Skip to main content

Advertisement

Log in

Optimal bird migration revisited

  • Review
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Using optimality perspectives is now regarded as an essential way of analysing and understanding adaptations and behavioural strategies in bird migration. Optimization analyses in bird migration research have diversified greatly during the two recent decades with respect to methods used as well as to topics addressed. Methods range from simple analytical and geometric models to more complex modeling by stochastic dynamic programming, annual routine models and multiobjective optimization. Also, game theory and simulation by selection algorithms have been used. A wide range of aspects of bird migration have been analyzed including flight, fuel deposition, predation risk, stopover site use, transition to breeding, routes and detours, daily timing, fly-and-forage migration, wind selectivity and wind drift, phenotypic flexibility, arrival time and annual molt and migration schedules. Optimization analyses have proven to be particularly important for defining problems and specifying questions and predictions about the consequences of minimization of energy, time and predation risk in bird migration. Optimization analyses will probably also be important in the future, when predictions about bird migration strategies can be tested by much new data obtained by modern tracking techniques and when the importance of new trade-offs, associated with, e.g., digestive physiology, metabolism, immunocompetence and disease, need to be assessed in bird migration research.

Zusammenfassung

In der Vogelzugsforschung erwiesen sich Optimierungsperspektiven für die Analyse und das Verständnis von Adaptionen und Verhaltensstrategien als äusserst essentiell. Hierbei haben sich Optimierungsanalysen in den letzten zwei Jahrzehnten in der Vogelzugsforschung sowohl methodisch als auch thematisch stark diversifiziert. Dabei reichen die Methoden von einfachen, analytischen und geometrischen bis zu mehr komplexen Modellen mit stochastisch-dynamischer Programmierung, Jahresroutinemodellen und multiobjektiver Optimierung. Auch Spieltheorie und Simulierungen mit selektiven Algorithmen wurden angewandt. Analysiert wurde ein weites Spektrum von Vogelzugaspekten, darunter Vogelflug, Fettablagerung, Prädationsdruck, Rastverhalten, Übergang zum Brüten, Zugwege und Umwege, Flug- und Rastwanderungen, Tagesrhythmen, Windselektivität und Winddrift, phenotypische Plastizität, Ankunftszeit und jährliche Zug- und Mauser. Optimierungsanalysen haben sich für die Definition von Problemen und für das Spezifizieren von Fragestellungen und Voraussagen bezüglich Konsequenzen der Minimierung von Energie, Zeit und Prädationsrisiko als speziell wichtig erwiesen. Für die Zukunft werden Optimierungsanalysen wahrscheinlich an Bedeutung gewinnen, wenn es darum geht, Voraussagen über Vogelzugstrategien mit neuen Daten und moderner Technik zu testen und wenn abgeschätzt werden muss, wie wichtig neue Kompromisse in Verbindung mit zum Beispiel Verdauungsphysiologie, Metabolismus, Immunabwehr und Krankheiten sind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Åkesson S (1993) Coastal migration and wind drift compensation in nocturnal passerine migrants. Ornis Scand 24:87–94

    Google Scholar 

  • Alerstam T (1979a) Wind as selective agent in bird migration. Ornis Scand 10:76–93

    Google Scholar 

  • Alerstam T (1979b) Optimal use of wind by migrating birds: combined drift and overcompensation. J Theor Biol 79:341–353

    CAS  PubMed  Google Scholar 

  • Alerstam T (1985) Strategies of migratory flight, illustrated by arctic and common terns, Sterna paradisaea and Sterna hirundo. In: Rankin MA (ed) Migration: mechanisms and adaptive significance, contributions in marine science supplement, vol 27, pp 580–603

  • Alerstam T (1991) Bird flight and optimal migration. Trends Ecol Evol 6:210–215

    CAS  PubMed  Google Scholar 

  • Alerstam T (2000) Bird migration performance on the basis of flight mechanics and trigonometry. In: Domenici P, Blake RW (eds) Biomechanics in animal behaviour. BIOS, Oxford, pp 105–124

    Google Scholar 

  • Alerstam T (2001) Detours in bird migration. J Theor Biol 209:319–331

    CAS  PubMed  Google Scholar 

  • Alerstam T (2003) Bird migration speed. In: Berthold P, Gwinner E, Sonnenschein E (eds) Avian migration. Springer, Berlin, pp 253–267

