Skip to main content

Advertisement

Log in

Pulsed arterial spin labelling at ultra-high field with a B +1 -optimised adiabatic labelling pulse

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objective

Arterial spin labelling (ASL) techniques benefit from the increased signal-to-noise ratio and the longer T 1 relaxation times available at ultra-high field. Previous pulsed ASL studies at 7 T concentrated on the superior regions of the brain because of the larger transmit radiofrequency inhomogeneity experienced at ultra-high field that hinders an adequate inversion of the blood bolus when labelling in the neck. Recently, researchers have proposed to overcome this problem with either the use of dielectric pads, through dedicated transmit labelling coils, or special adiabatic inversion pulses.

Materials and methods

We investigate the performance of an optimised time-resampled frequency-offset corrected inversion (TR-FOCI) pulse designed to cause inversion at much lower peak B +1 . In combination with a PICORE labelling, the perfusion signal obtained with this pulse is compared against that obtained with a FOCI pulse, with and without dielectric pads.

Results

Mean grey matter perfusion with the TR-FOCI was 52.5 ± 10.3 mL/100 g/min, being significantly higher than the 34.6 ± 2.6 mL/100 g/min obtained with the FOCI pulse. No significant effect of the dielectric pads was observed.

Conclusion

The usage of the B +1 -optimised TR-FOCI pulse results in a significantly higher perfusion signal. PICORE–ASL is feasible at ultra-high field with no changes to operating conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rosen BR, Belliveau JW, Vevea JM, Brady TJ (1990) Perfusion imaging with NMR contrast agents. Magn Reson Med 14:249–265

    Article  CAS  PubMed  Google Scholar 

  2. Tofts PS, Kermode AG (1991) Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 17:357–367

    Article  CAS  PubMed  Google Scholar 

  3. Detre JA, Leigh JS, Williams DS, Koretsky AP (1992) Perfusion imaging. Magn Reson Med 23:37–45

    Article  CAS  PubMed  Google Scholar 

  4. Williams DS, Detre JA, Leigh JS, Koretsky AP (1992) Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci USA 89:212–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Teeuwisse WM, Webb AG, van Osch MJP (2010) Arterial spin labeling at ultra-high field: all that glitters is not gold. Int J Imaging Syst Technol 20:62–70

    Article  Google Scholar 

  6. Pfeuffer J, Adriany G, Shmuel A, Yacoub E, Van De Moortele P-F, Hu X, Ugurbil K (2002) Perfusion-based high-resolution functional imaging in the human brain at 7 Tesla. Magn Reson Med 47:903–911

    Article  PubMed  Google Scholar 

  7. Wang J, Alsop DC, Li L, Listerud J, Gonzalez-At JB, Schnall MD, Detre JA (2002) Comparison of quantitative perfusion imaging using arterial spin labeling at 1.5 and 4.0 Tesla. Magn Reson Med 48:242–254

    Article  PubMed  Google Scholar 

  8. Gardener AG, Gowland PA, Francis ST (2009) Implementation of quantitative perfusion imaging using pulsed arterial spin labeling at ultra-high field. Magn Reson Med 61:874–882

    Article  CAS  PubMed  Google Scholar 

  9. Ghariq E, Teeuwisse WM, Webb AG, van Osch MJP (2012) Feasibility of pseudocontinuous arterial spin labeling at 7 T with whole-brain coverage. MAGMA 25:83–93

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bause J, Ehses P, Mirkes C, Shajan G, Scheffler K, Pohmann R (2015) Quantitative and functional pulsed arterial spin labeling in the human brain at 9.4 T. Magn Reson Med. doi:10.1002/mrm.25671

    Google Scholar 

  11. Jahanian H, Noll DC, Hernandez-Garcia L (2011) B 0 field inhomogeneity considerations in pseudo-continuous arterial spin labeling (pCASL): effects on tagging efficiency and correction strategy. NMR Biomed 24:1202–1209

