Skip to main content
Log in

The alarm call system of breeding Brown Thornbills (Acanthiza pusilla): self-defence or nest defence?

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Many species produce alarm calls during predator encounters that are directed at either conspecifics or the predator. Although many studies have investigated alarm calls in foraging individuals, antipredator communication during reproduction is rarely studied. In birds, where nest predation is a key cause of reproductive failure, some species have evolved sophisticated alarm calls to inform nestlings of danger from nest predators. However, different predator species differ in their primary prey type (brood predators, predators of adults), and accordingly, birds could have evolved different alarm calls depending on who is in danger. We experimentally investigated parental antipredator communication in Brown Thornbills (Acanthiza pusilla), where more than 50 % of all nests are depredated. We presented breeding pairs the models of a brood predator, a predator of adult birds and a harmless control species. Parents gave two different alarm calls (short and intense tzzt calls), which were not predator-specific, but responded to the predator of adults with more alarm calls than for the brood predator. Parental alarm calls did not affect nestling begging levels, which were influenced only by parental feeding rate. Our results suggest that alarm calls of breeding Brown Thornbills are mainly used as a form of self-defence by the individuals of the breeding pair rather than being directed at the nestlings. This fits with the predictions of life-history theory that parents in long-lived species are more concerned about their own survival.

Zusammenfassung

Das Alarmrufsystem von brütenden Roststirn-Dornschnäbeln Acanthiza pusilla -Selbstverteidigung oder Nestverteidigung?

Bei Begegnungen mit Prädatoren geben viele Arten Alarmrufe, welche entweder an Artgenossen oder den Prädator gerichtet sind. Während viele Studien Alarmrufe von futtersuchenden Individuen untersuchten, wurde Antiprädatorkommunikation während der Brutsaison nur selten untersucht. Bei Vögeln, wo Nestprädation eine wesentliche Ursache für Brutmisserfolge ist, haben einige Arten hoch differenzierte Alarmrufe entwickelt um Nestlinge vor der Gefahr eines Nestprädators zu informieren. Allerdings unterscheiden sich die primären Beutekategorien bei verschiedene Prädatorenarten (Nestprädatoren, Prädatoren von Altvögeln), und dementsprechend könnten Vögel je nachdem an wen die Gefahr gerichtet ist unterschiedliche Alarmrufe entwickelt haben. Wir untersuchten experimentell die Antiprädatorkommunikation bei brütenden Roststirn-Dornschnäbeln (Acanthiza pusilla), einer Art wo mehr als 50 % aller Nester prädatiert werden. Wir präsentierten Brutpaaren Präparate eines Nestprädators, eines Prädators von Altvögeln, sowie einer harmlosen Vogelart. Altvögel gab zwei verschiedene Alarmrufe (kurze und intensive tzzt Rufe), welche nicht prädatorspezifisch waren, aber reagierten auf den Prädator von Altvögeln mit mehr Alarmrufen als auf den Nestprädator. Die Alarmrufe des Brutpaares hatten keinen Einfluss auf die Bettelrufintensität der Nestlinge, welches nur durch die elterliche Fütterrate beeinflusst wurde. Unsere Ergebnisse legen nahe, dass Alarmrufe bei Roststirn-Dornschnäbeln vor allem eine Form der Selbstverteidigung der brütenden Altvögel sind, jedoch nicht an die Nestlinge gerichtet sind. Dies stimmt mit den Vorhersagen der Life-History-Theorie überein, dass Eltern von langlebigen Spezies mehr ihrem eigenen Überleben Priorität geben.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barker R, Vestjens W (1989) Food of Australian birds 1. Non-passerines. CSIRO, Melbourne

    Book  Google Scholar 

  • Barker R, Vestjens W (1990) Food of Australian birds 2. Passerines. CSIRO, Melbourne

    Book  Google Scholar 

  • Blumstein DT, Armitage KB (1997) Alarm calling in yellow-bellied marmots: 1. the meaning of situationally variable alarm calls. Anim Behav 53:143–171. doi:10.1006/anbe.1996.0285

    Article  Google Scholar 

  • Caro TM (2005) Antipredator defences in birds and mammals. University of Chicago Press, Chicago