    Google Scholar 

  • Alerstam T (2006) Strategies for the transition to breeding in time-selected bird migration. Ardea 94:347–357

    Google Scholar 

  • Alerstam T (2008) Great-circle migration of arctic birds. In: Proceedings conference RIN08—animal navigation, paper no. 23, 9 pp (CD). Royal Institute of Navigation, London

  • Alerstam T (2009) Flight by night or day? Optimal daily timing of bird migration. J Theor Biol 258:530–536

    PubMed  Google Scholar 

  • Alerstam T, Hedenström A (1998) The development of bird migration theory. J Avian Biol 29:343–369

    Google Scholar 

  • Alerstam T, Lindström Å (1990) Optimal bird migration: the relative importance of time, energy and safety. In: Gwinner E (ed) Bird migration. Springer, Berlin, pp 331–351

    Google Scholar 

  • Alerstam T, Pettersson S-G (1976) Do birds use waves for orientation when migrating across the sea? Nature 259:205–207

    Google Scholar 

  • Alerstam T, Pettersson S-G (1977) Why do migrating birds fly along coastlines? J Theor Biol 65:699–712

    CAS  PubMed  Google Scholar 

  • Alerstam T, Hjort C, Högstedt G, Jönsson PE, Karlsson J, Larsson B (1986) Spring migration of birds across the Greeland inland ice. Meddr Grønland Biosci 21:1–38

    Google Scholar 

  • Alerstam T, Bäckman J, Gudmundsson GA, Hedenström A, Henningsson SS, Karlsson H, Rosén M, Strandberg R (2007) A polar system of intercontinental bird migration. Proc R Soc Lond B 274:2523–2530

    Google Scholar 

  • Alerstam T, Chapman JW, Bäckman J, Smith AD, Karlsson H, Nilsson C, Reynolds DR, Klaassen RHG, Hill JK (2011) Convergent patterns of long-distance nocturnal migration in noctuid moths and passerine birds. Proc R Soc Lond B (in press)

  • Altizer S, Bartel R, Han BA (2011) Animal migration and infectious disease risk. Science 331:296–302

    CAS  PubMed  Google Scholar 

  • Bäckman J, Alerstam T (2001) Confronting the winds: orientation and flight behaviour of roosting swifts, Apus apus. Proc R Soc Lond B 268:1081–1087

    Google Scholar 

  • Bairlein F (1988) How do migratory songbirds cross the Sahara? Trends Ecol Evol 3:191–194

    CAS  PubMed  Google Scholar 

  • Barta Z, McNamara JM, Houston AI, Weber T, Hedenström A, Feró O (2008) Optimal moult strategies in migratory birds. Philos Trans R Soc Lond B 363:211–229

    Google Scholar 

  • Battley PF, Rogers DI, van Gils JA, Piersma T, Hassell CJ, Boyle A, Yang H-Y (2005) How do red knots Calidris canutus leave Northwest Australia in May and reach the breeding grounds in June? Predictions of stopover times, fuelling rates and prey quality in the Yellow Sea. J Avian Biol 36:494–500

    Google Scholar 

  • Bauer S, van Dinther M, Høgda KA, Klaassen M, Madsen J (2008) The consequences of climate-driven stop-over sites changes on migration schedules and fitness of Arctic geese. J Anim Ecol 77:654–660

    PubMed  Google Scholar 

  • Bauer S, Ens BJ, Klaassen M (2010) Many routes lead to Rome: potential causes for the multi-route migration system of red knots, Calidris canutus islandica. Ecology 91:1822–1831

    PubMed  Google Scholar 

  • Bayly NJ (2006) Optimality in avian migratory fuelling behaviour: a study od a trans-Sahara migrant. Anim Behav 71:173–182

    Google Scholar 

  • Bayly NJ (2007) Extreme fattening by sedge warblers, Acrocephalus schoenobaenus, in not triggered by food availability alone. Anim Behav 74:471–479

    Google Scholar 

  • Beekman JH, Nolet BA, Klaassen M (2002) Skipping swans: fuelling rates and wind conditions determine differential use of migratory stopover sites of Bewick’s swans Cygnus bewickii. Ardea 90:437–460

