Skip to main content

Advertisement

Log in

Predictive distribution models applied to satellite tracks: modelling the western African winter range of European migrant Black Storks Ciconia nigra

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Predictive distribution models generally use data from multiple individuals each associated with a unique observation location, coupled with environmental parameters, to define the overall suitable area where the species could occur. Whether the use of multiple locations from few individuals is similarly efficient to model species distribution is not yet known. If so, the method could bring valuable inputs to identify priority conservation areas for rare or elusive species, especially those large vertebrates tracked with telemetry. Satellite tracking of long-distance migrants often produces numerous locations of surveyed individuals across their wintering ranges. We examined such wintering tracks to test if the wintering locations obtained from few tracked individuals could be useful to model the full species wintering range, using habitat suitability models. We aimed at predicting the wintering distribution of West European Black Storks Ciconia nigra. We used tracks of 9 storks, retaining one location per winter day per individual for a total of 972 different locations. Combined with bioclimatic and land cover data in habitat suitability modelling within an ensemble forecast framework, we obtained a probabilistic distribution which largely matched the previously reported wintering range of the species in western and central Africa. Using tracks of the six individuals with more than 100 locations each, we obtained a distribution range closely matching the nine-bird range. A range similar to the nine-bird range could be predicted by models using data from less numerous individuals and by considering a lower threshold value. Habitat suitability models using wintering record locations of satellite-tracked migrant birds can therefore help to get a better picture of the wintering distribution range, and hence provide more accurate information for conservation planning on African wintering grounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aarts G, MacKenzie M, McConnell B, Fedak M, Matthiopoulos J (2008) Estimating space-use and habitat preference from wildlife telemetry data. Ecography 31:140–160

    Google Scholar 

  • Abdulla S (1999) Tracking mammals from space. Nature News doi:https://doi.org/10.1038/news990923-9

  • Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232

    Google Scholar 

  • Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47

    PubMed  Google Scholar 

  • Araújo MB, Thuiller W, Yoccoz NG (2009) Reopening the climate envelope reveals macroscale associations with climate in European birds. Proc Natl Acad Sci USA 106:E45–E46

    PubMed  Google Scholar 

  • Barbet-Massin M, Walther B, Thuiller W, Rahbeck C, Jiguet F (2009) Potential impacts of climate change on the winter distribution of Afro-Palaearctic migrant passerines. Biol Lett 5:248–251

    PubMed  PubMed Central  Google Scholar 

  • Berthold P, van den Bossche W, Fielder W, Kaatz C, Kaatz M, Leshem Y, Nowak E, Querner U (2001) Detection of a new important staging and wintering area of the white stork Ciconia ciconia by satellite tracking. Ibis 143:450–455

    Google Scholar 

  • BirdLife International (2004) Birds in Europe: population estimates, trends and conservation status. BirdLife International Conservation Series, Cambridge, UK

    Google Scholar 

  • Bobek M, Pojer F, Peske L, Simek J (2003) African Odyssey project. Research on the black stork migration and ecology and its presentation on the internet. Aves 40:212–221

    Google Scholar 

  • Boustany AM, Davis SF, Pyle P, Anderson SD, Le Boeuf BJ, Block BA (2002) Satellite tagging. Expanded niche for white sharks. Nature 415:35–36

    CAS  PubMed  Google Scholar 

  • Brown LH, Urban EK, Newman K (1982) The birds of Africa, vol 1. Academic, London

    Google Scholar 

  • Burger AE, Shaffer SA (2008) Application of tracking and data-logging technology in research and conservation of seabirds. Auk 125:253–264

    Google Scholar 

  • Busby JR (1991) BIOCLIM–a bioclimate analysis and prediction system. In: Margules CR, Austin MP (eds) Nature conservation: cost effective biological surveys and data analysis. Canberra, Australia, CSIRO, pp 64–68

    Google Scholar 

  • Chevallier D, Baillon F, Robin J-P, Le Maho Y, Massemin-Challet S (2008) Prey selection of the black stork in the African wintering area. J Zool 276:276–284

