Skip to main content
Log in

Use of mitochondrial and nuclear genes to infer the origin of two endemic pigeons from the Canary Islands

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

DNA nucleotide sequences from two mitochondrial genes (cytochrome b and NADH dehydrogenase subunit 2) and the nuclear intron 7 of β-fibrinogen were obtained to infer the phylogenetic origin of the two endemic Canarian pigeons: Bolle’s Pigeon (Columba bollii) and Laurel Pigeon (C. junoniae). Phylogenetic analyses of mitochondrial and nuclear genes based on maximum parsimony, maximum likelihood and Bayesian inference all converged into a congruent topology: C. bollii clusters together with the Wood Pigeon (C. palumbus) which is common in Europe and Asia, while C. junoniae was found near the base of the clade that includes other species of the genus Columba from the Old World. Laurel Pigeon probably represents an old lineage that might have colonized the Canary Islands a long time ago (20 My) while Bolle’s Pigeon might have arrived on the archipelago much later during the Upper Miocene (5 My).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alcover JA, Florit X (1989) The birds from the archaeological site of La Aldea, Gran Canaria. Bull Inst Cat Hist Nat 56:47–55

    Google Scholar 

  • Altekar G, Dwarkadas S, Huelsenbeck JP, Ronquist F (2004) Parallel metropolis-coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics 20:407–415

    CAS  Google Scholar 

  • Arévalo JR, Delgado JD, Fernández-Palacios JM (2007) Variation in fleshy fruit fall composition in an island laurel forest of the Canary Islands. Acta Oecol 32:152–160

    Google Scholar 

  • Broders O, Osborne T, Wink M (2003) A mtDNA phylogeny of bustards (family Otididae) based on nucleotide sequences of the cytochrome b-gene. J Ornithol 144:176–185

    Google Scholar 

  • Carracedo JC, Pérez FJ, Ancochea E, Meco J, Hernán F, Cubas CR, Casillas R, Rodríguez E, Ahijado A (2002) Cenozoic volcanism II: The Canary Islands. In: Gibbons W, Moreno T (eds) The geology of Spain. The Geological Society of London, pp 439–472

  • Castillo C, López M, Martín M, Rando JC (1996) La paleontología de vertebrados en Canarias. Rev Esp Paleontol no Extraordinario, pp 237–247

  • Cerling TE, Harris JM, MacFadden BJ, Leakey MG, Quade J, Eisenmann V, Ehleringer JR (1997) Global vegetation change through the Miocene/Pliocene boundary. Nature 389:153–158

    CAS  Google Scholar 

  • Clarke T (2006) Birds of the Atlantic islands. Christopher Helm, London

    Google Scholar 

  • Clayton DH, Johnson KP (2003) Linking coevolutionary history to ecological process: doves and lice. Evolution 57:2335–2341

    PubMed  Google Scholar 

  • Coello J, Cantagrel JM, Hernán F, Fúster JM, Ibarrola E, Ancochea E, Casquet C, Jamond C, Díaz de Téran JR, Cendrero A (1992) Evolution of the eastern volcanic ridge of the Canary Islands based on new K–Ar data. J Volcanol Geotherm Res 53:251–274

    CAS  Google Scholar 

  • del Hoyo J, Elliott A, Sargatal J (1997) Handbook of the birds of the world, vol 4. Sandgrouse to cuckoos. Lynx, Barcelona

    Google Scholar 

  • Dietzen C, Witt H-H, Wink M (2003) The phylogeographic differentiation of the European robin Erithacus rubecula on the Canary Islands revealed by mitochondrial DNA sequence data and morphometrics: evidence for a new robin taxon on Gran Canaria? Avian Sci 3:115–131

    Google Scholar 

  • Dietzen C, Voigt C, Wink M, Gahr M, Leitner S (2005) Phylogeography of island canary (Serinus canaria) populations. J Ornithol 147:485–494

    Google Scholar 

  • Dietzen C, Garcia-del-Rey E, Delgado G, Wink M (2008a) Phylogenetic differentiation of Sylvia species (Aves: Passeriformes) of the Atlantic islands (Macaronesia) based on mitochondrial DNA sequence data and morphometrics. Biol J Linn Soc 95:157–174

