Skip to main content

Advertisement

Log in

A novel alternative to classify tissues from T 1 and T 2 relaxation times for prostate MRI

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objective

To segment and classify the different attenuation regions from MRI at the pelvis level using the T 1 and T 2 relaxation times and anatomical knowledge as a first step towards the creation of PET/MR attenuation maps.

Materials and methods

Relaxation times were calculated by fitting the pixel-wise intensities of acquired T 1- and T 2-weighted images from eight men with inversion-recovery and multi-echo multi-slice spin-echo sequences. A decision binary tree based on relaxation times was implemented to segment and classify fat, muscle, prostate, and air (within the body). Connected component analysis and an anatomical knowledge-based procedure were implemented to localize the background and bone.

Results

Relaxation times at 3 T are reported for fat (T 1 = 385 ms, T 2 = 121 ms), muscle (T 1 = 1295 ms, T 2 = 40 ms), and prostate (T 1 = 1700 ms, T 2 = 80 ms). The relaxation times allowed the segmentation–classification of fat, prostate, muscle, and air, and combined with anatomical knowledge, they allowed classification of bone. The good segmentation–classification of prostate [mean Dice similarity score (mDSC) = 0.70] suggests a viable implementation in oncology and that of fat (mDSC = 0.99), muscle (mDSC = 0.99), and bone (mDSCs = 0.78) advocates for its implementation in PET/MR attenuation correction.

Conclusion

Our method allows the segmentation and classification of the attenuation-relevant structures required for the generation of the attenuation map of PET/MR systems in prostate imaging: air, background, bone, fat, muscle, and prostate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Souvatzoglou M, Eiber M, Martinez-Moeller A, Fürst S, Holzapfel K, Maurer T, Ziegler S, Nekolla S, Schwaiger M, Beer AJ (2013) PET/MR in prostate cancer: technical aspects and potential diagnostic value. Eur J Nucl Med Mol Imaging 40:79–88

    Article  Google Scholar 

  2. Vandenberghe S, Marsden PK (2015) PET–MRI: a review of challenges and solutions in the development of integrated multimodality imaging. Phys Med Biol 60:R115–R154

    Article  PubMed  Google Scholar 

  3. Wagenknecht G, Kaiser H-J, Mottaghy FM, Herzog H (2013) MRI for attenuation correction in PET: methods and challenges. Magn Reson Mater Phy 26:99–113

    Article  Google Scholar 

  4. Bezrukov I, Mantlik F, Schmidt H, Schölkopf B, Pichler BJ (2013) MR-based PET attenuation correction for PET/MR imaging. Semin Nucl Med 43:45–59

    Article  PubMed  Google Scholar 

  5. Keereman V, Mollet P, Berker Y, Schulz V, Vandenberghe S (2013) Challenges and current methods for attenuation correction in PET/MR. Magn Reson Mater Phy 26:81–98

    Article  Google Scholar 

  6. Berker Y, Franke J, Salomon A, Palmowski M, Donker HCW, Temur Y, Mottaghy FM, Kuhl C, Izquierdo-Garcia D, Fayad ZA, Kiessling F, Schulz V (2012) MRI-based attenuation correction for hybrid PET/MRI systems: a 4-class tissue segmentation technique using a combined ultrashort-echo-time/Dixon MRI sequence. J Nucl Med 53:796–804

    Article  PubMed  Google Scholar 

  7. Beyer T, Weigert M, Quick HH, Pietrzyk U, Vogt F, Palm C, Antoch G, Müller SP, Bockisch A (2008) MR-based attenuation correction for torso-PET/MR imaging: pitfalls in mapping MR to CT data. Eur J Nucl Med Mol Imaging 35:1142–1146

    Article  PubMed  Google Scholar 

  8. Zaidi H, Montandon M-L, Slosman DO (2003) Magnetic resonance imaging-guided attenuation and scatter corrections in three-dimensional brain positron emission tomography. Med Phys 30:937–948

    Article  PubMed  Google Scholar 

  9. Hu Z, Ojha N, Renisch S, Schulz V, Torres I, Buhl A, Pal D, Muswick G, Penatzer J, Guo T, Bonert P, Tung C, Kaste J, Morich M, Havens T, Maniawski P, Schafer W, Gunther RW, Krombach GA, Shao L (2009) MR-based attenuation correction for a whole-body sequential PET/MR system. In: Nuclear science symposium conference record NSSMIC. IEEE, Orlando, USA, pp 3508–3512

