Skip to main content

Advertisement

Log in

Drivers of breeding numbers in a long-distance migrant, the Garganey (Anas querquedula): effects of climate and hunting pressure

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

A multitude of anthropogenic factors are threatening bird populations but their roles as drivers of population changes are generally poorly understood. Several duck species, for instance, have unfavorable conservation status at the Pan-European level but in most cases we do not know why the species have been declining, nor do we know actual drivers of their population dynamics. We studied population dynamics of the Garganey (Anas querquedula), a quarry species with unfavorable conservation status at the Pan-European level. As a trans-Saharan migrant, Garganey is potentially highly vulnerable to climate change impacts. We used long-term (1989–2012) data of breeding numbers from a study area in central Finland and assessed the relative importance of three climatic variables (representing conditions in wintering areas and during spring migration) and local hunting pressure in explaining the interannual variation in breeding numbers. Population size of Garganey showed a decreasing trend over the study period but also considerable interannual variation. Spring temperature in southern Finland was the most important factor in explaining interannual variation in breeding numbers. Rainfall in the wintering areas was also of importance, whereas the NAO (North Atlantic Oscillation) and local hunting pressure appeared not to be important. Our results suggest that weather conditions during spring migration largely drive interannual variation in Garganey breeding numbers at the NW edge of the species’ range. However, positive effects of warm springs may be counteracted by negative effects of drought in the wintering areas.

Zusammenfassung

Einflussfaktoren auf Brutpaarzahlen bei einem Langstreckenzieher, der Knäkente ( Anas querquedula ): klimatische Effekte und Jagddruck

Eine Vielzahl anthropogener Einflussfaktoren bedrohen Vogelpopulationen. Ihre Rolle hinsichtlich Populationsveränderungen ist jedoch allgemein nur wenig verstanden. Verschiedene Entenarten beispielsweise besitzen einen unzureichenden Schutzstatus auf pan-europäischer Ebene. In den meisten Fällen sind weder die Gründe für die Rückgänge der Arten bekannt, noch sind die derzeitigen Auslöser für ihre Populationsdynamiken verstanden. Wir untersuchten die Populationsdynamik von Knäkenten (Anas querquedula), eine Zielart mit ungünstigem Erhaltungszustand auf pan-europäischer Ebene. Als Transsaharazieher sind Knäkenten potentiell stark gefährdet im Hinblick auf Auswirkungen des Klimawandels. Wir nutzten Langzeitdaten (1989–2012) zu Brutpaarzahlen aus einem Untersuchungsgebiet in Zentralfinnland und bewerteten die relative Bedeutung dreier klimatischer Faktoren (repräsentativ für die Bedingungen in den Überwinterungsgebieten und während des Frühjahrszuges) sowie den lokalen Jagddruck zur Erklärung von interannuellen Schwankungen im Brutbestand. Die Knäkenten-Population zeigt einen abnehmenden Trend während des Betrachtungszeitraumes, jedoch mit deutlichen Schwankungen zwischen den Jahren. Die Frühjahrstemperatur in Südfinnland war der wichtigste Faktor zur Erklärung der variierenden Brutpaarzahlen zwischen den Jahren. Außerdem war der Niederschlag in den Überwinterungsgebieten ebenfalls von Bedeutung, wohingegen die NAO (Nordatlantische Oszillation) und der lokale Jagddruck unerheblich zu sein schienen. Unsere Ergebnisse deuten daraufhin, dass die Wetterbedingungen während des Frühjahrszuges weitgehend die jährlichen Schwankungen der Brutpaarzahlen von Knäkenten an der nordwestlichen Grenze ihres Verbreitungsgebietes bewirken. Allerdings könnten die negativen Effekte von Dürren in den Wintergebieten den positiven Auswirkungen von warmen Frühjahren entgegenwirken.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bethke RW, Nudds TD (1995) Effects of climate change and land use on duck abundance in Canadian prairie-parklands. Ecol Appl 5:588–600

    Google Scholar 

  • Blenckner T, Hillebrand H (2002) North Atlantic Oscillation signatures in aquatic and terrestrial ecosystems—a meta-analysis. Glob Change Biol 8:203–212