    Google Scholar 

  • Bibby CJ, Green RE (1981) Autumn migration strategies of reed and sedge warblers. Ornis Scand 12:1–12

    Google Scholar 

  • Biebach H (1990) Strategies of trans-Sahara migrants. In: Gwinner E (ed) Bird migration. Physiology and ecophysiology. Springer, Berlin, pp 352–367

    Google Scholar 

  • Bingman VP, Able KP, Kerlinger P (1982) Wind drift, compensation, and the use of landmarks by nocturnal bird migrants. Anim Behav 30:49–53

    Google Scholar 

  • Bloch R, Bruderer B (1982) The air speed of migrating birds and its relationships with the wind. Behav Ecol Sociobiol 11:19–24

    Google Scholar 

  • Carpenter FL, Paton DC, Hixon MA (1983) Weight gain and adjustment of feeding territory size in migrant rufous hummingbirds. Proc Natl Acad Sci USA 80:7259–7263

    CAS  PubMed  Google Scholar 

  • Chernetsov N (2010) Recent experimental data on the energy costs of avian flight call for a revision of optimal migration theory. Auk 127:232–234

    Google Scholar 

  • Clark CW, Butler RW (1999) Fitness components of avian migration: a dynamic model of western sandpiper migration. Evol Ecol Res 1:443–457

    Google Scholar 

  • Dänhardt J, Lindström Å (2001) Optimal departure decisions of songbirds from an experimental stopover site and the significance of weather. Anim Behav 62:235–243

    Google Scholar 

  • Delingat J, Dierschke V, Schmaljohann H, Mendel B, Bairlein F (2006) Daily stopovers as optimal migration strategy in a long-distance migrating passerine; the northern wheatear Oenanthe oenanthe. Ardea 94:593–605

    Google Scholar 

  • Delingat J, Bairlein F, Hedenström A (2008) Obligatory barrier crossing and adaptive fuel management in migratory birds: the case of the Atlantic crossing in northern Wheatears (Oenanthe oenanthe). Behav Ecol Sociobiol 62:1069–1078

    Google Scholar 

  • Dierschke V (2003) Predation hazard during migratory stopover: are light or heavy birds under risk? J Avian Biol 34:24–29

    Google Scholar 

  • Dierschke V, Mendel B, Schmaljohann H (2005) Differential timing of spring migration in northern wheatears Oenanthe oenanthe: hurried males or weak females? Behav Ecol Sociobiol 57:470–480

    Google Scholar 

  • Dietz MW, Spaans B, Dekinga A, Klaassen M, Korthals H, van Leeuwen C, Piersma T (2010) Do red knots (Calidris canutus islandica) routinely skip Iceland during southward migration? Condor 112:48–55

    Google Scholar 

  • Duriez O, Bauer S, Destin A, Madsen J, Nolet BA, Stillman RA, Klaassen M (2009) What decision rules might pink-footed geese use to depart on migration? An individual-based model. Behav Ecol 20:560–569

    Google Scholar 

  • Eichhorn G, Drent RH, Stahl J, Leito A, Alerstam T (2009) Skipping the Baltic: the emergence of a dichotomy of alternative spring migration strategies in Russian barnacle geese. J Anim Ecol 78:63–72

    PubMed  Google Scholar 

  • Engel S, Bowlin MS, Hedenström A (2010) The role of wind-tunnel studies in integrative research on migration biology. Integr Comp Biol 50:323–335

    PubMed  Google Scholar 

  • Erni B, Liechti F, Bruderer B (2002) Stopover strategies in passerine bird migration: a simulation study. J Theor Biol 219:479–493

    PubMed  Google Scholar 

  • Erni B, Liechti F, Bruderer B (2003) How does a first year passerine migrant find its way? Simulating migration mechanisms and behavioural adaptations. Oikos 103:333–340

    Google Scholar 

  • Erni B, Liechti F, Bruderer B (2005) The role of wind in passerine migration between Europe and Africa. Behav Ecol 16:732–740

    Google Scholar 

  • Fagerström T, Wiklund C (1982) Why do males emerge before females? Protandry as a mating strategy in male and female butterflies. Oecologia 52:164–166