    Article  PubMed  Google Scholar 

  12. Luh W-M, Talagala SL, Li T-Q, Bandettini PA (2013) Pseudo-continuous arterial spin labeling at 7 T for human brain: estimation and correction for off-resonance effects using a Prescan. Magn Reson Imaging 69:402–410

    Google Scholar 

  13. Bernstein MA, King KF, Zhou XJ (2004) Handbook of MRI pulse sequences. Elsevier Academic Press, Amsterdam

    Google Scholar 

  14. Edelman RR, Siewert B, Adamis M, Gaa J, Laub G, Wielopolski P (1994) Signal targeting with alternating radiofrequency (STAR) sequences: application to MR angiography. Magn Reson Med 31:233–238

    Article  CAS  PubMed  Google Scholar 

  15. Wong EC, Buxton RB, Frank LR (1997) Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR Biomed 10:237–249

    Article  CAS  PubMed  Google Scholar 

  16. Garcia D, de Bazelaire C, Alsop D (2005) Pseudo-continuous flow driven adiabatic inversion for arterial spin labeling. In: Proceedings of the 13th scientific meeting, International Society for Magnetic Resonance in Medicine, Miami Beach, p 37

  17. Li X, Wang D, Auerbach EJ, Moeller S, Ugurbil K, Metzger GJ (2015) Theoretical and experimental evaluation of multi-band EPI for high-resolution whole brain pCASL Imaging. NeuroImage 106:170–181

    Article  PubMed  PubMed Central  Google Scholar 

  18. Li X, Wang D, Moeller S, Ugurbil K, Metzger GJ (2014) Feasibility of applying MB EPI pCASL for high-resolution whole brain perfusion imaging at 7T. In: Proceedings of the 22nd scientific meeting, International Society for Magnetic Resonance in Medicine, Milan,  p 995

  19. Talagala SL, Ye FQ, Ledden PJ, Chesnick S (2004) Whole-brain 3D perfusion MRI at 3.0 T using CASL with a separate labeling coil. Magn Reson Med 52:131–140

    Article  PubMed  Google Scholar 

  20. Chuang K-H, Merkle H, Chesnick S, van Gelderen P, Koretsky AP, Duyn JH, Talagala SL (2005) Continuous arterial spin labeling perfusion MRI at 7T. In: Proceedings of the 13th annual meeting, ISMRM, Miami, 2005, p 1547

  21. Ivanov D, Poser BA, Huber L, Pfeuffer J, Uludağ K (2014) Whole-brain perfusion measurements at 7T using pulsed arterial spin labelling and simultaneous multi-slice multi-echo echo planar imaging. In: Proceedings of the 22nd annual meeting, ISMRM, Milan, 2014, p 2698

  22. Luh WM, Wong EC, Bandettini PA, Hyde JS (1999) QUIPSS II with thin-slice TI1 periodic saturation: a method for improving accuracy of quantitative perfusion imaging using pulsed arterial spin labeling. Magn Reson Med 41:1246–1254

    Article  CAS  PubMed  Google Scholar 

  23. Ordidge RJ, Wylezinska M, Hugg JW, Butterworth E, Franconi F (1996) Frequency offset corrected inversion (FOCI) pulses for use in localized spectroscopy. Magn Reson Med 36:562–566

    Article  CAS  PubMed  Google Scholar 

  24. Hurley AC, Al-Radaideh A, Bai L, Aickelin U, Coxon R, Glover P, Gowland PA (2010) Tailored RF pulse for magnetization inversion at ultrahigh field. Magn Reson Med 63:51–58

    PubMed  Google Scholar 

  25. Silver M, Joseph R, Chen C-N, Sank V, Hoult D (1984) Selective population inversion in NMR. Nature 310:681–683

    Article  CAS  PubMed  Google Scholar 

  26. Jaynes E (1955) Matrix treatment of nuclear induction. Phys Rev 98:1099

    Article  CAS  Google Scholar 

  27. Pauly J, Le Roux P, Nishimura D, Macovski A (1991) Parameter relations for the Shinnar–Le Roux selective excitation pulse design algorithm [NMR imaging]. IEEE Trans Med Imaging 10:53–65

