge involves multiple immune parameters and is consistent among the annual-cycle stages of a free-living temperate zone bird. J Exp Biol 216:2573–2580

    CAS  PubMed  Google Scholar 

  • Ilmonen P, Hasselquist D, Langefors Å, Wiehn J (2003) Stress, immunocompetence and leukocyte profiles of pied flycatchers in relation to brood size manipulation. Oecologia 136:148–154

    PubMed  Google Scholar 

  • Ketterson ED, Nolan VJ (1999) Adaptation, exaptation, and constraint: a hormonal perspective. Am Nat 154:S4–S25

    Google Scholar 

  • Ketterson ED, Nolan VJ, Sandell M (2005) Testosterone in females: mediator of adaptive traits, constraint on sexual dimorphism, or both? Am Nat 166(Suppl 4):S85–S98

    PubMed  Google Scholar 

  • Knowles SCL, Nakagawa S, Sheldon BC (2009) Elevated reproductive effort increases blood parasitaemia and decreases immune function in birds: a meta-regression approach. Funct Ecol 23:405–415

    Google Scholar 

  • Krams I, Vrublevska J, Cirule D, Kivleniece I, Krama T, Rantala MJ, Kaasik A, Hõrak P, Sepp T (2013) Stress, behaviour and immunity in wild-caught wintering great tits (Parus major). Ethol 119:397–406

    Google Scholar 

  • Kuhlman JR, Martin LB (2010) Captivity affects immune redistribution to skin in a wild bird. Funct Ecol 24(4):830–837

    Google Scholar 

  • Landys MM, Ramenofsky M, Wingfield JC (2006) Actions of glucocorticoids at a seasonal baseline as compared to stress-related levels in the regulation of periodic life processes. Gen Comp Endocrinol 148:132–149

    CAS  PubMed  Google Scholar 

  • Lee KA (2006) Linking immune defenses and life history at the levels of the individual and the species. Integr Comp Biol 46:1000–1015

    CAS  PubMed  Google Scholar 

  • Li D, Wang G, Wingfield JC, Zhang Z, Ding C, Lei F (2008) Seasonal changes in adrenocortical responses to acute stress in Eurasian tree sparrow (Passer montanus) on the Tibetan Plateau: comparison with house sparrow (P. domesticus) in North America and with the migratory P. domesticus in Qinghai Province. Gen Comp Endocrinol 158:47–53

  • Li D, Zhang X, Li Y, Hao C, Zhang J, Wu Y (2012) Stress responses of testosterone and corticosterone-binding globulin in a multi-brooded species, Eurasian tree sparrows (Passer montanus): does CBG function as a mediator? Horm Behav 61:582–589

    CAS  PubMed  Google Scholar 

  • Lifjeld JT, Dunn PO, Whittingham LA (2002) Short-term fluctuations in cellular immunity of tree swallows feeding nestlings. Oecologia 130:185–190

    PubMed  Google Scholar 

  • Lochmiller RL, Deerenberg C (2000) Trade-offs in evolutionary immunology: just what is the cost of immunity? Oikos 88:87–98

    Google Scholar 

  • López-Rull I, Gil D (2009) Elevated testosterone levels affect female breeding success and yolk androgen deposition in a passerine bird. Behav Process 82:312–318

    Google Scholar 

  • Lozano GA, Lank DB (2003) Seasonal trade–offs in cell–mediated immunosenescence in ruffs (Philomachus pugnax). Proc R Soc Lond B 270:1203–1208

    Google Scholar 

  • Lynn SE (2008) Behavioral insensitivity to testosterone: why and how does testosterone alter paternal and aggressive behavior in some avian species but not others? Gen Comp Endocrinol 157:233–240

    CAS  PubMed  Google Scholar 

  • Martin LB, Scheuerlein A, Wikelski M (2003) Immune activity elevates energy expenditure of house sparrows: a link between direct and indirect costs? Proc R Soc Lond B 270:153–158

    Google Scholar 

  • Martin LB, Pless M, Svoboda J, Wikelski M (2004) Immune activity in temperate and tropical house sparrows: a common-garden experiment. Ecology 85:2323–2331

    Google Scholar 

  • Martin LB II, Gilliam J, Han P, Lee K, Wikelski M (2005) Corticosterone suppresses cutaneous immune function in temperate but not tropical house sparrows, Passer domesticus. Gen Comp Endocrinol 140:126–135