    Google Scholar 

  • Dietzen C, Garcia-del-Rey E, Delgado G, Wink M (2008b) Phylogeography of the blue tit (Parus teneriffae—group) on the Canary Islands based on mitochondrial DNA sequence data and morphometrics. J Ornithol 149:1–12

    Google Scholar 

  • Emmerson KW, Martin A, Delgado G, Quilis V (1986) Distribution and some aspects of the breeding biology of Bolle’s pigeon (Columba bollii) on Tenerife. Die Vogelwelt 107:52–65

    Google Scholar 

  • Ericson PG, Anderson CL, Britton T, Elzanowski A, Johansson US, Källersjö M, Ohlson JI, Parsons TJ, Zuccon D, Mayr G (2006) Diversification of Neoaves: integration of molecular sequence data and fossils. Biol Lett 2:543–547

    PubMed  PubMed Central  Google Scholar 

  • Friesen VL (2000) Introns. In: Baker AJ (ed) Molecular methods in ecology. Blackwell, Oxford, pp 274–294

    Google Scholar 

  • Garcia-del-Rey E, Delgado G, Gonzalez J, Wink M (2007) Canary Island great spotted woodpecker (Dendrocopos major) has distinct mtDNA. J Ornithol 148:531–536

    Google Scholar 

  • Gibbs D, Barnes E, Cox J (2001) Pigeons and doves. A guide to the pigeons and doves of the world. Pica Press, Sussex

    Google Scholar 

  • Gonzalez J, Wink M, Garcia-del-Rey E, Delgado G (2008) Evidence from DNA nucleotide sequences and ISSR profiles indicates paraphyly in subspecies of southern grey shrike (Lanius meridionalis). J Ornithol 149:495–506

    Google Scholar 

  • Goodwin D (1959) Taxonomy of the genus Columba. Bull Brit Mus (Nat Hist) Zool 6. In: Goodwin D (1977) Pigeons and doves of the world, 2nd edn. British Museum (Natural History). Cornell University Press, Ithaca

  • Goodwin D (1977) Pigeons and doves of the world, 2nd edn. British museum (natural history). Cornell University Press, Ithaca

    Google Scholar 

  • Goodwin D (1983) Pigeons and doves of the world, 3rd edn. British museum (natural history). Cornell University Press, Ithaca

    Google Scholar 

  • Grosso AR, Bastos-Silveira C, Coelho MM, Dias D (2006) Columba palumbus cyt b-like numt sequence: comparison with functional homologue and the use of universal primers. Folia Zool 55:131–144

    Google Scholar 

  • Haddrath O, Baker AJ (2001) Complete mitochondrial DNA genome sequences of extinct birds: ratite phylogenetics and the vicariance biogeography hypothesis. Proc R Soc Lond B 268:939–945

    CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hasegawa M, Kishino H, Yano T (1985) Dating the human–ape split by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174

    CAS  PubMed  Google Scholar 

  • Hedges SB, Parker PH, Sibley CG, Kumar S (1996) Continental breakup and the ordinal diversification of birds and mammals. Nature 381:226–229

    CAS  PubMed  Google Scholar 

  • Hernández MA, Martín A (2003) BWP update. The birds of western Palearctic, vol 5. Oxford University Press, Oxford, pp 215–228

    Google Scholar 

  • Hugall AF, Foster R, Lee MSY (2007) Calibration choice, rate smoothing, and the pattern of tetrapod diversification according to the long nuclear gene RAG-1. Syst Biol 56:543–563

    CAS  Google Scholar 

  • Jacobs BF (2004) Palaeobotanical studies from tropical Africa: relevance to the evolution of forest, woodland and savannah biomes. Philos Trans R Soc Lond B 359:1573–1583

    Google Scholar 

  • Johnson KP, Clayton DH (2000) Nuclear and mitochondrial genes contain similar phylogenetic signal for pigeons and doves (Aves: Columbiformes). Mol Phylogenet Evol 14:141–151

    CAS  PubMed  Google Scholar 

  • Johnson KP, De Kort S, Dinwoodey K, Mateman AC, Ten Cate C, Lessells CM, Clayton DH (2001) A molecular phylogeny of the dove genera Streptopelia and Columba. Auk 118:874–887