    PubMed  Google Scholar 

  • Felicísimo AM, Munoz J, González-Solis J (2008) Ocean surface winds drive dynamics of transoceanic aerial movements. PLoS One 3:e2928

    PubMed  PubMed Central  Google Scholar 

  • Fransson, T (1998) Patterns of migratory fuelling in whitethroats Sylvia communis in relation to departure. J Avian Biol 29:569–573

    Google Scholar 

  • Fuchs T, Haney A, Jechura TJ, Moore FR, Bingman VP (2006) Daytime naps in night-migrating birds: behavioural adaptations to seasonal sleep deprivation in the Swainson’s thrush, Catharus ustulatus. Anim Behav 72:951–958

    Google Scholar 

  • Gauthreaux SA Jr, Michi JE, Belser CG (2005) The temporal and spatial structure of the atmosphere and its influence on bird migration strategies. In: Greenberg R, Marra PP (eds) Birds of two worlds. The ecology and evolution of migration. John Hopkins University Press, Baltimore, pp 182–193

    Google Scholar 

  • Gill RE Jr, Tibbitts TL, Douglas DC, Handel CM, Mulcahy DM, Gottschalk JC, Warnock N, McCaffery BJ, Battley PF, Piersma T (2009) Extreme endurance flights by landbirds crossing the Pacific Ocean: ecological corridor rather than barrier. Proc R Soc Lond B 276:447–457

    Google Scholar 

  • Green M (2004) Flying with the wind—spring migration of Arctic-breeding waders and geese over South Sweden. Ardea 92:145–160

    Google Scholar 

  • Gschweng M, Kalko EKV, Querner U, Fiedler W, Berthold P (2008) All across Africa: highly individual migration routes of Eleonora’s falcon. Proc R Soc Lond B 275:2887–2896

    Google Scholar 

  • Gudmundsson GA, Lindström Å, Alerstam T (1991) Optimal fat loads and long distance flights by migrating knots Calidris canutus, sanderlings C. alba and turnstones Arenaria interpres. Ibis 133:140–152

    Google Scholar 

  • Handel CM, Gill RE Jr (2010) Wayward youth: trans-Beringian movement and differential southward migration by juvenil sharp-tailed sandpipers. Arctic 63:273–288

    Google Scholar 

  • Hasselquist D, Lindström Å, Jenni-Eiermann S, Koolhaas A, Piersma T (2007) Long flights do not influence immune responses of a long-distant migrant bird: a wind-tunnel experiment. J Exp Biol 210:1123–1131

    PubMed  Google Scholar 

  • Hedenström A (1993) Migration by soaring or flapping flight in birds: the relative importance of energy cost and speed. Philos Trans R Soc Lond B 342:353–361

    Google Scholar 

  • Hedenström A (2008) Adaptations to migration in birds: behavioural strategies, morphology and scaling effects. Philos Trans R Soc Lond B 363:287–299

    Google Scholar 

  • Hedenström A (2009) Optimal migration strategies in bats. J Mammal 90:1298–1309

    Google Scholar 

  • Hedenström A, Alerstam T (1994) Optimal climbing flight in migrating birds: predictions and observations of knot and turnstone. Anim Behav 48:47–54

    Google Scholar 

  • Hedenström A, Alerstam T (1995) Optimal flight speed of birds. Philos Trans R Soc Lond B 348:471–487

    Google Scholar 

  • Hedenström A, Alerstam T (1996) Skylark optimal flight speeds for flying nowhere and somewhere. Behav Ecol 7:121–126

    Google Scholar 

  • Hedenström A, Alerstam T (1997) Optimum fuel loads in migratory birds: distinguishing between time and energy minimization. J Theor Biol 189:227–234

    PubMed  Google Scholar 

  • Hedenström A, Alerstam T (1998) How fast can birds migrate? J Avian Biol 29:424–432

    Google Scholar 

  • Hedenström A, Barta Z, Helm B, Houston AI, McNamara JM, Jonzén N (2007) Migration speed and scheduling of annual events by migrating birds in relation to climate change. Clim Res 35:79–91

    Google Scholar 

  • Henningsson P, Karlsson H, Bäckman J, Alerstam T, Hedenström A (2009) Flight speeds of swifts (Apus apus): seasonal differences smaller than expected. Proc R Soc Lond B 276:2395–2401