    Google Scholar 

  • Bregnballe T, Noer H, Christensen TK, Clausen P, Asferg T, Fox AD, Simon D (2006) Sustainable hunting of migratory waterbirds: the Danish approach. In: Boere GC, Galbraith CA, Stroud DA (eds) Waterbirds around the world. The Stationery Office, Edinburgh, pp 854–860

    Google Scholar 

  • Brommer JE, Møller AP (2010) Range margins, climate change, and ecology. In: Møller AP, Fiedler W, Berthold P (eds) Effects of climate change on birds. Oxford University Press, Oxford, pp 249–274

    Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Burnham KP, Anderson DR, Huyvaert KP (2011) AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Beh Ecol Sociobiol 65:25–35

    Google Scholar 

  • Calvert AM, Walde SJ, Taylor PD (2009) Nonbreeding-season drivers of population dynamics in seasonal migrants: conservation parallels across taxa. Avian Conserv Ecol 4(2):5. http://www.ace-eco.org/vol4/iss2/art5/

  • Chatfield C (2004) The analysis of time series: an introduction, 6th edn. Chapman and Hall/CRC, Boca Raton

    Google Scholar 

  • Cramp S, Simmons KEL (eds) (1977) The birds of the Western Palearctic, vol I. Oxford University Press, Oxford

    Google Scholar 

  • Drever MC, Clark RG, Derksen C, Slattery SM, Toose P, Nudds TD (2012) Population vulnerability to climate change linked to timing of breeding in boreal ducks. Global Change Biol 18:480–492

    Google Scholar 

  • Eglington SM, Pearce-Higgins JW (2012) Disentangling the relative importance of changes in climate and land-use intensity in driving recent bird population trends. PLoS One 7(3):e30407

    CAS  PubMed  PubMed Central  Google Scholar 

  • Finnish Game and Fisheries Research Institute (2013) Hunting 2012. Riista-ja kalatalous–Tilastoja 4/2013. Official statistics of Finland—agriculture, forestry and fishery

  • Fouquet M, Girard O, Tesson JL, Yesou P (1992) Actions preliminaries oiur la restauration des populations de Sarcelle d’été (Anas querquedula). Rapport de convention CEE/ONC 6610(90):6686

    Google Scholar 

  • Fretwell SD (1972) Populations in a seasonal environment. Princeton University Press, Princeton

    Google Scholar 

  • Gordo O (2007) Why are bird migration dates shifting? A review of weather and climate effects on avian migratory phenology. Clim Res 35:37–58

    Google Scholar 

  • Guillemain M, Sadoul M, Simon G (2005) European flyway permeability and abmigration in teal Anas crecca, an analysis based on ringing recoveries. Ibis 147:688–696

    Google Scholar 

  • Guillemain M, Bertout J-M, Christensen TK, Pöysä H, Väänänen V-M, Triplet P, Schricke V, Fox AD (2010) How many juvenile Teal Anas crecca reach the wintering grounds? Flyway-scale survival rate inferred from wing age-ratios. J Ornithol 151:51–60

    Google Scholar 

  • Guillemain M, Pöysä H, Fox AD, Arzel C, Dessborn L, Ekroos J, Gunnarsson G, Holm TE, Christensen TK, Lehikoinen A, Mitchell C, Rintala J, Møller AP (2013) Effects of climate change on European ducks: What do we know and what do we need to know? Wildl Biol 19:404–419

    Google Scholar 

  • Halkka A, Lehikoinen A, Velmala W (2011) Do long-distance migrants use temperature variations along the migration route in Europe to adjust the timing of their spring migration? Boreal Env Res 16(suppl B):35–48

    Google Scholar 

  • Huntley B, Green RE, Collingham YC, Willis SG (2007) A climatic atlas of European breeding birds. Durnham University, The RSPB and Lynx Edicions, Barcelona

    Google Scholar 

  • Hüppop O, Hüppop K (2003) North Atlantic Oscillation and timing of spring migration in birds. Proc R Soc Lond B 270:233–240

    Google Scholar 

  • Hurrell JW, Deser C (2010) North Atlantic climate variability: the role of the North Atlantic Oscillation. J Mar Syst 79:231–244