    Article  CAS  PubMed  Google Scholar 

  28. O’Brien KR, Magill AW, Delacoste J, Marques JP, Kober T, Fautz H-P, Lazeyras F, Krueger G (2014) Dielectric pads and low- B1 + adiabatic pulses: complementary techniques to optimize structural T1w whole-brain MP2RAGE scans at 7 tesla. J Magn Reson Imaging 40:804–812

    Article  PubMed  Google Scholar 

  29. Garwood M, DelaBarre L (2001) The return of the frequency sweep: designing adiabatic pulses for contemporary NMR. J Magn Reson 153:155–177

    Article  CAS  PubMed  Google Scholar 

  30. Teeuwisse WM, Brink WM, Haines KN, Webb AG (2012) Simulations of high permittivity materials for 7 T neuroimaging and evaluation of a new barium titanate-based dielectric. Magn Reson Med 67:912–918

    Article  CAS  PubMed  Google Scholar 

  31. Klose U (1992) Mapping of the radio frequency magnetic field with a MR snapshot FLASH technique. Med Phys 19:1099–1104

    Article  CAS  PubMed  Google Scholar 

  32. Chung S, Kim D, Breton E, Axel L (2010) Rapid B1 + mapping using a preconditioning RF pulse with TurboFLASH readout. Magn Reson Med 64:439–446

    PubMed  PubMed Central  Google Scholar 

  33. Alsop DC, Detre JA, Golay X, Günther M, Hendrikse J, Hernandez-Garcia L, Lu H, Macintosh BJ, Parkes LM, Smits M, van Osch MJP, Wang DJJ, Wong EC, Zaharchuk G (2014) Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med. doi:10.1002/mrm.25197

    Google Scholar 

  34. Rane SD, Gore JC (2013) Measurement of T1 of human arterial and venous blood at 7 T. Magn Reson Imaging 31:477–479

    Article  PubMed  PubMed Central  Google Scholar 

  35. Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17:143–155

    Article  PubMed  Google Scholar 

  36. Zuo Z, Wang R, Zhuo Y, Xue R, St Lawrence KS, Wang DJJ (2013) Turbo-FLASH based arterial spin labeled perfusion MRI at 7 T. PLoS One 8:e66612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Frank LR, Wong EC, Buxton RB (1997) Slice profile effects in adiabatic inversion: application to multislice perfusion imaging. Magn Reson Med 38:558–564

    Article  CAS  PubMed  Google Scholar 

  38. Wang Y, Moeller S, Li X, Vu AT, Krasileva K, Ugurbil K, Yacoub E, Wang DJJ (2015) Simultaneous multi-slice Turbo-FLASH imaging with CAIPIRINHA for whole brain distortion-free pseudo-continuous arterial spin labeling at 3 and 7 T. NeuroImage 113:279–288

    Article  PubMed  PubMed Central  Google Scholar 

  39. Adriany G (2014) A 16-channel arterial spin labeling—head transceiver array combination for 7 Tesla. In: Proceedings of the 22nd scientific meeting, International Society for Magnetic Resonance in Medicine, Milan, p 317

Download references

Acknowledgments

The authors thank Don Maillet and Rients Lootsma for their technical support with the scanner and the dielectric pads. MB acknowledges funding from Australian Research Council Future Fellowship Grant FT140100865. SB acknowledges funding from UQ Postdoctoral Research Fellowship grant. The authors acknowledge the facilities of the National Imaging Facility at the Centre for Advanced Imaging, University of Queensland and Siemens Healthcare Pty Ltd, Australia for development of the research prototype sequence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Barth.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Additional information

F. Zimmer and K. O’Brien contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zimmer, F., O’Brien, K., Bollmann, S. et al. Pulsed arterial spin labelling at ultra-high field with a B +1 -optimised adiabatic labelling pulse. Magn Reson Mater Phy 29, 463–473 (2016). https://doi.org/10.1007/s10334-016-0555-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-016-0555-2

Keywords

Navigation