    CAS  Google Scholar 

  • Henningsson P, Johansson C, Hedenström A (2010) How swift are swifts Apus apus? J Avian Biol 41:94–98

    Google Scholar 

  • Hildén O, Saurola P (1982) Speed of autumn migration of birds ringed in Finland. Ornis Fenn 59:140–143

    Google Scholar 

  • Holmgren N, Hedenström A (1995) The scheduling of molt in migratory birds. Evol Ecol 9:354–368

    Google Scholar 

  • Houston AI (1998) Models of optimal avian migration: state, time and predation. J Avian Biol 29:395–404

    Google Scholar 

  • Houston AI (2000) The strength of selection in the context of migration speed. Proc R Soc Lond B 267:2393–2395

    CAS  Google Scholar 

  • Jonker RM, Eichhorn G, van Langevelde F, Bauer S (2010) Predation danger can explain changes in timing of migration: the case of the barnacle goose. PLoS One 5:e11369

    PubMed  PubMed Central  Google Scholar 

  • Jonzén N, Hedenström A, Lundberg P (2007) Climate change and the optimal arrival of migratory birds. Proc R Soc Lond B 274:269–274

    Google Scholar 

  • Karlsson H, Bäckman J, Nilsson C, Alerstam T (2010) Migrating birds fly faster in spring than in autumn. In: Karlsson H (ed) There and back again: nocturnal migratory behaviour of birds during spring and autumn. PhD thesis, Lund University, pp 79–87

  • Kerlinger P, Moore FR (1989) Atmospheric structure and avian migration. In: Power DM (ed) Current ornithology, vol 6. Plenum, New York, pp 109–142

    Google Scholar 

  • Klaassen M, Lindström Å (1996) Departure fuel loads in time-minimizing migrating birds can be explained by the energy costs of being heavy. J Theor Biol 183:29–34

    Google Scholar 

  • Klaassen M, Bauer S, Madsen J, Possingham H (2008a) Optimal management of a goose flyway: migrant management at minimum cost. J Appl Ecol 45:1446–1452

    Google Scholar 

  • Klaassen RHG, Strandberg R, Hake M, Alerstam T (2008b) Flexibility in daily travel routines causes regional variation in bird migration speed. Behav Ecol Sociobiol 62:1427–1432

    Google Scholar 

  • Klaassen RHG, Strandberg R, Hake M, Olofsson P, Tøttrup AP, Alerstam T (2010) Loop migration in adult marsh harriers Circus aeruginosus, as revealed by satellite telemetry. J Avian Biol 41:200–207

    Google Scholar 

  • Klaasen RHG, Hake M, Strandberg R, Alerstam T (2011) Geographic and temporal flexibility in the response to crosswinds by migrating raptors. Proc R Soc Lond B 278:1339–1346

    Google Scholar 

  • Kokko H (1999) Competition for early arrival in migratory birds. J Anim Ecol 68:940–950

    Google Scholar 

  • Kokko H, Gunnarsson TG, Morrell LJ, Gill JA (2006) Why do female migratory birds arrive later than males? J Anim Ecol 75:1293–1303

    PubMed  Google Scholar 

  • Kullberg C, Fransson T, Jacobsson S (1996) Impaired predator evasion in fat blackcaps (Sylvia atricapilla). Proc R Soc Lond B 265:1659–1664

    Google Scholar 

  • Kvist A, Lindström Å, Green M, Piersma T, Visser GH (2001) Carrying large fuel loads during sustained bird flight is cheaper than expected. Nature 413:730–732

    CAS  PubMed  Google Scholar 

  • Lank DB, Ydenberg RC (2003) Death and danger at migratory stopovers: problems with “predation risk”. J Avian Biol 34:225–228

    Google Scholar 

  • Lank DB, Butler RW, Ireland J, Ydenberg RC (2003) Effects of predation danger on migration strategies of sandpipers. Oikos 103:303–319

    Google Scholar 

  • Liechti F (1995) Modelling optimal heading and airspeed of migrating birds in relation to energy expenditure and wind influence. J Avian Biol 26:330–336

    Google Scholar 

  • Liechti F (2006) Birds: blowin’ by the wind? J Ornithol 147:202–211

    Google Scholar 

  • Liechti F, Bruderer B (1998) The relevance of wind for optimal migration theory. J Avian Biol 29:561–568