    Google Scholar 

  • Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (2003) An overview of the North Atlantic Oscillation. Geophys Monogr Ser 134:1–35

    Google Scholar 

  • Jenouvrier S (2013) Impacts of climate change on avian populations. Glob Change Biol 19:2036–2057

    Google Scholar 

  • Johnson DH, Grier JW (1988) Determinants of breeding distributions of ducks. Wildl Monogr 100:1–37

    Google Scholar 

  • Kauppinen J, Väänänen V-M (1999) Factors affecting changes in waterfowl populations in eutrophic wetlands in the Finnish lake district. Wildl Biol 5:73–81

    Google Scholar 

  • Kauppinen J, Koskimies P, Väisänen RA (1991) Wildfowl round count. In: Koskimies P, Väisänen RA (eds) Monitoring bird populations. Zoological Museum, Finnish Museum of Natural History, Helsinki, pp 45–53

    Google Scholar 

  • Kear J (ed) (2005) Ducks, geese and swans, vol 2. Oxford University Press, Oxford

    Google Scholar 

  • Kjeldsen JP (2008) Ynglefugle i Vejlerne efter inddæmningen, med særlig vægt på feltstationsårene 1978–2003. Dansk Orn Foren Tidsskr 102:1–238 in Danish with English summary

    Google Scholar 

  • Knudsen E, Lindén A, Both C, Jonzén N, Pulido F, Saino N, Sutherland WJ, Bach LA, Coppack T, Ergon T, Gienapp P, Gill JA, Gordo O, Hedenström A, Lehikoinen E, Marra PP, Møller AP, Nilsson ALK, Péron G, Ranta E, Rubolini D, Sparks TH, Spina F, Studds CE, Sæther SA, Tryjanowski P, Stenseth NC (2011) Challenging claims in the study of migratory birds and climate change. Biol Rev 86:928–946

    PubMed  Google Scholar 

  • Koskimies P, Väisänen RA (1991) Monitoring bird populations. A manual of methods applied in Finland, Zoological Museum, Finnish Museum of Natural History, Helsinki

    Google Scholar 

  • Kucharski F, Molteni F, Bracco A (2006) Decadal interactions between the western tropical Pacific and the North Atlantic Oscillation. Clim Dyn 26:79–91

    Google Scholar 

  • Lebel T, Ali A (2009) Recent trends in the Central and Western Sahel rainfall regime (1990-2007). J Hydrol 375:52–64

    Google Scholar 

  • Leech DI, Crick HQP (2007) Influence of climate change on the abundance, distribution and phenology of woodland bird species in temperate regions. Ibis 149(Suppl 2):12–145

    Google Scholar 

  • Lehikoinen E, Sparks TH (2010) Changes in migration. In: Møller AP, Fiedler W, Berthold P (eds) Effects of climate change on birds. Oxford University Press, Oxford, pp 89–112

    Google Scholar 

  • Lehikoinen A, Vähätalo A (2000) Phenology of bird migration at the Hanko Bird Observatory, Finland, 1979-1999. Tringa 27:150–244 in Finnish with English summary

    Google Scholar 

  • Lehikoinen E, Sparks TH, Zalakevicius M (2004) Arrival and departure dates. Adv Ecol Res 35:1–31

    Google Scholar 

  • Lélé MI, Lamb PJ (2010) Variability of the Intertropical Front (ITF) and rainfall over the West African Sudan-Sahel zone. J Clim 23:3984–4004

    Google Scholar 

  • Lindström J, Forchhammer MC (2010) Time-series analyses. In: Møller AP, Fiedler W, Berthold P (eds) Effects of climate change on birds. Oxford University Press, Oxford, pp 57–66

    Google Scholar 

  • Møller AP (2013) Biological consequences of global change on birds. Integr Zool 8:136–144

    PubMed  Google Scholar 

  • Møller AP, Rubolini D, Lehikoinen E (2008) Populations of migratory bird species that did not show a phonological response to climate change are declining. Proc Natl Acad Sci USA 105:16195–16200

    PubMed  Google Scholar 

  • Møller AP, Fiedler W, Berthold P (2010a) Conclusions. In: Møller AP, Fiedler W, Berthold P (eds) Effects of climate change on birds. Oxford University Press, Oxford, pp 311–313