    Google Scholar 

  • Johnson KP, Adams RJ, Page RDM, Clayton DH (2003) When do parasites fail to speciate in response to host speciation? Syst Biol 52:37–47

    PubMed  Google Scholar 

  • Kishino H, Thorne JL, Bruno WJ (2001) Performance of a divergence time estimation method under a probabilistic model of rate evolution. Mol Biol Evol 18:352–361

    CAS  PubMed  Google Scholar 

  • Kvist L, Broggi J, Illera JC, Koivula K (2005) Colonization and diversification of the blue tits (Parus caeruleus teneriffae—group) in the Canary Islands. Mol Phylogenet Evol 34:501–511

    CAS  PubMed  Google Scholar 

  • Lovette IJ (2004) Mitochondrial dating and support for the 2% rule in birds. Auk 121:1–6

    Google Scholar 

  • Machado MC (1996) Reconstrucción paleoecológica y etnoarqueológica por medio del análisis antracológico. La Cueva de Villaverde, Fuerteventura. In: Ramil-Rego P, Fernández Rodríguez C, Rodríguez Guitián M (eds) Biogeografía pleistocena-holocena de la Península Ibérica. Junta de Galicia, Santiago de Compostela, Spain, pp 261–274

    Google Scholar 

  • Martín A, Lorenzo JA (2001) Aves del archipiélago canario. Francisco Lemus Editor, La Laguna

    Google Scholar 

  • Martín A, Hernández MA, Lorenzo JA, Nogales M, González C (2000) Las palomas endémicas de Canarias. Consejería de Política Territorial y Medio Ambiente del Gobierno de Canarias and SEO/BirdLife. Santa Cruz de Tenerife, Spain

    Google Scholar 

  • Mayr E (1942) Systematics and the origin of species. Columbia University Press, New York

  • Médail F, Quézel P (1999) The phytogeographical significance of S.W. Morocco compared to the Canary Islands. Plant Ecol 140:221–244

    Google Scholar 

  • Moore WS, DeFilippis VR (1997) The window of taxonomic resolution for phylogenies based on mitochondrial cytochrome b. In: Mindell DP (ed) Avian molecular evolution and systematics. Academic Press, San Diego, pp 83–119

    Google Scholar 

  • Päckert M, Dietzen C, Martens J, Wink M, Kvist L (2006) Radiation of Atlantic goldcrests Regulus regulus spp.: evidence of a new taxon from the Canary Islands. J Avian Biol 37:364–380

    Google Scholar 

  • Pamilo P, Nei M (1988) Relationships between gene trees and species trees. Mol Biol Evol 5:568–583

    CAS  PubMed  Google Scholar 

  • Pereira SL, Baker AJ (2006) A mitogenomic timescale for birds detects variable phylogenetic rates of molecular evolution and refutes the standard molecular clock. Mol Biol Evol 23:1731–1740

    CAS  PubMed  Google Scholar 

  • Pereira SL, Johnson KP, Clayton DH, Baker AJ (2007) Mitochondrial and nuclear DNA sequences support a Cretaceous origin of Columbiformes and a dispersal-driven radiation in the Paleogene. Syst Biol 56:656–672

    CAS  PubMed  Google Scholar 

  • Rando JC, Perera MA (1994) Primeros datos de ornitofagia entre los aborígenes de Fuerteventura (Islas Canarias). Archaeofauna 3:13–19

    Google Scholar 

  • Rodríguez O (2005) Flora y vegetación terrestre. La transformación del paisaje vegetal. In: Rodríguez O (ed) Patrimonio Natural de la isla de Fuerteventura. Litografía Romero, Tenerife, pp 141–143

    Google Scholar 

  • Rodríguez O, García A, Reyes JA (2000) Estudio fitosociológico de la vegetación actual de Fuerteventura (islas Canarias). Vieraea 28:61–104

    Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    CAS  Google Scholar 

  • Rutschmann F, Eriksson T, Salim KA, Conti E (2007) Assessing calibration uncertainty in molecular dating: the assignment of fossils to alternative calibration points. Syst Biol 56:591–608