    Google Scholar 

  • Cresswell W (1994) Song as a pursuit-deterrent signal, and its occurrence relative to other anti-predation behaviors of Skylark (Alauda Arvensis) on attack by Merlins (Falco Columbarius). Behav Ecol Sociobiol 34(3):217–223

    Article  Google Scholar 

  • Curio E (1978) Adaptive significance of avian mobbing. I. Teleonomic hypotheses and predictions. Z Tierpsychol 48(2):175–183

    Google Scholar 

  • Evans CS, Macedonia JM, Marler P (1993) Effects of apparent size and speed on the response of chickens, Gallus gallus, to computer-generated stimulations of aerial predators. Anim Behav 46(1):1–11. doi:10.1006/anbe.1993.1156

    Article  Google Scholar 

  • Fallow PM, Gardner JL, Magrath RD (2011) Sound familiar? Acoustic similarity provokes responses to unfamiliar heterospecific alarm calls. Behav Ecol 22(2):401–410. doi:10.1093/beheco/arq221

    Article  Google Scholar 

  • Fasanella M, Fernández GJ (2009) Alarm calls of the southern house wren Troglodytes musculus: variation with nesting stage and predator model. J Ornithol 150:853–863. doi:10.1007/s10336-009-0406-2

    Article  Google Scholar 

  • Furrer RD, Manser MB (2009) The Evolution of urgency-based and functionally referential alarm calls in ground-dwelling species. Am Nat 173(3):400–410. doi:10.1086/596541

    Article  PubMed  Google Scholar 

  • Ghalambor CK, Martin TE (2001) Fecundity-survival trade-offs and parental risk-taking in birds. Science 292(5516):494–497

    Article  CAS  PubMed  Google Scholar 

  • Ghalambor CK, Martin TE (2002) Comparative manipulation of predation risk in incubating birds reveals variability in the plasticity of responses. Behav Ecol 13(1):101–108

    Article  Google Scholar 

  • Godfray HCJ (1995) Signalling of need between parents and young parent-offspring conflict and sibling rivalry. Am Nat 146(1):1–24. doi:10.1086/285784

    Article  Google Scholar 

  • Green DJ, Cockburn A (1999) Life history and demography of an uncooperative Australian passerine, the brown thornbill. Aust J Zool 47(6):633–649

    Article  Google Scholar 

  • Griesser M (2008) Referential calls signal predator behavior in a group-living bird species. Curr Biol 18:69–73

    Article  CAS  PubMed  Google Scholar 

  • Griesser M (2009) Mobbing calls signal predator category in a kin group-living bird species. Proc R Soc B Biol Sci 276(1669):2887–2892. doi:10.1098/rspb.2009.0551

    Article  Google Scholar 

  • Griesser M (2013) Do warning calls boost survival of signal recipients? Evidence from a field experiment in a group-living bird species. Front Zool 10(1):49

    Article  PubMed  PubMed Central  Google Scholar 

  • Haff TM, Magrath RD (2010) Vulnerable but not helpless: nestlings are fine-tuned to cues of approaching danger. Anim Behav 79(2):487–496. doi:10.1016/j.anbehav.2009.11.036

    Article  Google Scholar 

  • Haff TM, Magrath RD (2011) Calling at a cost: elevated nestling calling attracts predators to active nests. Biol Lett 7(4):493–495. doi:10.1098/rsbl.2010.1125

    Article  PubMed  PubMed Central  Google Scholar 

  • Higgins PJ, Peter JM (eds) (2002) Handbook of Australian, New Zealand and Antarctic birds, vol 6. Pradalotes to shrike-thrushes. Oxford University Press, Melbourne

  • Higgins PJ, Peter JM, Cowling SJ (eds) (2006) Handbook of Australian, New Zealand and Antarctic birds, vol 7. Boatbill to starlings. Oxford University Press, Melbourne

  • Hollén LI, Bell MBV, Radford AN (2008) Cooperative sentinel calling? Foragers gain increased biomass intake. Curr Biol 18(8):576–579. doi:10.1016/j.cub.2008.02.078