    Google Scholar 

  • Liechti F, Hedenström A, Alerstam T (1994) Effects of sidewinds on optimal flight speed of birds. J Theor Biol 170:219–225

    Google Scholar 

  • Lind J, Creswell W (2006) Anti-predation behaviour during bird migration: the benefit of studying multiple behavioural dimensions. J Ornithol 147:310–316

    Google Scholar 

  • Lindström Å (1990) The role of predation risk in stopover habitat selection in migrating bramblings Fringilla montifringilla. Behav Ecol 1:102–106

    Google Scholar 

  • Lindström Å, Alerstam T (1992) Optimal fat loads in migrating birds: a test of the time minimization hypothesis. Am Nat 140:477–491

    PubMed  Google Scholar 

  • Lindström Å, Gill RE Jr, Jamieson SE, McCaffery B, Wennerberg L, Wikelski M, Klaassen M (2011) A puzzling migratory detour: are fueling conditions in Alaska driving the movement of juvenile sharp-tailed sandpipers? Condor 113:129–139

    Google Scholar 

  • López-López P, Limiñana R, Mellone U, Urios V (2010) From the Meditrranean Sea to Madagascar. Are there ecological barriers for the long-distant migrant Eleonora’s falcon? Landscape Ecol 25:803–813

    Google Scholar 

  • McNamara JM, Welham RK, Houston AI (1998) The timing of migration within the context of an annual routine. J Avian Biol 29:416–423

    Google Scholar 

  • Mellone U, López-López P, Limiñana R, Urios V (in press) Weather conditions promote route flexibility during open ocean crossing in a long-distance migratory raptor. Int J Biometeorol. doi:https://doi.org/10.1007/s00484-010-0368-3

  • Newton I (2008) The migration ecology of birds. Academic, Oxford

    Google Scholar 

  • Pennycuick CJ (1969) The mechanics of bird migration. Ibis 111:525–556

    Google Scholar 

  • Pennycuick CJ (1975) Mecanics of flight. In: Farner DS, King JR (eds) Avian biology, vol 5. Academic, London, pp 1–75

    Google Scholar 

  • Pennycuick CJ (2008) Modelling the flying bird. Academic, London

    Google Scholar 

  • Piersma T, Lindström Å (1997) Rapid reversible changes in organ size as a component of adaptive behaviour. Trends Ecol Evol 12:134–138

    CAS  PubMed  Google Scholar 

  • Piersma T, van Gils JA (2011) The flexible phenotype. Oxford University Press, Oxford

    Google Scholar 

  • Pomeroy AC, Butler RW, Ydenberg RC (2006) Experimental evidence that migrants adjust usage at a stopover site to trade off food and danger. Behav Ecol 17:1041–1045

    Google Scholar 

  • Purcell J, Brodin A (2007) Factors influencing route choice by avian migrants: a dynamic programming model of Pacific brant migration. J Theor Biol 249:804–816

    PubMed  Google Scholar 

  • Rattenborg NC, Mandt BH, Obermeyer WH, Winsauer PJ, Huber R, Wikelski M, Benca RM (2004) Migratory sleeplessness in the white-crowned sparrow. PLoS Biol 2:924–936

    CAS  Google Scholar 

  • Richardson WJ (1991) Wind and orientation of migrating birds: a review. In: Berthold P (ed) Orientation in birds. Birkhäuser, Basel, pp 226–249

    Google Scholar 

  • Rubolini D, Gardiazabal Pastor A, Pilastro A, Spina F (2002) Ecological barriers shaping fuel stores in barn swallows Hirundo rustica following the central and western Mediterranean flyways. J Avian Biol 33:15–22

    Google Scholar 

  • Rubolini D, Spina F, Saino N (2004) Protandry and sexual dimorphism in trans-Saharan migratory birds. Behav Ecol 15:592–601

    Google Scholar 

  • Schaub M, Jenni L, Bairlein F (2008) Fuel stores, fuel accumulation, and the decision to depart from a migration stopover site. Behav Ecol 19:657–666

    Google Scholar 

  • Schmaljohann H, Dierschke V (2005) Optimal bird migration and predation risk: a field experiment with northern wheatears Oenanthe oenanthe. J Anim Ecol 74:131–138