    CAS  Google Scholar 

  • Martin L, Han P, Lewittes J, Kuhlman J, Klasing K, Wikelski M (2006) Phytohemagglutinin-induced skin swelling in birds: histological support for a classic immunoecological technique. Funct Ecol 20:290–299

    Google Scholar 

  • Martin LB, Weil ZM, Nelson RJ (2008) Seasonal changes in vertebrate immune activity: mediation by physiological trade-offs. Philos Trans R Soc Lond B 363:321–339

    Google Scholar 

  • Matson KD, Tieleman BI, Klasing KC (2006) Capture stress and the bactericidal competence of blood and plasma in five species of tropical birds. Physiol Biochem Zool 79:556–564

    PubMed  Google Scholar 

  • McEwen BS, Wingfield JC (2003) The concept of allostasis in biology and biomedicine. Horm Behav 43:2–15

    Google Scholar 

  • McEwen BS, Wingfield JC (2010) What’s in a name? Integrating homeostasis, allostasis and stress. Horm Behav 57:105–111

    PubMed  Google Scholar 

  • Merrill L, Angelier F, O’Loghlen AL, Rothstein SI, Wingfield JC (2012) Sex-specific variation in brown-headed cowbird immunity following acute stress: a mechanistic approach. Oecologia 170:25–38

    PubMed  Google Scholar 

  • Møller AP, Erritzøe J, Saino N (2003) Seasonal changes in immune response and parasite impact on hosts. Am Nat 161:657–671

    PubMed  Google Scholar 

  • Møller AP, Garamszegi LZ, Gil D, Hurtrez-Boussès S, Eens M (2005) Correlated evolution of male and female testosterone profiles in birds and its consequences. Behav Ecol Sociobiol 58:534–544

    Google Scholar 

  • Moreno J, Sanz JJ, Arriero E (1999) Reproductive effort and T-lymphocyte cell-mediated immunocompetence in female pied flycatchers Ficedula hypoleuca. Proc R Soc Lond B 266:1105–1109

    Google Scholar 

  • Moreno J, Sanz J, Merino S, Arriero E (2001) Daily energy expenditure and cell-mediated immunity in pied flycatchers while feeding nestlings: interaction with moult. Oecologia 129:492–497

    Google Scholar 

  • Nordling D, Andersson M, Zohari S, Lars G (1998) Reproductive effort reduces specific immune response and parasite resistance. Proc R Soc Lond B 265:1291–1298

    Google Scholar 

  • Norris K, Evans MR (2000) Ecological immunology: life history trade-offs and immune defense in birds. Behav Ecol 11:19–26

    Google Scholar 

  • Olsen NJ, Kovacs WJ (1996) Gonadal Steroids and Immunity. Endocr Rev 17:369–384

    CAS  PubMed  Google Scholar 

  • Owen-Ashley NT, Hasselquist D, Wingfield JC (2004) Androgens and the immunocompetence handicap hypothesis: unraveling direct and indirect pathways of immunosuppression in song sparrows. Am Nat 164:490–505

    Google Scholar 

  • Padgett DA, Glaser R (2003) How stress influences the immune response. Trends Immunol 24:444–448

    CAS  PubMed  Google Scholar 

  • Pap PL, Czirják GÁ, Vágási CI, Barta Z, Hasselquist D (2010) Sexual dimorphism in immune function changes during the annual cycle in house sparrows. Naturwissenschaften 97:891–901

    CAS  PubMed  Google Scholar 

  • Peters A (2000) Testosterone treatment is immunosuppressive in superb fairy–wrens, yet free–living males with high testosterone are more immunocompetent. Proc R Soc Lond B 267:883–889

    CAS  Google Scholar 

  • Råberg L, Grahn M, Hasselquist D, Svensson E (1998) On the adaptive significance of stress-induced immunosuppression. Proc R Soc Lond B 265:1637–1641

    Google Scholar 

  • Ricklefs RE, Wikelski M (2002) The physiology/life-history nexus. Trends Ecol Evol 17:462–468

    Google Scholar 

  • Roberts M, Peters A (2009) Is testosterone immunosuppressive in a condition-dependent manner? An experimental test in blue tits. J Exp Biol 212:1811–1818

    CAS  PubMed  Google Scholar 

  • Roberts ML, Buchanan KL, Evans M (2004) Testing the immunocompetence handicap hypothesis: a review of the evidence. Anim Behav 68:227–239

    Google Scholar 

  • Roberts ML, Buchanan KL, Hasselquist D, Evans MR (2007) Effects of testosterone and corticosterone on immunocompetence in the zebra finch. Horm Behav 51:126–134