    CAS  PubMed  Google Scholar 

  • Santos A (1989) Bosques de laurisilva en la región macaronésica. Consejo de Europa

  • Shapiro B, Sibthorpe D, Rambaut A, Austin J, Wragg GM, Bininda-Emonds ORP, Lee PLM, Cooper A (2007) Flight of the dodo. Science 295:1683

    Google Scholar 

  • Shields GF, Wilson AC (1987) Calibration of mitochondrial DNA evolution in geese. J Mol Evol 24:212–217

    CAS  PubMed  Google Scholar 

  • Stresemann E (1927–1934) Aves. In: Kükenthal W, Krumbach T (eds) Handbuch der Zoologie. Walter de Gruyter, Berlin, pp 646–647

  • Sunding P (1979) Origins of the Macaronesian flora. In: Bramwell D (ed) Plants and islands. Academic Press, New York, pp 13–40

  • Swofford DL (2002) PAUP*, phylogenetic analysis using parsimony (and other methods), version 4.0b10a. Sinauer, Sunderland

    Google Scholar 

  • Tavaré S (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. In: Miura RM (ed) Some mathematical questions in biology—DNA sequence analysis. American Mathematical Society, Providence, pp 57–86

    Google Scholar 

  • Thorne JL, Kishino H (2002) Divergence time and evolutionary rate estimation with multilocus data. Syst Biol 51:689–702

    PubMed  Google Scholar 

  • Thorne JL, Kishino H, Painter IS (1998) Estimating the rate of evolution of the rate of evolution. Mol Biol Evol 15:1647–1657

    CAS  PubMed  Google Scholar 

  • van Tuinen M, Sibley CG, Hedges SB (1998) Phylogeny and biogeography of ratite birds inferred from DNA sequences of mitochondrial ribosomal genes. Mol Biol Evol 15:370–376

    PubMed  Google Scholar 

  • Volsøe H (1955) The breeding birds of the Canary Islands II. Origin and history of the Canarian avifauna. Vidensk Medd Dansk Nat Foren 117:117–178

    Google Scholar 

  • Wiegmann BM, Yeates DK, Throne JL, Kishino H (2003) Time flies, a new molecular time-scale for brachyceran fly evolution without a clock. Syst Biol 52:745–756

    PubMed  Google Scholar 

  • Wilson AC, Cann RL, Carr SM, George M, Gyllensten UB, Helm-Bychowski KM, Higuchi RG, Palumbi SR, Prager EM, Sage RD, Stoneking M (1985) Mitochondrial DNA and two perspectives on evolutionary genetics. Biol J Linn Soc 26:375–400

    Google Scholar 

  • Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel H (eds) Evolving genes and proteins. Academic Press, New York, pp 97–166

    Google Scholar 

Download references

Acknowledgments

Gobierno de Canarias and the Cabildo Insular of Tenerife, La Palma and La Gomera authorized the collection of biological samples which was partly funded by the Sociedad Ornitológica Canaria (SOC). Dr. J. Nadal and Dr. M. Alayón Barrera kindly provided valuable samples of Columba palumbus, C. oenas, C. arquatrix, and C. guinea. J. Leal helped with the field work on La Palma. We thank Prof. Dr. H. Bock (Managing Director of IWR) and S. Friedel for access to parallel computing facilities at the Interdisciplinary Center for Scientific Computing (IWR, Heidelberg University). Thanks to H. Sauer-Gürth for valuable technical assistance in our laboratory. Dr. C. Dietzen kindly translated the abstract into German and provided valuable literature and comments. Our American colleague T.C.H. Cole, J. Díaz de Castro and an anonymous referee kindly provided valuable comments and advice to improve this manuscript. All experiments comply with the current laws of Germany, Spain, and Portugal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Gonzalez.

Additional information

Communicated by J. Fjeldså.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM (PDF 139 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzalez, J., Delgado Castro, G., Garcia-del-Rey, E. et al. Use of mitochondrial and nuclear genes to infer the origin of two endemic pigeons from the Canary Islands. J Ornithol 150, 357–367 (2009). https://doi.org/10.1007/s10336-008-0360-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-008-0360-4

Keywords

Navigation