  10. Schulz V, Torres-Espallardo I, Renisch S, Hu Z, Ojha N, Börnert P, Perkuhn M, Niendorf T, Schäfer WM, Brockmann H, Krohn T, Buhl A, Günther RW, Mottaghy FM, Krombach GA (2011) Automatic, three-segment, MR-based attenuation correction for whole-body PET/MR data. Eur J Nucl Med Mol Imaging 38:138–152

    Article  CAS  PubMed  Google Scholar 

  11. Hofmann M, Steinke F, Scheel V, Charpiat G, Farquhar J, Aschoff P, Brady M, Schölkopf B, Pichler B-J (2008) MRI-based attenuation correction for PET/MRI: a novel approach combining pattern recognition and atlas registration. J Nucl Med 49:1875–1883

    Article  PubMed  Google Scholar 

  12. Iglesias JE, Dinov I, Singh J, Tong G, Tu Z (2010) Synthetic MRI signal standardization: application to multi-atlas analysis. Med Image Comput Comput Assist Interv 13:81–88

    PubMed  Google Scholar 

  13. Keereman V, Fierens Y, Broux T, Deene YD, Lonneux M, Vandenberghe S (2010) MRI-based attenuation correction for PET/MRI using ultrashort echo time sequences. J Nucl Med 51:812–818

    Article  PubMed  Google Scholar 

  14. Johansson A, Karlsson M, Nyholm T (2011) CT substitute derived from MRI sequences with ultrashort echo time. Med Phys 38:2708–2714

    Article  PubMed  Google Scholar 

  15. Catana C, van der Kouwe A, Benner T, Michel CJ, Hamm M, Fenchel M, Fischl B, Rosen B, Schmand M, Sorensen AG (2010) Towards implementing an MR-based PET attenuation correction method for neurological studies on the MR–PET brain prototype. J Nucl Med 51:1431–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Martinez-Möller A, Souvatzoglou M, Delso G, Bundschuh RA, Chefd’hotel C, Ziegler SI, Navab N, Schwaiger M, Nekolla SG (2009) Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med 50:520–526

    Article  PubMed  Google Scholar 

  17. Khateri P, Rad HS, Jafari AH, Kazerooni AF, Akbarzadeh A, Moghadam MS, Aryan A, Ghafarian P, Ay MR (2015) Generation of a four-class attenuation map for MRI-based attenuation correction of PET data in the head area using a novel combination of STE/Dixon-MRI and FCM clustering. Mol Imaging Biol 17:884–892

    Article  CAS  PubMed  Google Scholar 

  18. Wagenknecht G, Kops ER, Tellmann L, Herzog H (2009) Knowledge-based segmentation of attenuation-relevant regions of the head in T1-weighted MR images for attenuation correction in MR/PET systems. In: Nuclear science symposium conference record NSSMIC. IEEE, Orlando, USA, pp 3338–3343

  19. Siegel R, Ma J, Zou Z, Jemal A (2014) Cancer statistics, 2014. Cancer J Clin 64:9–29

    Article  Google Scholar 

  20. Kohan AA, Paspulati RM, Sherertz T, Mihaloew H, Herrmann K (2014) Positron emission tomography–magnetic resonance imaging in oncologic diseases of the male and female pelvis. Semin Roentgenol 49:334–344

    Article  PubMed  Google Scholar 

  21. Gowland PA, Stevenson VL (2003) T1: the longitudinal relaxation time. In: Tofts P (ed) Quant. MRI brain. Wiley, New York, pp 111–141

    Chapter  Google Scholar 

  22. Edden RAE, Smith SA, Barker PB (2010) Longitudinal and multi-echo transverse relaxation times of normal breast tissue at 3 Tesla. J Magn Reson Imaging 32:982–987

    Article  PubMed  PubMed Central  Google Scholar 

  23. Reichert ILH, Robson MD, Gatehouse PD, He T, Chappell KE, Holmes J, Girgis S, Bydder GM (2005) Magnetic resonance imaging of cortical bone with ultrashort TE pulse sequences. Magn Reson Imaging 23:611–618

    Article  PubMed  Google Scholar 

  24. Sung K, Daniel BL, Hargreaves BA (2013) Transmit B1+ field inhomogeneity and T1 estimation errors in breast DCE-MRI at 3 tesla. J Magn Reson Imaging 38:454–459

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sung K, Saranathan M, Daniel BL, Hargreaves BA (2013) Simultaneous T1 and B1+ mapping using reference region variable flip angle imaging. Magn Reson Med 70:954–961