    Google Scholar 

  • Schmaljohann H, Liechti F (2009) Adjustment of wingbeat frequency and air speed to air density in free-flying migratory birds. J Exp Biol 212:3633–3642

    CAS  PubMed  Google Scholar 

  • Schmaljohann H, Liechti F, Bruderer B (2007) Songbird migration across the Sahara: the non-stop hypothesis rejected!. Proc R Soc Lond B 274:735–739

    Google Scholar 

  • Schmaljohann H, Bruderer B, Liechti F (2008) Sustained bird flights occur at temperatures far beyond expected limits. Anim Behav 76:1133–1138

    Google Scholar 

  • Schmaljohann H, Liechti F, Bruderer B (2009) Trans-Sahara migrants select flight altitudes to minimize energy costs rather than water loss. Behav Ecol Sociobiol 63:1609–1619

    Google Scholar 

  • Shaffer SA, Tremblay Y, Weimerskirch H, Scott D, Thompson DR, Sagar PM, Moller H, Taylor GA, Foley DG, Block BA, Costa DP (2006) Migratory shearwaters integrate oceanic resources across the Pacific Ocean in an endless summer. Proc Natl Acad Sci USA 113:12799–12802

    Google Scholar 

  • Shamoun-Baranes J, Leyrer J, van Loon E, Bocher P, Robin F, Meunier F, Piersma T (2010) Stochastic atmospheric assistance and the use of emergency staging sites by migrants. Proc R Soc Lond B 277:1505–1511

    Google Scholar 

  • Sillett TS, Holmes RT (2002) Variation is survivorship of a migratory songbird throughout its annual cycle. J Anim Ecol 71:296–308

    Google Scholar 

  • Spaar R, Stark H, Liechti F (1998) Migratory flight strategies of Levant sparrowhawks: time or energy minimization? Anim Behav 56:1185–1197

    CAS  PubMed  Google Scholar 

  • Stephens DW, Krebs JR (1986) Foraging theory. Princeton University Press, Princeton

    Google Scholar 

  • Strandberg R, Alerstam T (2007) The strategy of fly-and-forage migration, illustrated for the osprey (Pandion haliaetus). Behav Ecol Sociobiol 61:1865–1875

    Google Scholar 

  • Strandberg R, Klaassen RHG, Olofsson P, Alerstam T (2009) Daily travel schedules of adult Eurasian hobbies Falco subbuteo—variability in flight hours and migration speed along the route. Ardea 97:287–295

    Google Scholar 

  • Thorup K, Alerstam T, Hake M, Kjellén N (2003) Bird orientation: compensation for wind drift in migrating raptors is age dependent. Proc R Soc Lond B (Suppl Biol Lett) 270:S8–S11

    Google Scholar 

  • Thorup K, Alerstam T, Hake M, Kjellén N (2006) Traveling or stopping of migrating birds in relation to wind: an illustration for the osprey. Behav Ecol 17:497–502

    Google Scholar 

  • Tobalske BW, Hedrick TL, Dial KP, Biewener AA (2003) Comparative power curves in bird flight. Nature 421:363–366

    CAS  PubMed  Google Scholar 

  • Tucker VA (1974) Energetics of natural avian flight. In: Paynter RA (ed) Avian energetics. Publ Nuttall Orn Club no 15, Cambridge, MA, pp 298–328

  • van Gils JA, Piersma T, Dekinga A, Dietz MW (2003) Cost-benefit analysis of mollusc-eating in a shorebird. II Optimising gizzard size in the face of seasonal demands. J Exp Biol 206:3369–3380

    PubMed  Google Scholar 

  • van Gils JA, Piersma T, Dekinga A, Battley PF (2006) Modelling phenotypic flexibility: an optimality analysis of gizzard size in red knots Calidris canutus. Ardea 94:409–420

    Google Scholar 

  • Vrugt JA, van Belle J, Bouten W (2007) Pareto front analysis of flight time and energy use in long-distance migration. J Avian Biol 38:432–442

    Google Scholar 

  • Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Eclogical responses to recent climate change. Nature 416:389–395

    CAS  Google Scholar 

  • Ward DH, Dau CP, Tibbitts TL, Sedinger JS, Anderson BA, Hines JE (2009) Change in abundance of Pacific brant wintering in Alaska: Evidence of a climate warming effect? Arctic 62:301–311