    Article  PubMed  CAS  Google Scholar 

  • Igic B, Magrath RD (2013) Fidelity of vocal mimicry: identification and accuracy of mimicry of heterospecific alarm calls by the brown thornbill. Anim Behav 85(3): 593–603. doi:http://dx.doi.org/10.1016/j.anbehav.2012.12.022

  • Klump GM, Shalter MD (1984) Acoustic behaviour of birds and mammals in the predator context; 1. Factors affecting the structure of alarm signals. 2. The functional significance and evolution of alarm signals. Z Tierpsychol 66(3):189–226

    Article  Google Scholar 

  • Krama T, Krams I (2005) Cost of mobbing call to breeding pied flycatcher, Ficedula hypoleuca. Behav Ecol 16(1):37–40. doi:10.1093/beheco/arh116

    Article  Google Scholar 

  • Krams I, Berzins A, Krama T (2009) Group effect in nest defence behaviour of breeding pied flycatchers, Ficedula hypoleuca. Anim Behav 77(2):513–517. doi:10.1016/j.anbehav.2008.11.007

    Article  Google Scholar 

  • Kroodsma DE, Byers BE, Goodale E, Johnson S, Liu WC (2001) Pseudoreplication in playback experiments, revisited a decade later. Anim Behav 61(5):1029–1033

    Article  Google Scholar 

  • Leavesley AJ, Magrath RD (2005) Communicating about danger: urgency alarm calling in a bird. Anim Behav 70:365–373. doi:10.1016/j.anbehav.2004.10.017

    Article  Google Scholar 

  • Lemasson A, Ouattara K, Bouchet H, Zuberbuehler K (2010) Speed of call delivery is related to context and caller identity in Campbell’s monkey males. Naturwissenschaften 97(11):1023–1027. doi:10.1007/s00114-010-0715-6

    Article  CAS  PubMed  Google Scholar 

  • Leonard ML, Horn AG (1998) Need and nestmates affect begging in tree swallows. Behav Ecol Sociobiol 42(6):431–436. doi:10.1007/s002650050457

    Article  Google Scholar 

  • Leonard ML, Horn AG (2001a) Acoustic signalling of hunger and thermal state by nestling tree swallows. Anim Behav 61:87–93. doi:10.1006/anbe.2000.1575

    Article  PubMed  Google Scholar 

  • Leonard ML, Horn AG (2001b) Begging calls and parental feeding decisions in tree swallows (Tachycineta bicolor). Behav Ecol Sociobiol 49(2–3):170–175. doi:10.1007/s002650000290

    Article  Google Scholar 

  • Lima SL (1998) Nonlethal effects in the ecology of predator-prey interactions—what are the ecological effects of anti-predator decision-making? Bioscience 48(1):25–34. doi:10.2307/1313225

    Article  Google Scholar 

  • Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation—a review and prospectus. Can J Zool 68(4):619–640. doi:10.1139/z90-092

    Article  Google Scholar 

  • Magrath RD, Pitcher BJ, Dalziell AH (2007) How to be fed but not eaten: nestling responses to parental food calls and the sound of a predator’s footsteps. Anim Behav 74:1117–1129. doi:10.1016/j.anbehav.2007.01.025

    Article  Google Scholar 

  • Magrath RD, Haff TM, Horn AG, Leonard ML (2010) Calling in the face of danger: predation risk and acoustic communication by parent birds and their offspring. In: Brockmann HJ, Roper TJ, Naguib M, WynneEdwards KE, Mitani JC, Simmons LW (eds) Advances in the study of behavior, vol 41. Elsevier, San Diego, pp 187–253. doi:10.1016/s0065-3454(10)41006-2

  • Manser MB (2001) The acoustic structure of suricates’ alarm calls varies with predator type and the level of response urgency. Proc R Soc Lond Ser B Biol Sci 268(1483):2315–2324

    Article  CAS  Google Scholar 

  • Manser MB, Seyfarth RM, Cheney DL (2002) Suricate alarm calls signal predator class and urgency. Trends Cogn Sci 6(2):55–57. doi:10.1016/s1364-6613(00)01840-4

    Article  PubMed  Google Scholar 

  • Marchant S, Higgins PJ (eds) (1993) Handbook of Australian, New Zealand and Antarctic birds, vol 2. Raptors to lapwings. Oxford University Press, Melbourne