    Google Scholar 

  • Cyranoski D (2002) Satellite set to keep track of whales. Nature 415:354

    CAS  PubMed  Google Scholar 

  • Czech HA, Parsons KC (2002) Agricultural wetlands and waterbirds: a review. Waterbirds 25:56–65

    Google Scholar 

  • Eva HD, Grégoire JM, Mayaux P, Chevallier D (2003) Suivi des feux de végétation dans les aires protégées d’Afrique Sub-saharienne. Publications of the European Commission, EUR 20862 FR. Office for Official Publications of the European Commission, Luxembourg

    Google Scholar 

  • Fuller MR, Seegar WS, Howey PW (1995) The use of satellite systems for the study of bird migration. Israel J Zool 41:243–252

    Google Scholar 

  • Groom MJ, Meffe GK, Carroll CR (2005) Principles of conservation biology, 3rd edn. Sinauer, New York

    Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Mod 135:147–186

    Google Scholar 

  • Hays GC, Houghton JDR, Myers AE (2004) Endangered species pan-Atlantic leatherback turtle movements. Nature 429:522

    CAS  PubMed  Google Scholar 

  • Higuchi H, Ozaki K, Fijita G, Minton J, Ueta M, Soma M, Mita M (1996) Satellite tracking of white-naped crane migration and the importance of the Korean demilitarized zone. Conserv Biol 10:806–812

    Google Scholar 

  • International Wetlands (2002) Waterbird population estimates, 3rd edn. Wetlands International Global Series No. 12, The Netherlands

    Google Scholar 

  • Jadoul G, Libois R, van den Bossche W, Strazds M (eds) (2001) Proceedings of the third international conference on the black stork, 28–31 mars 2001. Fourneau Saint Michel, Belgium

    Google Scholar 

  • Jiguet F, Villarubias S (2004) Satellite tracking of breeding black storks Ciconia nigra: new incomes for spatial conservation issues. Biol Conserv 120:153–160

    Google Scholar 

  • Johst K, Brandl R, Pfeifer R (2001) Foraging in a patchy and dynamic landscape: human land use and the white stork. Ecol Appl 11:60–69

    Google Scholar 

  • Jourdain E, Gauthier-Clerc M, Kayser Y, Lafaye M, Sabatier P (2008) Satellite-tracking migrating juvenile purple herons Ardea purpurea from the Camargue area, France. Ardea 96:121–124

    Google Scholar 

  • Jouventin P, Weimerskirch H (1990) Satellite tracking of wandering albatrosses. Nature 343:746–748

    Google Scholar 

  • Kaatz C, Kaatz M (1995) Satellite telemetry of the white stork––a basis for new conservation concepts. In: Biber O, Enggist P, Marti C, Salathé T (eds) Proceedings of the International Symposium on the white stork–(western population). Basel, Switzerland, pp 337–339

    Google Scholar 

  • Kaivanto K (2008) Maximization of the sum of sensitivity and specificity as a diagnostic cutpoint criterion. J Clin Epidem 61:517–518

    Google Scholar 

  • Le Maître DC, Thuiller W, Schonegevel L (2008) Developing an approach to defining the potential distributions of invasive plant species: a case study of Hakea species in South Africa. Glob Ecol Biogeogr 17:569–584

    Google Scholar 

  • Lindberg MS, Walker J (2007) Satellite telemetry in avian research and management: sample size considerations. J Wildl Manage 71:1002–1009

    Google Scholar 

  • Liu C, Berry PM, Dawson TP, Pearson GP (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393

    Google Scholar 

  • Marmion M, Parviainen M, Luoto M, Heikkinen RK, Thuiller W (2009) Evaluation of consensus methods in predictive species distribution modelling. Divers Distrib 15:56–69

    Google Scholar 

  • Mayaux P, Bartholomé E, Fritz S, Belward A (2004) A new land-cover map of Africa for the year 2000. J Biogeogr 31:861–877

    Google Scholar 

  • Norris DR, Marra PP, Kyser TK, Sherry TW, Ratcliffe LM (2003) Tropical winter habitat limits reproductive success on the temperate breeding grounds in a migratory bird. Proc R Soc Lond B 271:59–64