    Google Scholar 

  • Møller AP, Fiedler W, Berthold P (eds) (2010b) Effects of climate change on birds. Oxford University Press, Oxford

    Google Scholar 

  • Morrison CA, Robinson RA, Clark JA, Risely K, Gill J (2013) Recent population declines in Afro-Palaearctic migratory birds: the influence of breeding and non-breeding seasons. Diversity Distrib 19:1051–1058

    Google Scholar 

  • Newton I (2004a) The recent declines of farmland bird populations in Britain: an appraisal of causal factors and conservation actions. Ibis 146:579–600

    Google Scholar 

  • Newton I (2004b) Population limitation in migrants. Ibis 146:197–226

    Google Scholar 

  • Norman D, Peach WJ (2013) Density-dependent survival and recruitment in a long-distance Palaearctic migrant, the Sand Martin Riparia riparia. Ibis 155:284–296

    Google Scholar 

  • Oja H, Pöysä H (2007) Spring phenology, latitude, and the timing of breeding in two migratory ducks: implications of climate change impacts. Ann Zool Fenn 44:475–485

    Google Scholar 

  • Ottersen G, Planque B, Belgrano A, Post E, Reid PC, Stenseth NC (2001) Ecological effects of the North Atlantic Oscillation. Oecologia 128:1–14

    PubMed  Google Scholar 

  • Pautasso M (2012) Observed impacts of climate change on terrestrial birds in Europe: an overview. Italian J Zool 79:296–314

    Google Scholar 

  • Peach W, Baillie S, Underhill L (1991) Survival of British Sedge Warblers Acrocephalus schoenobaenus in relation to West African rainfall. Ibis 133:300–305

    Google Scholar 

  • Pöysä H, Rintala J, Lehikoinen A, Väisänen RA (2013) The importance of hunting pressure, habitat preference and life history for population trends of breeding waterbirds in Finland. Eur J Wildl Res 59:245–256

    Google Scholar 

  • Rainio K, Laaksonen T, Ahola M, Vähätalo AV, Lehikoinen E (2006) Climatic responses in spring migration of boreal and arctic birds in relation to wintering area and taxonomy. J Avian Biol 37:507–515

    Google Scholar 

  • Reif J (2013) Long-term trends in bird populations: a review of patterns and potential drivers in North America and Europe. Acta Ornithol 48:1–16

    Google Scholar 

  • Robinson RA, Crick HQP, Learmonth JA, Maclean IMD, Thomas CD, Bairlein F, Forchhammer MC, Francis CM, Gill JA, Godley BJ, Harwood J, Hays GC, Huntley B, Hutson AM, Pierce GJ, Rehfisch MM, Sims DW, Santos MB, Sparks TH, Stroud DA, Visser ME (2008) Travelling through a warming world: climate change and migratory species. Endang Species Res 7:87–99

    Google Scholar 

  • Rubolini D, Møller AP, Rainio K, Lehikoinen E (2007) Intraspecific consistency and geographic variability in temporal trends of spring migration phenology among European bird species. Clim Res 35:135–2007

    Google Scholar 

  • Sæther B-E, Engen S (2010) Population consequences of climate change. In: Møller AP, Fiedler W, Berthold P (eds) Effects of climate change on birds. Oxford University Press, Oxford, pp 67–75

    Google Scholar 

  • Sæther B-E, Sutherland WJ, Engen S (2004) Climate influences on avian population dynamics. Adv Ecol Res 35:185–209

    Google Scholar 

  • Sæther B-E, Lillegård M, Grøtan V, Drever MC, Engen S, Nudds TD, Podruzny KM (2008) Geographical gradients in the population dynamics of North American prairie ducks. J Anim Ecol 77:869–882

    PubMed  Google Scholar 

  • Saino N, Ambrosini R, Rubolini D, von Hardenberg J, Provenzale A, Hüppop O, Hüppop K, Lehikoinen A, Lehikoinen E, Rainio K, Romano M, Sokolov L (2011) Climate warming, ecological mismatch at arrival and population decline in migratory species. Proc Roy Soc Lond B 278:835–842