  • Martin TE, Lloyd P, Bosque C, Barton DC, Biancucci AL, Cheng Y-R, Ton R (2011) Growth rate variation among passerine species in tropical and temperate sites: an antagonistic interaction between parental food provisioning and nest predation risk. Evolution 65(6):1607–1622. doi:10.1111/j.1558-5646.2011.01227.x

    Article  PubMed  Google Scholar 

  • Metcalfe NB, Monaghan P (2001) Compensation for a bad start: grow now, pay later? Trends Ecol Evol 15(5):254–260

    Article  Google Scholar 

  • Platzen D, Magrath RD (2004) Parental alarm calls suppress nestling vocalization. Proc R Soc Lond Ser B Biol Sci 271(1545):1271–1276. doi:10.1098/rspb.2004.2716

    Article  Google Scholar 

  • R Core Team (2012) R: a language and environment for statistical computing

  • Ricklefs RE (1969) An analysis of nesting mortality in birds. Smithson Contrib Zool 9:1–48

    Article  Google Scholar 

  • Roff DA (1992) The evolution of life histories: theories and analysis. Chapman & Hall, New York

    Google Scholar 

  • Schneider NA, Griesser M (2013) Incubating females use dynamic risk assessment to evaluate the risk posed by different predators. Behav Ecol 24(1):47–52. doi:10.1093/beheco/ars134

    Article  Google Scholar 

  • Seyfarth RM, Cheney DL, Marler P (1980) Monkey responses to three different alarm calls: evidence of predator classification and semantic communication. Science 210(4471):801–803

    Article  CAS  PubMed  Google Scholar 

  • Suzuki TN (2011) Parental alarm calls warn nestlings about different predator threats. Curr Biol 21(1):R15–R16. doi:10.1016/j.cub.2010.11.027

    Article  CAS  PubMed  Google Scholar 

  • Suzuki TN (2014) Communication about predator type by a bird using discrete, graded and combinatorial variation in alarm calls. Anim Behav 87:59–65

    Article  Google Scholar 

  • Templeton CN, Greene E, Davis K (2005) Allometry of alarm calls: black-capped chickadees encode information about predator size. Science 308(5730):1934–1937. doi:10.1126/science.1108841

    Article  CAS  PubMed  Google Scholar 

  • Wright J, Karasov WH, Kazem AJN, Braga Goncalves I, McSwan E (2010) Begging and digestive responses to differences in long-term and short-term need in nestling pied flycatchers. Anim Behav 80(3):517–525. doi:10.1016/j.anbehav.2010.06.015

    Article  Google Scholar 

  • Zuberbühler K (2001) Predator-specific alarm calls in Campbell’s monkeys, Cercopithecus campbelli. Behav Ecol Sociobiol 50(5):414–422. doi:10.1007/s002650100383

    Article  Google Scholar 

  • Zuberbühler K, Jenny D, Bshary R (1999) The predator deterrence function of primate alarm calls. Ethology 105(6):477–490. doi:10.1046/j.1439-0310.1999.00396.x

    Article  Google Scholar 

Download references

Acknowledgments

We thank Branislav Igic, Grzegorz Mikusinski and Andy Radford and two anonymous reviewers for valuable comments on previous versions of the manuscript. We also thank Cathrine Young, Naoko Takeuchi and Costantino Marullo for help in the field, Erik Wapstra for his general support, Parks Tasmania for our being able to use Trevallyn Nature Recreation Area as a study site, the Western Australian Museum and the Tasmanian Museum and Art Gallery for lending the models, and Rod Bradbury for correcting our English. This work was funded by the Swedish Research Council (Grant No. 621-2008-5349 to M.G.) and Stiftelsen Lars Hiertas Minne (Grant No. FO2010‐0041 to N.A.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole A. Schneider.

Additional information

Communicated by F. Bairlein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schneider, N.A., Griesser, M. The alarm call system of breeding Brown Thornbills (Acanthiza pusilla): self-defence or nest defence?. J Ornithol 155, 987–996 (2014). https://doi.org/10.1007/s10336-014-1085-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-014-1085-1

Keywords

Navigation