    CAS  PubMed  Google Scholar 

  • Romero LM, Dickens MJ, Cyr NE (2009) The reactive scope model-a new model integrating homeostasis, allostasis, and stress. Horm Behav 55:375–389

    PubMed  Google Scholar 

  • Saino N, Ambrosini R, Martinelli R, Møller AP (2002) Mate fidelity, senescence in breeding performance and reproductive trade-offs in the barn swallow. J Anim Ecol 71:309–319

    Google Scholar 

  • Sandland GJ, Minchella DJ (2003) Costs of immune defense: an enigma wrapped in an environmental cloak? Trends Parasitol 19:571–574

    PubMed  Google Scholar 

  • Smits JE, Bortolotti GR, Tella JL (1999) Simplifying the phytohaemagglutinin skin-testing technique in studies of avian immunocompetence. Funct Ecol 13:567–572

    Google Scholar 

  • Soler M, Martin-Vivaldi M, Marin J, Møller A (1999) Weight lifting and health status in the black wheatear. Behav Ecol 10:281–286

    Google Scholar 

  • Tella JL, Lemus JA, Carrete M, Blanco G (2008) The PHA test reflects acquired T-cell mediated immunocompetence in birds. PLoS ONE 3:e3295

    PubMed  PubMed Central  Google Scholar 

  • Van Hout AJM, Eens M, Darras VM, Pinxten R (2010) Acute stress induces a rapid increase of testosterone in a songbird: implications for plasma testosterone sampling. Gen Comp Endocrinol 168:505–510

    PubMed  Google Scholar 

  • van Oers K, Buchanan KL, Thomas TE, Drent PJ (2011) Correlated response to selection of testosterone levels and immunocompetence in lines selected for avian personality. Anim Behav 81:1055–1061

    Google Scholar 

  • Vinkler M, Bainová H, Albrecht T (2010) Functional analysis of the skin-swelling response to phytohaemagglutinin. Funct Ecol 24:1081–1086

    Google Scholar 

  • Vinkler M, Schnitzer J, Munclinger P, Albrecht T (2012) Phytohaemagglutinin skin-swelling test in scarlet rosefinch males: low-quality birds respond more strongly. Anim Behav 83:17–23

    Google Scholar 

  • Wingfield JC, Hegner RE, Dufty AM Jr, Ball GF (1990) The “challenge hypothesis”: theoretical implications for patterns of testosterone secretion, mating systems, and breeding strategies. Am Nat 136:829–846

    Google Scholar 

  • Wingfield JC, Vleck CM, Moore MC (1992) Seasonal changes of the adrenocortical response to stress in birds of the Sonoran Desert. J Exp Zool 264:419–428

  • Wingfield JC, Jacobs J, Hillgarth N (1997) Ecological constraints and the evolution of hormone-behavior interrelationships. Ann N Y Acad Sci 807:22–41

    CAS  PubMed  Google Scholar 

  • Zanollo V, Griggio M, Robertson J, Kleindorfer S (2012) The number and coloration of white flank spots predict the strength of a cutaneous immune response in female diamond firetails, Stagonopleura guttata. J Ornithol 153:1233–1244

    Google Scholar 

  • Zuk M, McKean KA (1996) Sex differences in parasite infections: patterns and processes. Int J Parasitol 26:1009–1024

    CAS  PubMed  Google Scholar 

  • Zysling DA, Greives TJ, Breuner CW, Casto JM, Demas GE, Ketterson ED (2006) Behavioral and physiological responses to experimentally elevated testosterone in female dark-eyed juncos (Junco hyemalis carolinensis). Horm Behav 50:200–207

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are very grateful to Xianzhao Zhou, Xiaofei Ma, Ji Zhang, Chenyang Hao for their expert assistance with field and laboratory work. This research was supported by the National Natural Science Foundation of China (NSFC, 31000191; 31330073), the Postdoctoral Science Foundation of China (2011M500537), and the Natural Science Foundation of Hebei Province (NSFHB, 2012205018) to Dongming Li, and NSFHB (2013205018) to Yuefeng Wu.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongming Li or Yuefeng Wu.

Additional information

Communicated by K. C. Klasing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Hao, Y., Liu, X. et al. Changes in phytohaemagglutinin skin-swelling responses during the breeding season in a multi-brooded species, the Eurasian Tree Sparrow: do males with higher testosterone levels show stronger immune responses?. J Ornithol 156, 133–141 (2015). https://doi.org/10.1007/s10336-014-1104-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-014-1104-2

Keywords

Navigation