    Google Scholar 

  • Sanderson FJ, Donald PF, Pain DJ, Burfield IJ, van Bommel FPJ (2006) Long-term population declines in Afro-Palearctic migrant birds. Biol Conserv 131:93–105

    Google Scholar 

  • Schricke V (2001) Elements for a garganey (Anas querquedula) management plan. Game Wildl Sci 18:9–41

    Google Scholar 

  • Scott DA, Rose PM (1996) Atlas of Anatidae populations in Africa and Western Eurasia. Wetlands International Publication No. 14. Wetlands International, Wageningen

    Google Scholar 

  • Siira J, Eskelinen O (1983) Changes in the abundance of breeding waterfowl in the Liminka Bay in 1954-81. Finnish Game Res 40:105–121

    Google Scholar 

  • Sjöberg K, Gunnarsson G, Pöysä H, Elmberg J, Nummi P (2010) Born to cope with climate change? Experimentally manipulated hatching time does not affect duckling survival in the mallard Anas platyrhynchos. Eur J Wildl Res 57:505–516

    Google Scholar 

  • Smith RI (1970) Response of pintail breeding populations to drought. J Wildl Manage 34:943–946

    Google Scholar 

  • Stervander M, Lindström Å, Jonzén N, Andersson A (2005) Timing of spring migration in birds: long-term trends, North Atlantic Oscillation and the significance of different migration routes. J Avian Biol 36:210–221

    Google Scholar 

  • Urban EK (1993) Status of Palearctic wildfowl in Northeast and East Africa. Wildfowl 44:133–148

    Google Scholar 

  • Väänänen V-M (2001) Hunting disturbance and the timing of autumn migration in Anas species. Wildl Biol 7:3–9

    Google Scholar 

  • Vähätalo A, Rainio K, Lehikoinen A, Lehikoinen E (2004) Spring arrival of birds depends on the North Atlantic Oscillation. J Avian Biol 35:210–216

    Google Scholar 

  • Valkama J, Vepsäläinen V, Lehikoinen A (2011) The third Finnish breeding bird atlas. Finnish Museum of Natural History and Ministry of Environment. http://atlas3.lintuatlas.fi/english. Accessed 7 Aug 2013

  • Viksne J, Svazas S, Czajkowski A, Janus M, Mischenko A, Kozulin A, Kuresoo A, Serebryako V (2010) Atlas of duck populations in Eastern Europe. Akstis, Vilnius

    Google Scholar 

  • von Haartman L (1973) Changes in the breeding bird fauna of North Europe. In: Farner DS (ed) Breeding biology of birds. National Academy of Sciences, Washington DC, pp 448–481

    Google Scholar 

  • Westgarth-Smith AR, Roy DB, Scholze M, Tucker A, Sumpter JP (2012) The role of the North Atlantic Oscillation in controlling UK butterfly population size and phenology. Ecol Entomol 37:221–232

    PubMed  PubMed Central  Google Scholar 

  • Wetlands International (2013) Waterbird Population Estimates. http://wpe.wetlands.org. Accessed 2 Dec 2013

  • Withey P, van Kooten GC (2011) The effect of climate change on optimal wetlands and waterfowl management in Western Canada. Ecol Econ 70:798–805

    Google Scholar 

  • Zwarts L, Bijlsma RG, van der Kamp J, Wymenga E (2009) Living on the edge: wetlands and birds in a changing Sahel. KNNV Publishing, Zeist

    Google Scholar 

Download references

Acknowledgments

We are grateful to Issa Lélé and Peter Lamb for the Sahel rainfall index, to Henriikka Simola, Finnish Meteorological Institute, for compiling the temperature data, and to local hunters for providing the wing samples of shot ducks. Comments by Preben Clausen and an anonymous reviewer helped to improve the manuscript and are highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannu Pöysä.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pöysä, H., Väänänen, VM. Drivers of breeding numbers in a long-distance migrant, the Garganey (Anas querquedula): effects of climate and hunting pressure. J Ornithol 155, 679–687 (2014). https://doi.org/10.1007/s10336-014-1051-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-014-1051-y

Keywords

Navigation