    Google Scholar 

  • Okes N, Hockey PAR, Pichegru L, van der Lingen C, Crawford RJM, Grémillet D (2009) Competition for shifting resources in the southern Benguela upwelling: seabirds versus purse-seine fisheries. Biol Conserv 142:2361–2368

    Google Scholar 

  • Olsson O, Rogers DJ (2009) Predicting the distribution of a suitable habitat for the white stork in southern Sweden: identifying priority areas for reintroduction and habitat restoration. Anim Conserv 12:62–70

    Google Scholar 

  • Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–371

    Google Scholar 

  • Pearson RG, Thuiller W, Araújo MB, Martinez-Meyer E, Brotons L, McClean C, Miles L, Segurado P, Dawson TP, Lees DC (2006) Model-based uncertainty in species range prediction. J Biogeogr 33:1704–1711

    Google Scholar 

  • Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 24:102–117

    Google Scholar 

  • Petersen MR, Douglas DC, Mulcahy DM (1995) Use of implanted satellite transmitters to locate spectacled eiders at sea. Condor 97:276–278

    Google Scholar 

  • Robbins CS, Saner JR, Greenberg RS, Droege S (1989) Population declines in North American birds that migrate to the neotropics. Proc Natl Acad Sci USA 86:7658–7662

    CAS  PubMed  Google Scholar 

  • Robinson SK, Thompson FR III, Donovan TM, Whitehead DR, Faaborg J (1995) Regional forest fragmentation and the nesting success of migratory birds. Science 267:1987–1990

    CAS  PubMed  Google Scholar 

  • Sanderson FJ, Donald PF, Pain DJ, Burfield IJ, van Bommel FPJ (2006) Long-term population declines in Afro-Palearctic migrant birds. Biol Conserv 131:93–105

    Google Scholar 

  • Sherry TW, Holmes RT (1996) Winter habitat quality, population limitation and conservation of neotropical nearctic migrant birds. Ecology 77:36–48

    Google Scholar 

  • Skov H, Humphreys E, Garthe S, Geitner K, Grémillet D, Hamer KC, Hennicke J, Parner H, Wanless S (2008) Application of habitat suitability modelling to tracking data of marine animals as a means of analyzing their feeding habitats. Ecol Mod 212:504–512

    Google Scholar 

  • Thorup K, Fuller M, Alerstam T, Hake M, Kjellen N, Standberg R (2006) Do migratory flight paths of raptors follow constant geographical or geomagnetic courses? Anim Behav 72:875–880

    Google Scholar 

  • Thuiller W, Lafourcade B, Engler R, Araújo MB (2009) BIOMOD–A platform for ensemble forecasting of species distributions. Ecography 32:1–5

    Google Scholar 

  • Trebilco R, Gales R, Baker B, Terauds A, Sumner MD (2008) At sea movement of Macquarie Island giant petrels: relationships with marine protected areas and regional fisheries management organisations. Biol Conserv 141:2942–2958

    Google Scholar 

  • Wiig O (1995) Distribution of polar bears (Ursus maritimus) in the Svalbard area. J Zool 237:515–529

    Google Scholar 

Download references

Acknowledgments

Particular acknowledgements go to the Office National des Forêts (O.N.F) in collaboration with SOLON and SOBA associations, the School of Bure les Templiers. This work was funded by Centre National de la Recherche Scientifique (CNRS), the Institut de Recherche pour le Développement (IRD), the Doué la Fontaine and Amnéville Zoos, the ACOVARENA (Association pour la Conservation et la Valorisation des Ressources Naturelles), the West African Ornithological Society and the Institut de France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Jiguet.

Additional information

Communicated by F. Bairlein.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 24 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiguet, F., Barbet-Massin, M. & Chevallier, D. Predictive distribution models applied to satellite tracks: modelling the western African winter range of European migrant Black Storks Ciconia nigra . J Ornithol 152, 111–118 (2011). https://doi.org/10.1007/s10336-010-0555-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-010-0555-3

Keywords

Navigation