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liberman G, Louzoun Y, Ben Bashat D (2014) T1 mapping using variable flip angle SPGR data with flip angle correction. J Magn Reson Imaging 40:171–180

    Article  PubMed  Google Scholar 

  27. Hofmann M, Bezrukov I, Mantlik F, Aschoff P, Steinke F, Beyer T, Pichler B, Schölkopf B (2011) MRI-based attenuation correction for whole-body PET/MRI: quantitative evaluation of segmentation- and atlas-based methods. J Nucl Med 52:1392–1399

    Article  PubMed  Google Scholar 

  28. Akbarzadeh A, Ay MR, Ahmadian A, Alam NR, Zaidi H (2011) Impact of using different tissue classes on the accuracy of MR-based attenuation correction in PET–MRI. In: Nuclear science symposium and medical imaging conference NSSMIC. IEEE, Valencia, Spain, pp 2524–2530

  29. Simpkin CJ, Morgan VA, Giles SL, Riches SF, Parker C, deSouza NM (2013) Relationship between T2 relaxation and apparent diffusion coefficient in malignant and non-malignant prostate regions and the effect of peripheral zone fractional volume. Br J Radiol 86:20120469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gibbs P, Liney GP, Pickles MD, Zelhof B, Rodrigues G, Turnbull LW (2009) Correlation of ADC and T2 measurements with cell density in prostate cancer at 3.0 Tesla. Investig Radiol 44:572–576

    Article  Google Scholar 

  31. Liu W, Turkbey B, Sénégas J, Remmele S, Xu S, Kruecker J, Bernardo M, Wood BJ, Pinto PA, Choyke PL (2011) Accelerated T2 mapping for characterization of prostate cancer. Magn Reson Med 65:1400–1406

    Article  PubMed  PubMed Central  Google Scholar 

  32. Deoni SCL (2007) High-resolution T1 mapping of the brain at 3T with driven equilibrium single pulse observation of T1 with high-speed incorporation of RF field inhomogeneities (DESPOT1-HIFI). J Magn Reson Imaging 26:1106–1111

    Article  PubMed  Google Scholar 

  33. Keereman V, Holen RV, Mollet P, Vandenberghe S (2011) The effect of errors in segmented attenuation maps on PET quantification. Med Phys 38:6010–6019

    Article  PubMed  Google Scholar 

  34. De Bazelaire CMJ, Duhamel GD, Rofsky NM, Alsop DC (2004) MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Radiology 230:652–659

    Article  PubMed  Google Scholar 

  35. Pai A, Li X, Majumdar S (2008) A comparative study at 3 Tesla of sequence dependence of T2 quantitation in the knee. Magn Reson Imaging 26:1215–1220

    Article  PubMed  PubMed Central  Google Scholar 

  36. Barral JK, Gudmundson E, Stikov N, Etezadi-Amoli M, Stoica P, Nishimura DG (2010) A robust methodology for in vivo T1 mapping. Magn Reson Med 64:1057–1067

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gold GE, Han E, Stainsby J, Wright G, Brittain J, Beaulieu C (2004) Musculoskeletal MRI at 3.0 T: relaxation times and image contrast. AJR Am J Roentgenol 183:343–351

    Article  PubMed  Google Scholar 

  38. Rakow-Penner R, Daniel B, Yu H, Sawyer-Glover A, Glover GH (2006) Relaxation times of breast tissue at 1.5T and 3T measured using IDEAL. J Magn Reson Imaging 23:87–91

    Article  PubMed  Google Scholar 

  39. Stanisz GJ, Odrobina EE, Pun J, Escaravage M, Graham SJ, Bronskill MJ, Henkelman RM (2005) T1, T2 relaxation and magnetization transfer in tissue at 3T. Magn Reson Med 54:507–512

    Article  PubMed  Google Scholar 

  40. Fennessy FM, Fedorov A, Gupta SN, Schmidt EJ, Tempany CM, Mulkern RV (2012) QIN: practical considerations in T1 mapping of prostate for dynamic contrast enhancement pharmacokinetic analyses. Magn Reson Imaging 30:1224–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Zavala Bojorquez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bojorquez, J.Z., Bricq, S., Brunotte, F. et al. A novel alternative to classify tissues from T 1 and T 2 relaxation times for prostate MRI. Magn Reson Mater Phy 29, 777–788 (2016). https://doi.org/10.1007/s10334-016-0562-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-016-0562-3

Keywords

Navigation