    Google Scholar 

  • Weber TP (1999) Blissful ignorance? Departure rules for migrants in spatially heterogeneous environments. J Theor Biol 199:415–424

    CAS  PubMed  Google Scholar 

  • Weber TP, Hedenström A (2000) Optimal stopover decisions under wind influence: the effects of correlated winds. J Theor Biol 205:95–104

    CAS  PubMed  Google Scholar 

  • Weber TP, Hedenström A (2001) Long-distance migrants as a model system of structural and physiological plasticity. Evol Ecol Res 3:255–271

    Google Scholar 

  • Weber TP, Houston AI, Ens BJ (1994) Optimal departure fat loads and site use in avian migration: an analytical model. Proc R Soc Lond B 258:29–34

    Google Scholar 

  • Weber TP, Alerstam T, Hedenström A (1998a) Stopover decisions under wind influence. J Avian Biol 29:552–560

    Google Scholar 

  • Weber TP, Ens BJ, Houston AI (1998b) Optimal avian migration: a dynamic model of fuel stores and site use. Evol Ecol 12:377–401

    Google Scholar 

  • Weber TP, Fransson T, Houston AI (1999a) Should I stay or should I go? Testing optimality models of stopover decisions in migrating birds. Behav Ecol Sociobiol 46:280–286

    Google Scholar 

  • Weber TP, Houston AI, Ens BJ (1999b) The consequences of habitat loss at migratory stopover sites: a theoretical investigation. J Avian Biol 30:416–426

    Google Scholar 

  • Weimerskirch H, Guionnet T, Martin J, Shaffer SA, Costa DP (2000) Fast and fuel efficient? Optimal use of wind by flying albatrosses. Proc R Soc Lond B 267:1869–1874

    CAS  Google Scholar 

  • Whelan CJ, Schmidt KA (2007) Food acquisition, processing, and digestion. In: Stephens DW, Brown JS, Ydenberg RC (eds) Foraging behavior and ecology. University of Chicago Press, Chicago, pp 141–172

    Google Scholar 

  • Wikelski M, Tarlow EM, Raim A, Diehl RH, Larkin RP, Visser GH (2003) Costs of migration in free-flying songbirds. Nature 423:704

    CAS  PubMed  Google Scholar 

  • Wiklund C, Fagerström T (1977) Why do males emerge before females? A hypothesis to explain the incidence of protandry in butterflies. Oecologia 31:153–158

    PubMed  Google Scholar 

  • Ydenberg RC, Butler RW, Lank DB, Smith BD, Ireland J (2004) Western sandpipers have altered migration tactics as peregrine falcon populations have recovered. Proc R Soc Lond B 271:1263–1269

    Google Scholar 

  • Ydenberg RC, Brown JS, Stephens DW (2007a) Foraging: an overview. In: Stephens DW, Brown JS, Ydenberg RC (eds) Foraging behavior and ecology. University of Chicago Press, Chicago, pp 1–28

    Google Scholar 

  • Ydenberg RC, Butler RW, Lank DB (2007b) Effects of predator landscapes on the evolutionary ecology of routing, timing and molt by long-distance migrants. J Avian Biol 38:523–529

    Google Scholar 

  • Zehnder S, Åkesson S, Liechti F, Bruderer B (2001) Nocturnal autumn bird migration at Falsterbo, South Sweden. J Avian Biol 32:239–248

    Google Scholar 

Download references

Acknowledgments

I am very grateful to Franz Bairlein for suggesting this review and for giving much support and stimulation both personally and by organizing the very fruitful 100th year Anniversary Scientific Symposium at the Institute of Avian Research in Wilhelmshaven 2010. I am also grateful to Johan Bäckman for comments and for assistance with figures, and to Heiko Schmaljohann for valuable comments. My work is funded by the Swedish Research Council and I am associated with the Centre of Animal Movement Research at Lund University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Alerstam.

Additional information

Communicated by F. Bairlein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alerstam, T. Optimal bird migration revisited. J Ornithol 152 (Suppl 1), 5–23 (2011). https://doi.org/10.1007/s10336-011-0694-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-011-0694-1

Keywords

Navigation